首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rodents often act as important hosts for ticks and as pathogen reservoirs. At northern latitudes, rodents often undergo multi‐annual population cycles, and the periodic absence of certain hosts may inhibit the survival and recruitment of ticks. We investigated the potential role of common shrews (Sorex araneus) to serve as a supplementary host source to immature life stages (larvae and nymphs) of a generalist tick Ixodes ricinus and a small mammal specialist tick Itrianguliceps, during decreasing abundances of bank voles (Myodes glareolus). We used generalized mixed models to test whether ticks would have a propensity to parasitize a certain host species dependent on host population size and host population composition across two high‐latitude gradients in southern Norway, by comparing tick burdens on trapped animals. Host population size was defined as the total number of captured animals and host population composition as the proportion of voles to shrews. We found that a larger proportion of voles in the host population favored the parasitism of voles by Iricinus larvae (estimate = −1.923, p = .039) but not by nymphs (estimate = −0.307, p = .772). Itrianguliceps larvae did not show a lower propensity to parasitize voles, regardless of host population composition (estimate = 0.875, p = .180), while nymphs parasitized shrews significantly more as vole abundance increased (estimate = 2.106, p = .002). These results indicate that common shrews may have the potential to act as a replacement host during periods of low rodent availability, but long‐term observations encompassing complete rodent cycles may determine whether shrews are able to maintain tick range expansion despite low rodent availability.  相似文献   

2.
The prevalence of ticks infected by Borrelia burgdorferi sensu lato on birds during their migrations was studied in Switzerland. A total of 1,270 birds captured at two sites were examined for tick infestation. Ixodes ricinus was the dominant tick species. Prevalences of tick infestation were 6% and 18.2% for birds migrating northward and southward, respectively. Borrelia valaisiana was the species detected most frequently in ticks, followed by Borrelia garinii and Borrelia lusitaniae. Among birds infested by infected ticks, 23% (6/26) were infested by B. lusitaniae-infected larvae. Migratory birds appear to be reservoir hosts for B. lusitaniae.  相似文献   

3.

Background

Emerging bacterial zoonoses in bats and rodents remain relatively understudied. We conduct the first comparative host–pathogen coevolutionary analyses of bacterial pathogens in these hosts, using Bartonella spp. and Leptospira spp. as a model.

Methodology/Principal Findings

We used published genetic data for 51 Bartonella genotypes from 24 bat species, 129 Bartonella from 38 rodents, and 26 Leptospira from 20 bats. We generated maximum likelihood and Bayesian phylogenies for hosts and bacteria, and tested for coevoutionary congruence using programs ParaFit, PACO, and Jane. Bartonella spp. and their bat hosts had a significant coevolutionary fit (ParaFitGlobal = 1.9703, P≤0.001; m2 global value = 7.3320, P≤0.0001). Bartonella spp. and rodent hosts also indicated strong overall patterns of cospeciation (ParaFitGlobal = 102.4409, P≤0.001; m2 global value = 86.532, P≤0.0001). In contrast, we were unable to reject independence of speciation events in Leptospira and bats (ParaFitGlobal = 0.0042, P = 0.84; m2 global value = 4.6310, P = 0.5629). Separate analyses of New World and Old World data subsets yielded results congruent with analysis from entire datasets. We also conducted event-based cophylogeny analyses to reconstruct likely evolutionary histories for each group of pathogens and hosts. Leptospira and bats had the greatest number of host switches per parasite (0.731), while Bartonella and rodents had the fewest (0.264).

Conclusions/Significance

In both bat and rodent hosts, Bartonella exhibits significant coevolution with minimal host switching, while Leptospira in bats lacks evolutionary congruence with its host and has high number of host switches. Reasons underlying these variable coevolutionary patterns in host range are likely due to differences in disease-specific transmission and host ecology. Understanding the coevolutionary patterns and frequency of host-switching events between bacterial pathogens and their hosts will allow better prediction of spillover between mammal reservoirs, and ultimately to humans.  相似文献   

4.
The lone star tick (Amblyomma americanum) is an abundant and aggressive biter of humans, domestic animals, and wildlife in the southeastern-central USA and an important vector of several known and suspected zoonotic bacterial pathogens. However, the biological drivers of bacterial community variation in this tick are still poorly defined. Knowing the community context in which tick-borne bacterial pathogens exist and evolve is required to fully understand the ecology and immunobiology of the ticks and to design effective public health and veterinary interventions. We performed a metagenomic survey of the bacterial communities of questing A. americanum and tested 131 individuals (66 nymphs, 24 males, and 41 females) from five sites in three states. Pyrosequencing was performed with barcoded eubacterial primers targeting variable 16S rRNA gene regions 5–3. The bacterial communities were dominated by Rickettsia (likely R. amblyommii) and an obligate Coxiella symbiont, together accounting for 6.7–100% of sequences per tick. DNAs from Midichloria, Borrelia, Wolbachia, Ehrlichia, Pseudomonas, or unidentified Bacillales, Enterobacteriaceae, or Rhizobiales groups were also detected frequently. Wolbachia and Midichloria significantly co-occurred in Georgia (p<0.00001), but not in other states. The significance of the Midichloria-Wolbachia co-occurrence is unknown. Among ticks collected in Georgia, nymphs differed from adults in both the composition (p = 0.002) and structure (p = 0.002) of their bacterial communities. Adults differed only in their community structure (p = 0.002) with males containing more Rickettsia and females containing more Coxiella. Comparisons among adult ticks collected in New York and North Carolina supported the findings from the Georgia collection despite differences in geography, collection date, and sample handling, implying that the differences detected are consistent attributes. The data also suggest that some members of the bacterial community change during the tick life cycle and that some sex-specific attributes may be detectable in nymphs.  相似文献   

5.
《PloS one》2014,9(9)
Understanding why host species differ so much in symbiont loads and how this depends on ecological host and symbiont traits is a major issue in the ecology of symbiosis. A first step in this inquiry is to know whether observed differences among host species are species-specific traits or more related with host-symbiont environmental conditions. Here we analysed the repeatability (R) of the intensity and the prevalence of feather mites to partition within- and among-host species variance components. We compiled the largest dataset so far available: 119 Paleartic passerine bird species, 75,944 individual birds, ca. 1.8 million mites, seven countries, 23 study years. Several analyses and approaches were made to estimate R and adjusted repeatability (Radj) after controlling for potential confounding factors (breeding period, weather, habitat, spatial autocorrelation and researcher identity). The prevalence of feather mites was moderately repeatable (R = 0.26–0.53; Radj = 0.32–0.57); smaller values were found for intensity (R = 0.19–0.30; Radj = 0.18–0.30). These moderate repeatabilities show that prevalence and intensity of feather mites differ among species, but also that the high variation within species leads to considerable overlap among bird species. Differences in the prevalence and intensity of feather mites within bird species were small among habitats, suggesting that local factors are playing a secondary role. However, effects of local climatic conditions were partially observed for intensity.  相似文献   

6.
Infestation by the nest‐dwelling Ixodes hexagonus Leach and the exophilic Ixodes ricinus (Linnaeus) (Ixodida: Ixodidae) on the Northern white‐breasted hedgehog, Erinaceus roumanicus (Erinaceomorpha: Erinaceidae), was investigated during a 4‐year study in residential areas of the city of Poznań, west‐central Poland. Of 341 hedgehogs, 303 (88.9%) hosted 10 061 Ixodes spp. ticks encompassing all parasitic life stages (larvae, nymphs, females). Ixodes hexagonus accounted for 73% and I. ricinus for 27% of the collected ticks. Male hedgehogs carried significantly higher tick burdens than females. Analyses of seasonal prevalence and abundance of I. hexagonus revealed relatively stable levels of infestation of all parasitic stages, with a modest summer peak in tick abundance noted only on male hosts. By contrast, I. ricinus females and nymphs peaked in spring and declined steadily thereafter in summer and autumn, whereas the less abundant larvae peaked in summer. This is the first longterm study to evaluate the seasonal dynamics of both tick species on populations of wild hedgehogs inhabiting urban residential areas.  相似文献   

7.

Background

Environmental transmission of the zoonotic parasite Toxoplasma gondii, which is shed only by felids, poses risks to human and animal health in temperate and tropical ecosystems. Atypical T. gondii genotypes have been linked to severe disease in people and the threatened population of California sea otters. To investigate land-to-sea parasite transmission, we screened 373 carnivores (feral domestic cats, mountain lions, bobcats, foxes, and coyotes) for T. gondii infection and examined the distribution of genotypes in 85 infected animals sampled near the sea otter range.

Methodology/Principal Findings

Nested PCR-RFLP analyses and direct DNA sequencing at six independent polymorphic genetic loci (B1, SAG1, SAG3, GRA6, L358, and Apico) were used to characterize T. gondii strains in infected animals. Strains consistent with Type X, a novel genotype previously identified in over 70% of infected sea otters and four terrestrial wild carnivores along the California coast, were detected in all sampled species, including domestic cats. However, odds of Type X infection were 14 times higher (95% CI: 1.3–148.6) for wild felids than feral domestic cats. Type X infection was also linked to undeveloped lands (OR = 22, 95% CI: 2.3–250.7). A spatial cluster of terrestrial Type II infection (P = 0.04) was identified in developed lands bordering an area of increased risk for sea otter Type II infection. Two spatial clusters of animals infected with strains consistent with Type X (P≤0.01) were detected in less developed landscapes.

Conclusions

Differences in T. gondii genotype prevalence among domestic and wild felids, as well as the spatial distribution of genotypes, suggest co-existing domestic and wild T. gondii transmission cycles that likely overlap at the interface of developed and undeveloped lands. Anthropogenic development driving contact between these cycles may increase atypical T. gondii genotypes in domestic cats and facilitate transmission of potentially more pathogenic genotypes to humans, domestic animals, and wildlife.  相似文献   

8.
Lucy Gilbert 《Oecologia》2010,162(1):217-225
The impact of climate change on vector-borne infectious diseases is currently controversial. In Europe the primary arthropod vectors of zoonotic diseases are ticks, which transmit Borrelia burgdorferi sensu lato (the agent of Lyme disease), tick-borne encephalitis virus and louping ill virus between humans, livestock and wildlife. Ixodes ricinus ticks and reported tick-borne disease cases are currently increasing in the UK. Theories for this include climate change and increasing host abundance. This study aimed to test how I. ricinus tick abundance might be influenced by climate change in Scotland by using altitudinal gradients as a proxy, while also taking into account the effects of hosts, vegetation and weather effects. It was predicted that tick abundance would be higher at lower altitudes (i.e. warmer climates) and increase with host abundance. Surveys were conducted on nine hills in Scotland, all of open moorland habitat. Tick abundance was positively associated with deer abundance, but even after taking this into account, there was a strong negative association of ticks with altitude. This was probably a real climate effect, with temperature (and humidity, i.e. saturation deficit) most likely playing an important role. It could be inferred that ticks may become more abundant at higher altitudes in response to climate warming. This has potential implications for pathogen prevalence such as louping ill virus if tick numbers increase at elevations where competent transmission hosts (red grouse Lagopus lagopus scoticus and mountain hares Lepus timidus) occur in higher numbers.  相似文献   

9.
Many parasites are motile and exhibit behavioural preferences for certain host species. Because hosts can vary in their susceptibility to infections, parasites might benefit from preferentially detecting and infecting the most susceptible host, but this mechanistic hypothesis for host-choice has rarely been tested. We evaluated whether cercariae (larval trematode parasites) prefer the most susceptible host species by simultaneously presenting cercariae with four species of tadpole hosts. Cercariae consistently preferred hosts in the following order: Anaxyrus ( = Bufo) terrestris (southern toad), Hyla squirella (squirrel tree frog), Lithobates ( = Rana) sphenocephala (southern leopard frog), and Osteopilus septentrionalis (Cuban tree frog). These host species varied in susceptibility to cercariae in an order similar to their attractiveness with a correlation that approached significance. Host attractiveness to parasites also varied consistently and significantly among individuals within a host species. If heritable, this individual-level host variation would represent the raw material upon which selection could act, which could promote a Red Queen “arms race” between host cues and parasite detection of those cues. If, in general, motile parasites prefer to infect the most susceptible host species, this phenomenon could explain aggregated distributions of parasites among hosts and contribute to parasite transmission rates and the evolution of virulence. Parasite preferences for hosts belie the common assumption of disease models that parasites seek and infect hosts at random.  相似文献   

10.
Partial migration is common among northern ungulates, typically involving an altitudinal movement for seasonally migratory individuals. The main driving force behind migration is the benefit of an extended period of access to newly emerged, high quality forage along the green up gradient with increasing altitude; termed the forage maturation hypothesis. Any other limiting factor spatially correlated with this gradient may provide extra benefits or costs to migration, without necessarily being the cause of it. A common ectoparasite on cervids in Europe is the sheep tick (Ixodes ricinus), but it has not been tested whether migration may lead to the spatial separation from these parasites and thus potentially provide an additional benefit to migration. Further, if there is questing of ticks in winter ranges in May before spring migration, deer migration may also play a role for the distribution of ticks. We quantified the abundance of questing sheep tick within winter and summer home ranges of migratory (n = 42) and resident red deer (Cervus elaphus) individuals (n = 32) in two populations in May and August 2009–2012. Consistent with predictions, there was markedly lower abundance of questing ticks in the summer areas of migrating red deer (0.6/20 m2), both when compared to the annual home range of resident deer (4.9/20 m2) and the winter home ranges of migrants (5.8/20 m2). The reduced abundances within summer home ranges of migrants were explained by lower abundance of ticks with increasing altitude and distance from the coast. The lower abundance of ticks in summer home ranges of migratory deer does not imply that ticks are the main driver of migration (being most likely the benefits expected from forage maturation), but it suggests that ticks may add to the value of migration in some ecosystems and that it may act to spread ticks long distances in the landscape.  相似文献   

11.
Borrelia miyamotoi is a newly described emerging pathogen transmitted to people by Ixodes species ticks and found in temperate regions of North America, Europe, and Asia. There is limited understanding of large scale entomological risk patterns of B. miyamotoi and of Borreila burgdorferi sensu stricto (ss), the agent of Lyme disease, in western North America. In this study, B. miyamotoi, a relapsing fever spirochete, was detected in adult (n = 70) and nymphal (n = 36) Ixodes pacificus ticks collected from 24 of 48 California counties that were surveyed over a 13 year period. Statewide prevalence of B. burgdorferi sensu lato (sl), which includes B. burgdorferi ss, and B. miyamotoi were similar in adult I. pacificus (0.6% and 0.8%, respectively). In contrast, the prevalence of B. burgdorferi sl was almost 2.5 times higher than B. miyamotoi in nymphal I. pacificus (3.2% versus 1.4%). These results suggest similar risk of exposure to B. burgdorferi sl and B. miyamotoi from adult I. pacificus tick bites in California, but a higher risk of contracting B. burgdorferi sl than B. miyamotoi from nymphal tick bites. While regional risk of exposure to these two spirochetes varies, the highest risk for both species is found in north and central coastal California and the Sierra Nevada foothill region, and the lowest risk is in southern California; nevertheless, tick-bite avoidance measures should be implemented in all regions of California. This is the first study to comprehensively evaluate entomologic risk for B. miyamotoi and B. burgdorferi for both adult and nymphal I. pacificus, an important human biting tick in western North America.  相似文献   

12.
Macroparasites are commonly aggregated on a small subset of a host population. Previous explanations for this aggregation relate to differences in immunocompetence or the degree to which hosts encounter parasites. We propose active tick host choice through chemical attraction as a potential mechanism leading to aggregated tick burdens. We test this hypothesis using a Y-maze olfactometer, comparing chemical attraction responses of larval and nymphal Dermacentor variabilis ticks parasitic to the white-footed mouse, Peromyscus leucopus, as a function of host sex and host body mass. We hypothesized that larger hosts and male hosts would be most attractive to searching ticks, as these hosts commonly have higher tick burdens in the field. Chemical attraction trials were run in the presence and absence of a known tick attractant, host-produced carbon dioxide (CO2). Male hosts and larger hosts were preferred by nymphal D. variabilis in the presence and absence of CO2, whereas larvae had no detectable host preference. The current study suggests that host-produced chemical cues may promote aggregated tick burdens among hosts of a single species based on host body mass and sex.  相似文献   

13.
Corynosoma strumosum (Acanthocephala), a widespread parasite of pinnipeds, is reported in marine foraging North American mink (Neogale vison) and river otter (Lontra canadensis) on Vancouver Island, British Columbia. This is the first confirmed case of infection by C. strumosum in river otters on the west coast of North America and may be the first confirmed case of infection in wild North American mink; C. strumosum has previously been reported in river otters in Europe (Lutra lutra) and in farmed mink fed with marine fish. We also detected a case of acanthocephalan associated peritonitis in a juvenile mink. Furthermore, though infections with Corynosoma spp. are often assumed to be accidental in mustelids, some C. strumosum individuals found in mink showed signs of reproductive activity. These findings indicate that mink may be a competent definitive host and represent a reservoir in coastal habitats although further research is needed to confirm this. Investigating whether river otters may be competent hosts and determine the prevalence of infection in coastal populations would determine the potential implications of C. strumosum for coastal otters and minks. Our report indicates that mink and possibly river otter living in coastal areas are vulnerable to this previously unreported parasitic infection with mortality risk, at least in juvenile individuals.  相似文献   

14.
We investigated the Amblyomma fuscum load on a pullulating wild rodent population and the environmental and biological factors influencing the tick load on the hosts. One hundred and three individuals of Thrichomys laurentius were caught in an Atlantic forest fragment in northeastern Brazil, as part of a longitudinal survey on ticks infesting non-volant small mammals. Ticks (n = 342) were found on 45 individuals and the overall mean intensity of infestation was 7.6 ticks per infested rodent. Ticks were highly aggregated in the host population and the negative binomial distribution model provides a statistically satisfactory fit. The aggregated distribution was influenced by sex and age of the host. The microhabitat preference by T. laurentius probably increases contact opportunities between hosts and aggregated infesting stages of the ticks and represents important clues about the habitat suitability for A. fuscum.  相似文献   

15.
Evidence from field studies suggests that Culex pipiens, the primary mosquito vector of West Nile virus (WNV) in the northeastern and north central United States, feeds preferentially on American robins (Turdus migratorius). To determine the contribution of innate preferences to observed preference patterns in the field, we conducted host preference trials with a known number of adult female C. pipiens in outdoor cages comparing the relative attractiveness of American robins with two common sympatric bird species, European starling, Sternus vulgaris and house sparrow, Passer domesticus. Host seeking C. pipiens were three times more likely to enter robin-baited traps when with the alternate host was a European starling (n = 4 trials; OR = 3.06; CI [1.42–6.46]) and almost twice more likely when the alternative was a house sparrow (n = 8 trials; OR = 1.80; CI = [1.22–2.90]). There was no difference in the probability of trap entry when two robins were offered (n = 8 trials). Logistic regression analysis determined that the age, sex and weight of the birds, the date of the trial, starting-time, temperature, humidity, wind-speed and age of the mosquitoes had no effect on the probability of a choosing a robin over an alternate bird. Findings indicate that preferential feeding by C. pipiens mosquitoes on certain avian hosts is likely to be inherent, and we discuss the implications innate host preferences may have on enzootic WNV transmission.  相似文献   

16.
In the Thousand Islands region of eastern Ontario, Canada, Lyme disease is emerging as a serious health risk. The factors that influence Lyme disease risk, as measured by the number of blacklegged tick (Ixodes scapularis) vectors infected with Borrelia burgdorferi, are complex and vary across eastern North America. Despite study sites in the Thousand Islands being in close geographic proximity, host communities differed and both the abundance of ticks and the prevalence of B. burgdorferi infection in them varied among sites. Using this archipelago in a natural experiment, we examined the relative importance of various biotic and abiotic factors, including air temperature, vegetation, and host communities on Lyme disease risk in this zone of recent invasion. Deer abundance and temperature at ground level were positively associated with tick abundance, whereas the number of ticks in the environment, the prevalence of B. burgdorferi infection, and the number of infected nymphs all decreased with increasing distance from the United States, the presumed source of this new endemic population of ticks. Higher species richness was associated with a lower number of infected nymphs. However, the relative abundance of Peromyscus leucopus was an important factor in modulating the effects of species richness such that high biodiversity did not always reduce the number of nymphs or the prevalence of B. burgdorferi infection. Our study is one of the first to consider the interaction between the relative abundance of small mammal hosts and species richness in the analysis of the effects of biodiversity on disease risk, providing validation for theoretical models showing both dilution and amplification effects. Insights into the B. burgdorferi transmission cycle in this zone of recent invasion will also help in devising management strategies as this important vector-borne disease expands its range in North America.  相似文献   

17.
Ecological changes are recognized as an important driver behind the emergence of infectious diseases. The prevalence of infection in ticks depends upon ecological factors that are rarely taken into account simultaneously. Our objective was to investigate the influences of forest fragmentation, vegetation, adult tick hosts, and habitat on the infection prevalence of three tick-borne bacteria, Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, and Rickettsia sp. of the spotted fever group, in questing Ixodes ricinus ticks, taking into account tick characteristics. Samples of questing nymphs and adults were taken from 61 pastures and neighboring woodlands in central France. The ticks were tested by PCR of pools of nymphs and individual adults. The individual infection prevalence was modeled using multivariate regression. The highest infection prevalences were found in adult females collected in woodland sites for B. burgdorferi sensu lato and A. phagocytophilum (16.1% and 10.7%, respectively) and in pasture sites for Rickettsia sp. (8.7%). The infection prevalence in nymphs was lower than 6%. B. burgdorferi sensu lato was more prevalent in woodlands than in pastures. Forest fragmentation favored B. burgdorferi sensu lato and A. phagocytophilum prevalence in woodlands, and in pastures, the B. burgdorferi sensu lato prevalence was favored by shrubby vegetation. Both results are probably because large amounts of edges or shrubs increase the abundance of small vertebrates as reservoir hosts. The Rickettsia sp. prevalence was maximal on pasture with medium forest fragmentation. Female ticks were more infected by B. burgdorferi sensu lato than males and nymphs in woodland sites, which suggests an interaction between the ticks and the bacteria. This study confirms the complexity of the tick-borne pathogen ecology. The findings support the importance of small vertebrates as reservoir hosts and make a case for further studies in Europe on the link between the composition of the reservoir host community and the infection prevalence in ticks.Ecological modifications are recognized as one of the main forces behind the emergence of infectious diseases (37). As vectors and wildlife are very sensitive to environmental conditions, ecological changes are expected to have a particular impact on the epidemiology of vector-borne diseases and those with a wildlife origin (29, 48). Several studies have highlighted the influence of factors such as climate change and habitat fragmentation on the risk of tick-borne diseases (20, 67). The risk of a tick-borne disease being transmitted to humans or to animals is closely linked to the prevalence of pathogens in ticks questing for hosts (38, 58). In turn, infection prevalence directly depends on the probability of ticks feeding on an infected reservoir host. This probability results from a combination of the intrinsic characteristics of the species involved (e.g., the host species feeding preference of the tick and the ability of the pathogen to infect different host species) and the characteristics of the host community (e.g., the likelihood of contact between ticks and infected reservoir hosts) that vary in time and space. Due to the difficulty of directly assessing the host community, it may be characterized indirectly by studying landscape and habitat features (3, 9). The increased fragmentation of deciduous forests, for example, favors infection prevalence in ticks that are the agents of Lyme disease in the eastern United States because this fragmentation pattern favors the abundance of a highly competent host reservoir, the white-footed mouse (Peromyscus leucopus) (1, 12). However, studies of the effect of habitat fragmentation on different tick-borne pathogens are scarce (25, 40, 67). Most only report on the infection prevalence of pathogens in ticks according to sampling locations, the stage of tick development, and their sex (18, 56); few studies take into account the interplay or simultaneous effects of explanatory environmental factors (2).In Europe, the Ixodes ricinus tick is one of the most important vectors for animal and human pathogens, especially bacteria (21). These include pathogenic species of the complex Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, the most prevalent vector-borne human disease in Europe (57); Anaplasma phagocytophilum, the agent of human and animal granulocytic anaplasmosis, considered to be an emerging disease both in human and in animals (8, 61); and Rickettsia helvetica of the spotted fever group, known to be responsible for nonspecific fevers in humans (28).Although they share the same tick vector, B. burgdorferi sensu lato, A. phagocytophilum, and R. helvetica have different ecological cycles and transmission patterns which influence the infection prevalence at different stages of a tick''s life. For B. burgdorferi sensu lato, the maintenance cycle of the bacteria depends on immature stages of I. ricinus ticks feeding on infected reservoir hosts, mainly small rodents and birds that feed on the ground (36, 62). For A. phagocytophilum, small mammals and ruminants are reservoir hosts (16, 22, 69). In contrast to the other two pathogens, R. helvetica is transovarially and sexually transmitted in ticks (13, 33). Ticks are thus considered to be a reservoir host for the bacteria. Small rodents are also suspected to be reservoir hosts in Europe (45), while the role of ungulates remains unknown (60).It is increasingly recognized that a better understanding of the variation of the prevalence of pathogens in ticks within regions of endemicity is critical to the rational design and monitoring of control programs (47). Our objective was to run an exploratory analysis to test the influence of a range of factors on variations in the prevalence of B. burgdorferi sensu lato, A. phagocytophilum, and Rickettsia sp. of the spotted fever group in questing I. ricinus ticks. The factors considered were two habitats (pasture and woodland), forest fragmentation metrics, the vegetation around and near the pasture, and adult tick hosts (deer and cattle); and the analysis took into account factors linked to tick characteristics (tick sex, tick stage, and the density of questing nymphs). Consequently, we analyzed ticks collected in the field for the presence of DNA from the three bacteria and ran an exploratory statistical model using multivariate regression.  相似文献   

18.
19.
Zoonotic cutaneous leishmaniasis (ZCL) caused by Leishmania (L.) major parasites represents a major health problem with a large spectrum of clinical manifestations. Psammomys (P.) obesus and Meriones (M.) shawi represent the most important host reservoirs of these parasites in Tunisia. We already reported that infection prevalence is different between these two rodent species. We aimed in this work to evaluate the importance of genetic diversity in L. major parasites isolated from different proven and suspected reservoirs for ZCL. Using the multilocus microsatellites typing (MLMT), we analyzed the genetic diversity among strains isolated from (i) P. obesus (n = 31), (ii) M. shawi (n = 8) and (iii) Mustela nivalis (n = 1), captured in Sidi Bouzid, an endemic region for ZCL located in the Center of Tunisia. Studied strains present a new homogeneous genotype profile so far as all tested markers and showed no polymorphism regardless of the parasite host-reservoir origin. This lack of genetic diversity among these L. major isolates is the first genetic information on strains isolated from Leishmania reservoirs hosts in Tunisia. This result indicates that rodent hosts are unlikely to exert a selective pressure on parasites and stresses on the similarity of geographic and ecological features in this study area. Overall, these results increase our knowledge among rodent reservoir hosts and L. major parasites interaction.  相似文献   

20.
Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect ‘bottom-up’ climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986–2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO), the decadal mean Sea Surface Temperature (SST) in the Celtic Sea increased by 0.66±0.02°C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group) and spring SST (0-group: p = 0.02, slope = −0.305±0.125; 1-group: p = 0.04, slope = −0.410±0.193). Seabird demographics showed complex species–specific responses. There was evidence of direct effects of spring NAO (on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314±0.014) as well as indirect bottom-up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = −0.144±0.05). Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea), emphasizing the need for more research at regional scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号