首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In mammals, a light-entrainable clock located in the suprachiasmatic nucleus (SCN) regulates circadian rhythms by synchronizing oscillators throughout the brain and body. Notably, the nature of the relation between the SCN clock and subordinate oscillators in the rest of the brain is not well defined. We performed a high temporal resolution analysis of the expression of the circadian clock protein PERIOD2 (PER2) in the rat forebrain to characterize the distribution, amplitude and phase of PER2 rhythms across different regions. Eighty-four LEW/Crl male rats were entrained to a 12-h: 12-h light/dark cycle, and subsequently perfused every 30 min across the 24-h day for a total of 48 time-points. PER2 expression was assessed with immunohistochemistry and analyzed using automated cell counts. We report the presence of PER2 expression in 20 forebrain areas important for a wide range of motivated and appetitive behaviors including the SCN, bed nucleus, and several regions of the amygdala, hippocampus, striatum, and cortex. Eighteen areas displayed significant PER2 rhythms, which peaked at different times of day. Our data demonstrate a previously uncharacterized regional distribution of rhythms of a clock protein expression in the brain that provides a sound basis for future studies of circadian clock function in animal models of disease.  相似文献   

2.
3.
We have recently demonstrated that the outcome of repeated social defeat (SD) on behavior, physiology and immunology is more negative when applied during the dark/active phase as compared with the light/inactive phase of male C57BL/6 mice. Here, we investigated the effects of the same stress paradigm, which combines a psychosocial and novelty stressor, on the circadian clock in transgenic PERIOD2::LUCIFERASE (PER2::LUC) and wildtype (WT) mice by subjecting them to repeated SD, either in the early light phase (social defeat light?=?SDL) or in the early dark phase (social defeat dark?=?SDD) across 19 days. The PER2::LUC rhythms and clock gene mRNA expression were analyzed in the suprachiasmatic nucleus (SCN) and the adrenal gland, and PER2 protein expression in the SCN was assessed. SDD mice showed increased PER2::LUC rhythm amplitude in the SCN, reduced Per2 and Cryptochrome1 mRNA expression in the adrenal gland, and increased PER2 protein expression in the posterior part of the SCN compared with single-housed control (SHC) and SDL mice. In contrast, PER2::LUC rhythms in the SCN of SDL mice were not affected. However, SDL mice exhibited a 2-hour phase advance of the PER2::LUC rhythm in the adrenal gland compared to SHC mice. Furthermore, plasma levels of brain-derived neurotrophic factor (BDNF) and BDNF mRNA in the SCN were elevated in SDL mice. Taken together, these results show that the SCN molecular rhythmicity is affected by repeated SDD, but not SDL, while the adrenal peripheral clock is influenced mainly by SDL. The observed increase in BDNF in the SDL group may act to protect against the negative consequences of repeated psychosocial stress.  相似文献   

4.
The secretion of glucocorticoids in mammals is under circadian control, but glucocorticoids themselves are also implicated in modulating circadian clock gene expression. We have shown that the expression of the circadian clock protein PER1 in the forebrain is modulated by stress, and that this effect is associated with changes in plasma corticosterone levels, suggesting a possible role for glucocorticoids in the mediation of stress-induced changes in the expression of PER1 in the brain. To study this, we assessed the effects of adrenalectomy and of pretreatment with the glucocorticoid receptor antagonist, mifepristone, on the expression of PER1 in select limbic and hypothalamic regions following acute exposure to a neurogenic stressor, restraint, or a systemic stressor, 2-Deoxy-D-glucose (2DG) in rats. Acute restraint suppressed PER1 expression in the oval nucleus of the bed nucleus of the stria terminalis (BNSTov) and the central nucleus of the amygdala (CEAl), whereas 2DG increased PER1 in both regions. Both stressors increased PER1 expression in the paraventricular (PVN) and dorsomedial (DMH) nuclei of the hypothalamus, and the piriform cortex (Pi). Adrenalectomy and pretreatment with mifepristone reversed the effects of both stressors on PER1 expression in the BNSTov and CEAl, and blocked their effects in the DMH. In contrast, both treatments enhanced the effects of restraint and 2DG on PER1 levels in the PVN. Stress-induced PER1 expression in the Pi was unaffected by either treatment. PER1 expression in the suprachiasmatic nucleus, the master circadian clock, was not altered by either exposure to stress or by the glucocorticoid manipulations. Together, the results demonstrate a key role for glucocorticoid signaling in stress-induced changes in PER1 expression in the brain.  相似文献   

5.
The neuropeptide vasoactive intestinal polypeptide (VIP) has emerged as a key candidate molecule mediating the synchronization of rhythms in clock gene expression within the suprachiasmatic nucleus (SCN). In addition, neurons expressing VIP are anatomically well positioned to mediate communication between the SCN and peripheral oscillators. In this study, we examined the temporal expression profile of 3 key circadian genes: Per1, Per2 , and Bmal1 in the SCN, the adrenal glands and the liver of mice deficient for the Vip gene (VIP KO), and their wild-type counterparts. We performed these measurements in mice held in a light/dark cycle as well as in constant darkness and found that rhythms in gene expression were greatly attenuated in the VIP-deficient SCN. In the periphery, the impact of the loss of VIP varied with the tissue and gene measured. In the adrenals, rhythms in Per1 were lost in VIP-deficient mice, while in the liver, the most dramatic impact was on the phase of the diurnal expression rhythms. Finally, we examined the effects of the loss of VIP on ex vivo explants of the same central and peripheral oscillators using the PER2::LUC reporter system. The VIP-deficient mice exhibited low amplitude rhythms in the SCN as well as altered phase relationships between the SCN and the peripheral oscillators. Together, these data suggest that VIP is critical for robust rhythms in clock gene expression in the SCN and some peripheral organs and that the absence of this peptide alters both the amplitude of circadian rhythms as well as the phase relationships between the rhythms in the SCN and periphery.  相似文献   

6.
The mammalian circadian clock proteins undergo a daily cycle of accumulation followed by phosphorylation and degradation. The mechanism by which clock proteins undergo degradation has not been fully understood. Circadian clock protein PERIOD2 (PER2) is shown to be the potential target of F-box protein beta-TrCP1, a component of ubiquitin E3 ligase. Here, we show that beta-TrCP2 as well as beta-TrCP1 target PER2 protein in vitro. We also identified beta-TrCP binding site (m2) of PER2 being recognized by both beta-TrCP1 and beta-TrCP2. Luciferase-PER2 fusion system revealed that m2 site was responsible for the stability of PER2. The role of beta-TrCP1 and beta-TrCP2 in circadian rhythm generation was analysed by real-time reporter assay revealing that siRNA-mediated suppressions of beta-TrCP1 and/or beta-TrCP2 attenuate circadian oscillations in NIH3T3 cell. beta-TrCP1-deficient mice, however, showed normal period length, light-induced phase-shift response in behaviour and normal expression of PER2, suggesting that beta-TrCP1 is dispensable for the central clock in the suprachiasmatic nucleus. Our study indicates that beta-TrCP1 and beta-TrCP2 were involved in the cell autonomous circadian rhythm generation in culture cells, although the role of beta-TrCP2 in the central clock in the suprachiasmatic nucleus remains to be elucidated.  相似文献   

7.
Stressful events can disrupt circadian rhythms in mammals but mechanisms underlying this disruption remain largely unknown. One hypothesis is that stress alters circadian protein expression in the forebrain, leading to functional dysregulation of the brain circadian network and consequent disruption of circadian physiological and behavioral rhythms. Here we characterized the effects of several different stressors on the expression of the core clock protein, PER1 and the activity marker, FOS in select forebrain and hypothalamic nuclei in rats. We found that acute exposure to processive stressors, restraint and forced swim, elevated PER1 and FOS expression in the paraventricular and dorsomedial hypothalamic nuclei and piriform cortex but suppressed PER1 and FOS levels exclusively in the central nucleus of the amygdala (CEAl) and oval nucleus of the bed nucleus of the stria terminalis (BNSTov). Conversely, systemic stressors, interleukin-1β and 2-Deoxy-D-glucose, increased PER1 and FOS levels in all regions studied, including the CEAl and BNSTov. PER1 levels in the suprachiasmatic nucleus (SCN), the master pacemaker, were unaffected by any of the stress manipulations. The effect of stress on PER1 and FOS was modulated by time of day and, in the case of daily restraint, by predictability. These results demonstrate that the expression of PER1 in the forebrain is modulated by stress, consistent with the hypothesis that PER1 serves as a link between stress and the brain circadian network. Furthermore, the results show that the mechanisms that control PER1 and FOS expression in CEAl and BNSTov are uniquely sensitive to differences in the type of stressor. Finally, the finding that the effect of stress on PER1 parallels its effect on FOS supports the idea that Per1 functions as an immediate-early gene. Our observations point to a novel role for PER1 as a key player in the interface between stress and circadian rhythms.  相似文献   

8.
Systemic low doses of the endotoxin lipopolysaccharide (LPS, 100?µg/kg) administered during the early night induce phase-delays of locomotor activity rhythms in mice. Our aim was to evaluate the role of tumor necrosis factor (Tnf)-alpha and its receptor 1/p55 (Tnfr1) in the modulation of LPS-induced circadian effects on the suprachiasmatic nucleus (SCN). We observed that Tnfr1-defective mice (Tnfr1 KO), although exhibiting similar circadian behavior and light response to that of control mice, did not show LPS-induced phase-delays of locomotor activity rhythms, nor LPS-induced cFos and Per2 expression in the SCN and Per1 expression in the paraventricular hypothalamic nucleus (PVN) as compared to wild-type (WT) mice. We also analyzed Tnfr1 expression in the SCN of WT mice, peaking during the early night, when LPS has a circadian effect. Peripheral inoculation of LPS induced an increase in cytokine/chemokine levels (Tnf, Il-6 and Ccl2) in the SCN and in the PVN. In conclusion, in this study, we show that LPS-induced circadian responses are mediated by Tnf. Our results also suggest that this cytokine stimulates the SCN after LPS peripheral inoculation; and the time-related effect of LPS (i.e. phase shifts elicited only at early night) might depend on the increased levels of Tnfr1 expression. We also confirmed that LPS modulates clock gene expression in the SCN and PVN in WT but not in Tnfr1 KO mice.

Highlights: We demonstrate a fundamental role for Tnf and its receptor in circadian modulation by immune stimuli at the level of the SCN biological clock.  相似文献   

9.
Fluctuations in circulating estrogen and progesterone levels associated with the estrous cycle alter circadian rhythms of physiology and behavior in female rodents. Endogenously applied estrogen shortens the period of the locomotor activity rhythm in rodents. We recently found that estrogen implants affect Period (Per) gene expression in the suprachiasmatic nucleus (SCN; central clock) and uterus of rats in vivo. To explore whether estrogen directly influences the circadian clock in the SCN and/or tissues of the reproductive system, we examined the effects of 17beta-estradiol (E(2)) on PER2::LUCIFERASE (PER2::LUC) expression in tissue explant cultures from ovariectomized PER2::LUC knockin mice. E(2) applied to explanted cultures shortened the period of rhythmic PER2::LUC expression in the uterus but did not change the period of PER2::LUC expression in the SCN. Raloxifene, a selective estrogen receptor modulator and known E(2) antagonist in uterine tissues, attenuated the effect of E(2) on the period of the PER2::LUC rhythm in the uterus. These data indicate that estrogen directly affects the timing of the molecular clock in the uterus via an estrogen receptor-mediated response.  相似文献   

10.
Certain psychiatric disorders are known to alter the body's biological rhythms. However, currently, very little information is known about the effect of chronic ethanol administration on the circadian clock or the rhythm of beta-endorphin-containing neurons that participate in the control of the reward and reinforcement of alcohol drinking. Here, we report that administration of ethanol, via a liquid diet paradigm for a period of 2 weeks, abolishes the circadian rhythm of pro-opiomelanocortin mRNA expression of beta-endorphin neurons in the arcuate nucleus of the hypothalamus. The circadian expression of the clock governing rat period genes (rPeriod1 mRNA and rPeriod2 mRNA) in the arcuate nucleus was significantly altered, suggesting that ethanol administration disrupted the internal clock. Moreover, ethanol consumption altered the circadian rhythms of rPeriod2 and rPeriod3 mRNA levels in the suprachiasmatic nucleus, suggesting that ethanol also affected the function of the central pacemaker. Our findings identified the vulnerability of the body's clock machinery and its opioidergic system to chronic alcohol drinking.  相似文献   

11.
Circadian rhythms modulate nearly every mammalian physiological process. Chronic disruption of circadian timing in shift work or during chronic jet lag in animal models leads to a higher risk of several pathologies. Many of these conditions in both shift workers and experimental models share the common risk factor of inflammation. In this study, we show that experimentally induced circadian disruption altered innate immune responses. Endotoxemic shock induced by LPS was magnified, leading to hypothermia and death after four consecutive weekly 6-h phase advances of the light/dark schedule, with 89% mortality compared with 21% in unshifted control mice. This may be due to a heightened release of proinflammatory cytokines in response to LPS treatment in shifted animals. Isolated peritoneal macrophages harvested from shifted mice exhibited a similarly heightened response to LPS in vitro, indicating that these cells are a target for jet lag. Sleep deprivation and stress are known to alter immune function and are potential mediators of the effects we describe. However, polysomnographic recording in mice exposed to the shifting schedule revealed no sleep loss, and stress measures were not altered in shifted mice. In contrast, we observed altered or abolished rhythms in the expression of clock genes in the central clock, liver, thymus, and peritoneal macrophages in mice after chronic jet lag. We conclude that circadian disruption, but not sleep loss or stress, are associated with jet lag-related dysregulation of the innate immune system. Such immune changes might be a common mechanism for the myriad negative health effects of shift work.  相似文献   

12.
The suprachiasmatic nucleus houses the central circadian clock and is characterized by the timely regulated expression of clock genes. However, neurons of the cerebellar cortex also contain a circadian oscillator with circadian expression of clock genes being controlled by the suprachiasmatic nucleus. It has been suggested that the cerebellar circadian oscillator is involved in food anticipation, but direct molecular evidence of the role of the circadian oscillator of the cerebellar cortex is currently unavailable. To investigate the hypothesis that the circadian oscillator of the cerebellum is involved in circadian physiology and food anticipation, we therefore by use of Cre‐LoxP technology generated a conditional knockout mouse with the core clock gene Arntl deleted specifically in granule cells of the cerebellum, since expression of clock genes in the cerebellar cortex is mainly located in this cell type. We here report that deletion of Arntl heavily influences the molecular clock of the cerebellar cortex with significantly altered and arrhythmic expression of other central clock and clock‐controlled genes. On the other hand, daily expression of clock genes in the suprachiasmatic nucleus was unaffected. Telemetric registrations in different light regimes did not detect significant differences in circadian rhythms of running activity and body temperature between Arntl conditional knockout mice and controls. Furthermore, food anticipatory behavior did not differ between genotypes. These data suggest that Arntl is an essential part of the cerebellar oscillator; however, the oscillator of the granular layer of the cerebellar cortex does not control traditional circadian parameters or food anticipation.  相似文献   

13.
14.
15.
Diambra L  Malta CP 《PloS one》2012,7(3):e33912
Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.  相似文献   

16.
17.
18.
Circadian rhythms of locomotor behavior were induced in mice using chronic d-amphetamine. The periods of the rhythms at various doses of amphetamine were unaffected by a mutation at the clock locus that lengthens circadian period. Amphetamine-induced rhythms were superimposed on the hostÕs natural circadian rhythm that is driven by the pacemaker in the suprachiasmatic nucleus. The results demonstrate the existence of an alternative mechanism for generating circadian rhythms that does not require the activity of canonical clock genes.  相似文献   

19.
Daily activity rhythms that are dominated by internal clocks are called circadian rhythms. A central clock is located in the suprachiasmatic nucleus of the hypothalamus, and peripheral clocks are located in most mammalian peripheral cells. The central clock is entrained by light/dark cycles, whereas peripheral clocks are entrained by feeding cycles. The effects of nutrients on the central and peripheral clocks have been investigated during the past decade and much interaction between them has come to light. For example, a high-fat diet prolongs the period of circadian behavior, a ketogenic diet advances the onset of locomotor activity rhythms, and a high-salt diet advances the phase of peripheral molecular clocks. Moreover, some food factors such as caffeine, nobiletin, and resveratrol, alter molecular and/or behavioral circadian rhythms. Here, we review nutrients and food factors that modulate mammalian circadian clocks from the cellular to the behavioral level.  相似文献   

20.
Circadian rhythms in physiology and behavior are coordinated by the brain's dominant circadian pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Vasoactive intestinal polypeptide (VIP) and its receptor, VPAC(2), play important roles in the functioning of the SCN pacemaker. Mice lacking VPAC(2) receptors (Vipr2(-/-)) express disrupted behavioral and metabolic rhythms and show altered SCN neuronal activity and clock gene expression. Within the brain, the SCN is not the only site containing endogenous circadian oscillators, nor is it the only site of VPAC(2) receptor expression; both VPAC(2) receptors and rhythmic clock gene/protein expression have been noted in the arcuate (Arc) and dorsomedial (DMH) nuclei of the mediobasal hypothalamus, and in the pituitary gland. The functional role of VPAC(2) receptors in rhythm generation and maintenance in these tissues is, however, unknown. We used wild type (WT) and Vipr2(-/-) mice expressing a luciferase reporter (PER2::LUC) to investigate whether circadian rhythms in the clock gene protein PER2 in these extra-SCN tissues were compromised by the absence of the VPAC(2) receptor. Vipr2(-/-) SCN cultures expressed significantly lower amplitude PER2::LUC oscillations than WT SCN. Surprisingly, in Vipr2(-/-) Arc/ME/PT complex (Arc, median eminence and pars tuberalis), DMH and pituitary, the period, amplitude and rate of damping of rhythms were not significantly different to WT. Intriguingly, while we found WT SCN and Arc/ME/PT tissues to maintain a consistent circadian phase when cultured, the phase of corresponding Vipr2(-/-) cultures was reset by cull/culture procedure. These data demonstrate that while the main rhythm parameters of extra-SCN circadian oscillations are maintained in Vipr2(-/-) mice, the ability of these oscillators to resist phase shifts is compromised. These deficiencies may contribute towards the aberrant behavior and metabolism associated with Vipr2(-/-) animals. Further, our data indicate a link between circadian rhythm strength and the ability of tissues to resist circadian phase resetting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号