共查询到20条相似文献,搜索用时 15 毫秒
1.
Robert J. Buckland Danielle L. Watt Balasubramanyam Chittoor Anna Karin Nilsson Thomas A. Kunkel Andrei Chabes 《PLoS genetics》2014,10(12)
The fidelity of DNA replication requires an appropriate balance of dNTPs, yet the nascent leading and lagging strands of the nuclear genome are primarily synthesized by replicases that differ in subunit composition, protein partnerships and biochemical properties, including fidelity. These facts pose the question of whether imbalanced dNTP pools differentially influence leading and lagging strand replication fidelity. Here we test this possibility by examining strand-specific replication infidelity driven by a mutation in yeast ribonucleotide reductase, rnr1-Y285A, that leads to elevated dTTP and dCTP concentrations. The results for the CAN1 mutational reporter gene present in opposite orientations in the genome reveal that the rates, and surprisingly even the sequence contexts, of replication errors are remarkably similar for leading and lagging strand synthesis. Moreover, while many mismatches driven by the dNTP pool imbalance are efficiently corrected by mismatch repair, others are repaired less efficiently, especially those in sequence contexts suggesting reduced proofreading due to increased mismatch extension driven by the high dTTP and dCTP concentrations. Thus the two DNA strands of the nuclear genome are at similar risk of mutations resulting from this dNTP pool imbalance, and this risk is not completely suppressed even when both major replication error correction mechanisms are genetically intact. 相似文献
2.
Saccharomyces cerevisiae pol30 (Proliferating Cell Nuclear Antigen) Mutations Impair Replication Fidelity and Mismatch Repair 下载免费PDF全文
Clark Chen Bradley J. Merrill Patrick J. Lau Connie Holm Richard D. Kolodner 《Molecular and cellular biology》1999,19(11):7801-7815
To understand the role of POL30 in mutation suppression, 11 Saccharomyces cerevisiae pol30 mutator mutants were characterized. These mutants were grouped based on their mutagenic defects. Many pol30 mutants harbor multiple mutagenic defects and were placed in more than one group. Group A mutations (pol30-52, -104, -108, and -126) caused defects in mismatch repair (MMR). These mutants exhibited mutation rates and spectra reminiscent of MMR-defective mutants and were defective in an in vivo MMR assay. The mutation rates of group A mutants were enhanced by a msh2 or a msh6 mutation, indicating that MMR deficiency is not the only mutagenic defect present. Group B mutants (pol30-45, -103, -105, -126, and -114) exhibited increased accumulation of either deletions alone or a combination of deletions and duplications (4 to 60 bp). All deletion and duplication breakpoints were flanked by 3 to 7 bp of imperfect direct repeats. Genetic analysis of one representative group B mutant, pol30-126, suggested polymerase slippage as the likely mutagenic mechanism. Group C mutants (pol30-100, -103, -105, -108, and -114) accumulated base substitutions and exhibited synergistic increases in mutation rate when combined with msh6 mutations, suggesting increased DNA polymerase misincorporation as a mutagenic defect. The synthetic lethality between a group A mutant, pol30-104, and rad52 was almost completely suppressed by the inactivation of MSH2. Moreover, pol30-104 caused a hyperrecombination phenotype that was partially suppressed by a msh2 mutation. These results suggest that pol30-104 strains accumulate DNA breaks in a MSH2-dependent manner. 相似文献
3.
Living organisms are constantly threatened by environmental DNA-damaging agents, including UV and ionizing radiation (IR). Repair of various forms of DNA damage caused by IR is normally thought to follow lesion-specific repair pathways with distinct enzymatic machinery. DNA double strand break is one of the most serious kinds of damage induced by IR, which is repaired through double strand break (DSB) repair mechanisms, including homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent studies have presented increasing evidence that various DNA repair pathways are not separated, but well interlinked. It has been suggested that non-DSB repair mechanisms, such as Nucleotide Excision Repair (NER), Mismatch Repair (MMR) and cell cycle regulation, are highly involved in DSB repairs. These findings revealed previously unrecognized roles of various non-DSB repair genes and indicated that a successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems. One of our recent studies found that suppressed expression of non-DSB repair genes, such as XPA, RPA and MLH1, influenced the yield of IR induced micronuclei formation and/or chromosome aberrations, suggesting that these genes are highly involved in DSB repair and DSB-related cell cycle arrest, which reveals new roles for these gene products in the DNA repair network. In this review, we summarize current progress on the function of non-DSB repair-related proteins, especially those that participate in NER and MMR pathways, and their influence on DSB repair. In addition, we present our developing view that the DSB repair mechanisms are more complex and are regulated by not only the well known HR/NHEJ pathways, but also a systematically coordinated cellular network.Key Words: Ionizing radiation (IR), DNA damage, DSB repair, NER, MMR and cell cycle. 相似文献
4.
5.
6.
Deletions in Plasmid Pbr322: Replication Slippage Involving Leading and Lagging Strands 总被引:8,自引:2,他引:8 下载免费PDF全文
We test here whether a class of deletions likely to result from errors during DNA replication arise preferentially during synthesis of either the leading or the lagging DNA strand. Deletions were obtained by reversion of particular insertion mutant alleles of the pBR322 amp gene. The alleles contain insertions of palindromic DNAs bracketed by 9-bp direct repeats of amp sequence; in addition, bp 2 to 5 in one arm of the palindrome form a direct repeat with 4 bp of adjoining amp sequence. Prior work had shown that reversion to Ampr results from deletions with endpoints in the 8- or 4-bp repeat, and that the 4-bp repeats are used preferentially because one of them is in the palindrome. To test the role of leading and lagging strand synthesis in deletion formation, we reversed the direction of replication of the amp gene by inverting the pBR322 replication origin, and also constructed new mutant alleles with a 4-bp repeat starting counterclockwise rather than clockwise of the insertion. In both cases the 4-bp repeats were used preferentially as deletion endpoints. A model is presented in which deletions arise during elongation of the strand that copies the palindrome before the adjoining 4-bp repeat, and in which preferential use of the 4-bp repeats independent of the overall direction of replication implies that deletions arise during syntheses of both leading and lagging strands. 相似文献
7.
Simone Repmann Maite Olivera-Harris Josef Jiricny 《The Journal of biological chemistry》2015,290(16):9986-9999
Replicative DNA polymerases are high fidelity enzymes that misincorporate nucleotides into nascent DNA with a frequency lower than [1/105], and this precision is improved to about [1/107] by their proofreading activity. Because this fidelity is insufficient to replicate most genomes without error, nature evolved postreplicative mismatch repair (MMR), which improves the fidelity of DNA replication by up to 3 orders of magnitude through correcting biosynthetic errors that escaped proofreading. MMR must be able to recognize non-Watson-Crick base pairs and excise the misincorporated nucleotides from the nascent DNA strand, which carries by definition the erroneous genetic information. In eukaryotes, MMR is believed to be directed to the nascent strand by preexisting discontinuities such as gaps between Okazaki fragments in the lagging strand or breaks in the leading strand generated by the mismatch-activated endonuclease of the MutL homologs PMS1 in yeast and PMS2 in vertebrates. We recently demonstrated that the eukaryotic MMR machinery can make use also of strand breaks arising during excision of uracils or ribonucleotides from DNA. We now show that intermediates of MutY homolog-dependent excision of adenines mispaired with 8-oxoguanine (GO) also act as MMR initiation sites in extracts of human cells or Xenopus laevis eggs. Unexpectedly, GO/C pairs were not processed in these extracts and failed to affect MMR directionality, but extracts supplemented with exogenous 8-oxoguanine DNA glycosylase (OGG1) did so. Because OGG1-mediated excision of GO might misdirect MMR to the template strand, our findings suggest that OGG1 activity might be inhibited during MMR. 相似文献
8.
Dorota Szczepanik Paweł Mackiewicz Maria Kowalczuk Agnieszka Gierlik Aleksandra Nowicka Mirosław R. Dudek Stanisław Cebrat 《Journal of molecular evolution》2001,52(5):426-433
One of the main causes of bacterial chromosome asymmetry is replication-associated mutational pressure. Different rates of
nucleotide substitution accumulation on leading and lagging strands implicate qualitative and quantitative differences in
the accumulation of mutations in protein coding sequences lying on different DNA strands. We show that the divergence rate
of orthologs situated on leading strands is lower than the divergence rate of those situated on lagging strands. The ratio
of the mutation accumulation rate for sequences lying on lagging strands to that of sequences lying on leading strands is
rather stable and time-independent. The divergence rate of sequences which changed their positions, with respect to the direction
of replication fork movement, is not stable—sequences which have recently changed their positions are the most prone to mutation
accumulation. This effect may influence estimations of evolutionary distances between species and the topology of phylogenetic
trees.
Received: 24 July 2000 / Accepted: 16 January 2001 相似文献
9.
Background
Appropriate responses to damaged DNA are indispensible for preserving genome stability and preventing cancer. Tumor viruses often target DNA repair machinery to achieve transformation. The Human T-cell leukemia virus type I (HTLV-I) is the only known transforming human retrovirus and the etiological agent of Adult T-cell Leukemia (ATLL). Although HTLV-I-transformed leukemic cells have numerous genetic lesions, the precise role of the viral tax gene in this process is not fully understood.Results
Our results show a novel function of HTLV-I oncoprotein Tax as an inducer of genomic DNA double strand breaks (DDSB) during DNA replication. We also found that Tax acts as a potent inhibitor of homologous recombination (HR) DNA repair through the activation of the NF-kB pathway. These results were confirmed using HTLV-I molecular clones expressing Tax at physiological levels in a natural context. We further found that HTLV-I- and Tax-transformed cells are not more susceptible to DNA damaging agents and repair DNA lesions at a rate similar to that of normal cells. Finally, we demonstrated that during S phase, Tax-associated DDSB are preferentially repaired using the error-prone non-homologous end joining (NHEJ) pathway.Conclusions
This study provides new insights in Tax effects on DNA repair and genome instability. Although it may not be self sufficient, the creation of DNA breaks and subsequent abnormal use of the non-conservative NHEJ DNA repair during the S phase in HTLV-I-infected Tax-expressing cells may cooperate with other factors to increase genetic and genome instability and favor transformation. 相似文献10.
DNA错配修复、染色体不稳定和肿瘤的关系 总被引:1,自引:0,他引:1
DNA错配修复系统可以识别并纠正DNA复制过程中出现的错误.保证基因组的稳定性和完整性.错配修复系统缺陷可能导致遗传物质发生突变,引发恶性肿瘤.肿瘤患者经常表现出染色体不稳定,具体表现为微卫星不稳定性和杂合性缺失.本文就DNA错配修复、染色体不稳定和肿瘤之间的联系予以综述. 相似文献
11.
DNA错配修复与癌症的发生及治疗 总被引:3,自引:0,他引:3
DNA错配修复是细胞复制后的一种修复机制,具有维持DNA复制保真度,控制基因变异的作用。DNA错配修复缺陷使整个基因组不稳定,最终会导致肿瘤和癌症的发生。DNA错配修复系统不仅通过矫正在DNA重组和复制过程中产生的碱基错配而保持基因组的稳定,而且通过诱导DNA损伤细胞的凋亡而消除由突变细胞生长形成的癌变。错配修复缺陷细胞的抗药性也引起了癌症化疗研究方面的关注。大多数情况下,错配修复健全型细胞对肿瘤化疗药物敏感,而错配修复缺陷细胞却有较高的抗性。DNA错配修复系统通过修复和诱导细胞凋亡维护基因组稳定的功能,显示了错配修复途径在癌症生物学和分子医学中的重要性。 相似文献
12.
13.
蛋白激酶CK2(酪蛋白激酶Ⅱ)是真核细胞中普遍存在的一种信使非依赖的丝氨酸/苏氨酸蛋白激酶,它底物众多,功能广泛。DNA断裂修复是一个涉及很多种酶和蛋白的过程,CK2在其中起着很重要的作用。 相似文献
14.
DNA mismatch repair (MMR) is a DNA excision–resynthesis process that principally enhances replication fidelity. Highly conserved MutS (MSH) and MutL (MLH/PMS) homologs initiate MMR and in higher eukaryotes act as DNA damage sensors that can trigger apoptosis. MSH proteins recognize mismatched nucleotides, whereas the MLH/PMS proteins mediate multiple interactions associated with downstream MMR events including strand discrimination and strand-specific excision that are initiated at a significant distance from the mismatch. Remarkably, the biophysical functions of the MLH/PMS proteins have been elusive for decades. Here we consider recent observations that have helped to define the mechanics of MLH/PMS proteins and their role in choreographing MMR. We highlight the stochastic nature of DNA interactions that have been visualized by single-molecule analysis and the plasticity of protein complexes that employ thermal diffusion to complete the progressions of MMR. 相似文献
15.
Double strand breaks (DSBs) are often repaired via homologous recombination. Recombinational repair processes are expected to be influenced by nucleotide heterozygosity through mismatch detection systems. Unrepaired DSBs have severe biological consequences and are often lethal. We show that natural selection due to inhibition of recombinational repair associated with polymorphisms could influence their molecular evolution. The main conclusions from this analysis are that, for increasing population size, mismatch detection leads to a limit on average heterozygosity of otherwise selectively neutral polymorphism, an excess of rare variants, and a slowing down of the rate of neutral molecular evolution. The first two results suggest that mismatch detection may account for the surprisingly narrow range of observed average heterozygosities, given the great variation in population size between species. 相似文献
16.
DNA错配修复系统研究进展 总被引:3,自引:0,他引:3
DNA错配修复(mismatch repair, MMR)系统广泛存在于生物体中.从原核生物大肠杆菌到真核生物及人类,MMR系统有不同的组成成分和修复机制.人体内MMR基因缺陷会造成基因组的不稳定并诱发遗传性非息肉型直肠癌以及其他自发性肿瘤.大肠杆菌MMR系统中的MutS蛋白可特异识别错配或未配对碱基,目前已经发展了多种基于MutS蛋白的基因突变/多态性检测技术. 相似文献
17.
18.
SINEs are short interspersed repeated DNA elements which are considered to spread throughout genomes via RNA intermediates. Polymorphisms with regard to the presence or absence of SINE are occasionally observed in a specific location of a genome. We modeled the evolution of SINEs with regard to this type of polymorphism. Because SINEs are rarely deleted, multiplication of elements is confined to a certain period, and a few master copies are considered to be responsible for their multiplication, the usual population genetic models of transposable elements assuming the equilibrium state are not applicable to describe the evolution of SINEs. Taking into account these properties and assuming selective neutrality, we computed conditional probabilities of finding a SINE at a specific site given that this site is first found because it is occupied by a SINE in an original sample. Using these probabilities, we investigated ways to estimate the multiplication period and infer relationships among populations. The latter inference procedures are shown to be strongly dependent on the multiplication period. 相似文献
19.
《Cell reports》2020,30(7):2416-2429.e7