共查询到20条相似文献,搜索用时 0 毫秒
1.
Myxobacteria are predatory and are prolific producers of secondary metabolites. Here, we tested a hypothesized role that secondary metabolite antibiotics function as weapons in predation. To test this, a Myxococcus xanthus Δta1 mutant, blocked in antibiotic TA (myxovirescin) production, was constructed. This TA− mutant was defective in producing a zone of inhibition (ZOI) against Escherichia coli. This shows that TA is the major M. xanthus-diffusible antibacterial agent against E. coli. Correspondingly, the TA− mutant was defective in E. coli killing. Separately, an engineered E. coli strain resistant to TA was shown to be resistant toward predation. Exogenous addition of spectinomycin, a bacteriostatic antibiotic, rescued the predation defect of the TA− mutant. In contrast, against Micrococcus luteus the TA− mutant exhibited no defect in ZOI or killing. Thus, TA plays a selective role on prey species. To extend these studies to other myxobacteria, the role of antibiotic corallopyronin production in predation was tested and also found to be required for Corallococcus coralloides killing on E. coli. Next, a role of TA production in myxobacterial fitness was assessed by measuring swarm expansion. Here, the TA− mutant had a specific swarm rate reduction on prey lawns, and thus reduced fitness, compared to an isogenic TA+ strain. Based on these observations, we conclude that myxobacterial antibiotic production can function as a predatory weapon. To our knowledge, this is the first report to directly show a link between secondary metabolite production and predation. 相似文献
2.
Xiaofang Wang Suzhen Wang Yongbo Lu Monica P. Gibson Ying Liu Baozhi Yuan Jian Q. Feng Chunlin Qin 《The Journal of biological chemistry》2012,287(43):35934-35942
FAM20C is highly expressed in bone and tooth. Previously, we showed that Fam20C conditional knock-out (KO) mice manifest hypophosphatemic rickets, which highlights the crucial roles of this molecule in promoting bone formation and mediating phosphate homeostasis. In this study, we characterized the dentin, enamel, and cementum of Sox2-Cre-mediated Fam20C KO mice. The KO mice exhibited small malformed teeth, severe enamel defects, very thin dentin, less cementum than normal, and overall hypomineralization in the dental mineralized tissues. In situ hybridization and immunohistochemistry analyses revealed remarkable down-regulation of dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein in odontoblasts, along with a sharply reduced expression of ameloblastin and amelotin in ameloblasts. Collectively, these data indicate that FAM20C is essential to the differentiation and mineralization of dental tissues through the regulation of molecules critical to the differentiation of tooth-formative cells. 相似文献
3.
Claudine Belon La?la Gannoun-Zaki Georges Lutfalla Laurent Kremer Anne-Béatrice Blanc-Potard 《PloS one》2014,9(12)
MgtC is a virulence factor involved in intramacrophage growth that has been reported in several intracellular pathogens, including Mycobacterium tuberculosis and Salmonella enterica serovar Typhimurium. MgtC participates also in adaptation to Mg2+ deprivation. Herein, we have constructed a mgtC mutant in Mycobacterium marinum to further investigate the role of MgtC in mycobacteria. We show that the M. marinum mgtC gene (Mma mgtC) is strongly induced upon Mg2+ deprivation and is required for optimal growth in Mg2+-deprived medium. The behaviour of the Mma mgtC mutant has been investigated in the Danio rerio infection model using a transgenic reporter zebrafish line that specifically labels neutrophils. Although the mgtC mutant is not attenuated in the zebrafish embryo model based on survival curves, our results indicate that phagocytosis by neutrophils is enhanced with the mgtC mutant compared to the wild-type strain following subcutaneous injection. Increased phagocytosis of the mutant strain is also observed ex vivo with the murine J774 macrophage cell line. On the other hand, no difference was found between the mgtC mutant and the wild-type strain in bacterial adhesion to macrophages and in the internalization into epithelial cells. Unlike the role reported for MgtC in other intracellular pathogens, Mma MgtC does not contribute significantly to intramacrophage replication. Taken together, these results indicate an unanticipated function of Mma MgtC at early step of infection within phagocytic cells. Hence, our results indicate that although the MgtC function is conserved among pathogens regarding adaptation to Mg2+ deprivation, its role towards phagocytic cells can differ, possibly in relation with the specific pathogen''s lifestyles. 相似文献
4.
Nicolas Jaé Pingping Wang Tianpeng Gu Martin Hühn Zsofia Palfi Henning Urlaub Albrecht Bindereif 《Eukaryotic cell》2010,9(3):379-386
Spliceosomal small nuclear ribonucleoproteins (snRNPs) in trypanosomes contain either the canonical heptameric Sm ring or variant Sm cores with snRNA-specific Sm subunits. Here we show biochemically by a combination of RNase H cleavage and tandem affinity purification that the U4 snRNP contains a variant Sm heteroheptamer core in which only SmD3 is replaced by SSm4. This U4-specific, nuclear-localized Sm core protein is essential for growth and splicing. As shown by RNA interference (RNAi) knockdown, SSm4 is specifically required for the integrity of the U4 snRNA and the U4/U6 di-snRNP in trypanosomes. In addition, we demonstrate by in vitro reconstitution of Sm cores that under stringent conditions, the SSm4 protein suffices to specify the assembly of U4 Sm cores. Together, these data indicate that the assembly of the U4-specific Sm core provides an essential step in U4/U6 di-snRNP biogenesis and splicing in trypanosomes.The excision of intronic sequences from precursor mRNAs is a critical step during eukaryotic gene expression. This reaction is catalyzed by the spliceosome, a macromolecular complex composed of small nuclear ribonucleoproteins (snRNPs) and many additional proteins. Spliceosome assembly and splicing catalysis occur in an ordered multistep process, which includes multiple conformational rearrangements (35). Spliceosomal snRNPs are assembled from snRNAs and protein components, the latter of which fall into two classes: snRNP-specific and common proteins. The common or canonical core proteins are also termed Sm proteins, specifically SmB, SmD1, SmD2, SmD3, SmE, SmF, and SmG (10; reviewed in reference 9), which all share an evolutionarily conserved bipartite sequence motif (Sm1 and Sm2) required for Sm protein interactions and the formation of the heteroheptameric Sm core complex around the Sm sites of the snRNAs (3, 7, 29). Prior to this, the Sm proteins form three heteromeric subcomplexes: SmD3/SmB, SmD1/SmD2, and SmE/SmF/SmG (23; reviewed in reference 34). Individual Sm proteins or Sm subcomplexes cannot stably interact with the snRNA. Instead, a stable subcore forms by an association of the subcomplexes SmD1/SmD2 and SmE/SmF/SmG with the Sm site on the snRNA; the subsequent integration of the SmD3/SmB heterodimer completes Sm core assembly.In addition to the canonical Sm proteins, other proteins carrying the Sm motif have been identified for many eukaryotes. Those proteins, termed LSm (like Sm) proteins, exist in distinct heptameric complexes that differ in function and localization. For example, a complex composed of LSm1 to LSm7 (LSm1-7) accumulates in cytoplasmic foci and participates in mRNA turnover (4, 8, 31). Another complex, LSm2-8, binds to the 3′ oligo(U) tract of the U6 snRNA in the nucleus (1, 15, 24). Finally, in the U7 snRNP, which is involved in histone mRNA 3′-end processing, the Sm proteins SmD1 and SmD2 are replaced by U7-specific LSm10 and LSm11 proteins, respectively (20, 21; reviewed in reference 28).This knowledge is based primarily on the mammalian system, where spliceosomal snRNPs are biochemically well characterized (34). In contrast, for trypanosomes, comparatively little is known about the components of the splicing machinery and their assembly and biogenesis. In trypanosomes, the expression of all protein-encoding genes, which are arranged in long polycistronic units, requires trans splicing. Only a small number of genes are additionally processed by cis splicing (reviewed in reference 11). During trans splicing, a short noncoding miniexon, derived from the spliced leader (SL) RNA, is added to each protein-encoding exon. Regarding the trypanosomal splicing machinery, the U2, U4/U6, and U5 snRNPs are considered to be general splicing factors, whereas the U1 and SL snRNPs represent cis- and trans-splicing-specific components, respectively. In addition to the snRNAs, many protein splicing factors in trypanosomes have been identified based on sequence homology (for example, see references 14 and 19).Recent studies revealed variations in the Sm core compositions of spliceosomal snRNPs from Trypanosoma brucei. Specifically, in the U2 snRNP, two of the canonical Sm proteins, SmD3 and SmB, are replaced by two novel, U2 snRNP-specific proteins, Sm16.5K and Sm15K (33). In this case, an unusual purine nucleotide, interrupting the central uridine stretch of the U2 snRNA Sm site, discriminates between the U2-specific and the canonical Sm cores. A second case of Sm core variation was reported for the U4 snRNP, in which a single protein, SmD3, was suggested to be replaced by the U4-specific LSm protein initially called LSm2, and later called SSm4, based on a U4-specific destabilization after SSm4 knockdown (30). A U4-specific Sm core variation was also previously suggested and discussed by Wang et al. (33), based on the inefficient pulldown of U4 snRNA through tagged SmD3 protein. However, neither of these two studies conclusively demonstrated by biochemical criteria that the specific Sm protein resides in the U4 Sm core; a copurification of other snRNPs could not be unequivocally ruled out.By using a combination of RNase H cleavage, tandem affinity purification, and mass spectrometry, we provide here direct biochemical evidence that in the variant Sm core of the U4 snRNP, only SmD3 is replaced by the U4-specific SSm4. SSm4 is nuclear localized, and the silencing of SSm4 leads to a characteristic phenotype: dramatic growth inhibition, general trans- and cis-splicing defects, a loss of the integrity of the U4 snRNA, as well as a destabilization of the U4/U6 di-snRNP. Furthermore, in vitro reconstitution assays revealed that under stringent conditions, SSm4 is sufficient to specify U4-specific Sm core assembly. In sum, our data establish SSm4 as a specific component of the U4 Sm core and demonstrate its importance in U4/U6 di-snRNP biogenesis, splicing function, and cell viability. 相似文献
5.
Late embryogenesis abundant (LEA) proteins are involved in tolerance to drought, cold and high salinity in many different organisms. In this report, a LEA protein producing full-length gene OsLEA3-2 was identified in rice (Oryza sativa) using the Rapid Amplification of cDNA Ends (RACE) method. OsLEA3-2 was found to be only expressed in the embryo and can be induced by abiotic stresses. The coding protein localizes to the nucleus and overexpression of OsLEA3-2 in yeast improved growth performance compared with control under salt- and osmotic-stress conditions. OsLEA3-2 was also inserted into pHB vector and overexpressed in Arabidopsis and rice. The transgenic Arabidopsis seedlings showed better growth on MS media supplemented with 150 mM mannitol or 100 mM NaCl as compared with wild type plants. The transgenic rice also showed significantly stronger growth performance than control under salinity or osmotic stress conditions and were able to recover after 20 days of drought stress. In vitro analysis showed that OsLEA3-2 was able to protect LDH from aggregation on freezing and inactivation on desiccation. These results indicated that OsLEA3-2 plays an important role in tolerance to abiotic stresses. 相似文献
6.
Alesha B. Castillo Jennifer T. Blundo Julia C. Chen Kristen L. Lee Nikitha Reddy Yereddi Eugene Jang Shefali Kumar W. Joyce Tang Sarah Zarrin Jae-Beom Kim Christopher R. Jacobs 《PloS one》2012,7(9)
A healthy skeleton relies on bone''s ability to respond to external mechanical forces. The molecular mechanisms by which bone cells sense and convert mechanical stimuli into biochemical signals, a process known as mechanotransduction, are unclear. Focal adhesions play a critical role in cell survival, migration and sensing physical force. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that controls focal adhesion dynamics and can mediate reparative bone formation in vivo and osteoblast mechanotransduction in vitro. Based on these data, we hypothesized that FAK plays a role in load-induced bone formation. To test this hypothesis, we performed in vitro fluid flow experiments and in vivo bone loading studies in FAK−/− clonal lines and conditional FAK knockout mice, respectively. FAK−/− osteoblasts showed an ablated prostaglandin E2 (PGE2) response to fluid flow shear. This effect was reversed with the re-expression of wild-type FAK. Re-expression of FAK containing site-specific mutations at Tyr-397 and Tyr-925 phosphorylation sites did not rescue the phenotype, suggesting that these sites are important in osteoblast mechanotransduction. Interestingly, mice in which FAK was conditionally deleted in osteoblasts and osteocytes did not exhibit altered load-induced periosteal bone formation. Together these data suggest that although FAK is important in mechanically-induced signaling in osteoblasts in vitro, it is not required for an adaptive response in vivo, possibly due to a compensatory mechanism that does not exist in the cell culture system. 相似文献
7.
Yutaka Miyazawa Akiko Takahashi Akie Kobayashi Tomoko Kaneyasu Nobuharu Fujii Hideyuki Takahashi 《Plant physiology》2009,149(2):835-840
Roots respond not only to gravity but also to moisture gradient by displaying gravitropism and hydrotropism, respectively, to control their growth orientation, which helps plants obtain water and become established in the terrestrial environment. As gravitropism often interferes with hydrotropism, however, the mechanisms of how roots display hydrotropism and differentiate it from gravitropism are not understood. We previously reported MIZU-KUSSEI1 (MIZ1) as a gene required for hydrotropism but not for gravitropism, although the function of its protein was not known. Here, we found that a mutation of GNOM encoding guanine-nucleotide exchange factor for ADP-ribosylation factor-type G proteins was responsible for the ahydrotropism of Arabidopsis (Arabidopsis thaliana), miz2. Unlike other gnom alleles, miz2 showed no apparent morphological defects or reduced gravitropism. Instead, brefeldin A (BFA) treatment inhibited both hydrotropism and gravitropism in Arabidopsis roots. In addition, a BFA-resistant GNOM variant, GNM696L, showed normal hydrotropic response in the presence of BFA. Furthermore, a weak gnom allele, gnomB/E, showed defect in hydrotropic response. These results indicate that GNOM-mediated vesicular trafficking plays an essential role in hydrotropism of seedling roots.Stationary growth is a distinct feature of plants and distinguishes them from other organisms. Plants have evolved a variety of mechanisms for responding to environmental cues, which enables them to survive in the presence of limited resources or environmental stresses. One of the most important growth adaptations plants have acquired is tropism, growth response that involves bending or curving of plant organs toward or away from a stimulus. For example, roots display tropisms in response to environmental cues such as gravity, light, touch, and moisture (Darwin and Darwin, 1880; Takahashi, 1997; Correll and Kiss, 2002; Monshausen et al., 2008). Gravitropism has been the subject of intense study, while other tropic responses of roots have been less well characterized. There is some evidence of hydrotropism in roots, but this response has proven difficult to differentiate from gravitropism, as the latter always interferes with hydrotropism (Jaffe et al., 1985; Takahashi, 1994; Takahashi, 1997). The demonstration of true hydrotropism in roots has facilitated the identification of some of the physiological aspects of hydrotropism and its existence in a wide range of plant species. However, the underlying mechanisms that regulate hydrotropism remain unknown. The limited supply of water and precipitation in many parts of the world greatly affects agriculture and ecosystems. Elucidating the molecular mechanism of hydrotropism in roots is therefore important not only for understanding how terrestrial plants adapt to changes in moisture, but also for improving crop yields and biomass production.The isolation and analysis of hydrotropism-deficient mutants using the model plant species Arabidopsis (Arabidopsis thaliana) represents a potent tool for dissecting the molecular mechanism of hydrotropism. Previously, we isolated an ahydrotropic mutant of Arabidopsis, mizu-kussei1 (miz1), and showed that MIZ1 encodes a protein of unknown function (Kobayashi et al., 2007). In light of both the physiological features of hydrotropism, as well as what we have learned from genetic studies of other tropisms, it is unlikely that miz1 alone governs the hydrotropic response. In support of this, we have identified a second ahydrotropic mutant, miz2, a unique allele of gnom that confers ahydrotropic but not agravitropic growth, which implies distinct roles of vesicular trafficking between hydrotropism and gravitropism in roots. 相似文献
8.
Joseph A. Jurcisek Amanda C. Dickson Molly E. Bruggeman Lauren O. Bakaletz 《Journal of visualized experiments : JoVE》2011,(47)
The chronic nature of many diseases is attributed to the formation of bacterial biofilms which are recalcitrant to traditional antibiotic therapy. Biofilms are community-associated bacteria attached to a surface and encased in a matrix. The role of the extracellular matrix is multifaceted, including facilitating nutrient acquisition, and offers significant protection against environmental stresses (e.g. host immune responses). In an effort to acquire a better understanding as to how the bacteria within a biofilm respond to environmental stresses we have used a protocol wherein we visualize bacterial biofilms which have formed in an 8-well chamber slide. The biofilms were stained with the BacLight Live/Dead stain and examined using a confocal microscope to characterize the relative biofilm size, and structure under varying incubation conditions. Z-stack images were collected via confocal microscopy and analyzed by COMSTAT. This protocol can be used to help elucidate the mechanism and kinetics by which biofilms form, as well as identify components that are important to biofilm structure and stability. 相似文献
9.
Nirmala Hariharan Yoshiyuki Ikeda Chull Hong Ralph R. Alcendor Soichiro Usui Shumin Gao Yasuhiro Maejima Junichi Sadoshima 《PloS one》2013,8(1)
Autophagy is a bulk degradation mechanism for cytosolic proteins and organelles. The heart undergoes hypertrophy in response to mechanical load but hypertrophy can regress upon unloading. We hypothesize that autophagy plays an important role in mediating regression of cardiac hypertrophy during unloading. Mice were subjected to transverse aortic constriction (TAC) for 1 week, after which the constriction was removed (DeTAC). Regression of cardiac hypertrophy was observed after DeTAC, as indicated by reduction of LVW/BW and cardiomyocyte cross-sectional area. Indicators of autophagy, including LC3-II expression, p62 degradation and GFP-LC3 dots/cell, were significantly increased after DeTAC, suggesting that autophagy is induced. Stimulation of autophagy during DeTAC was accompanied by upregulation of FoxO1. Upregulation of FoxO1 and autophagy was also observed in vitro when cultured cardiomyocytes were subjected to mechanical stretch followed by incubation without stretch (de-stretch). Transgenic mice with cardiac-specific overexpression of FoxO1 exhibited smaller hearts and upregulation of autophagy. Overexpression of FoxO1 in cultured cardiomyocytes significantly reduced cell size, an effect which was attenuated when autophagy was inhibited. To further examine the role of autophagy and FoxO1 in mediating the regression of cardiac hypertrophy, beclin1+/− mice and cultured cardiomyocytes transduced with adenoviruses harboring shRNA-beclin1 or shRNA-FoxO1 were subjected to TAC/stretch followed by DeTAC/de-stretch. Regression of cardiac hypertrophy achieved after DeTAC/de-stretch was significantly attenuated when autophagy was suppressed through downregulation of beclin1 or FoxO1. These results suggest that autophagy and FoxO1 play an essential role in mediating regression of cardiac hypertrophy during mechanical unloading. 相似文献
10.
Tuo Deng Christopher J. Lyon Laurie J. Minze Jianxin Lin Jia Zou Joey Z. Liu Yuelan Ren Zheng Yin Dale J. Hamilton Patrick R. Reardon Vadim Sherman Helen Y. Wang Kevin J. Phillips Paul Webb Stephen T.C. Wong Rong-fu Wang Willa A. Hsueh 《Cell metabolism》2013,17(3):411-422
- Download : Download high-res image (274KB)
- Download : Download full-size image
11.
Glycerol dehydrogenase (GDH) is an important polyol dehydrogenase for glycerol metabolism in diverse microorganisms and for value-added utilization of glycerol in the industry. Two GDHs from Klebsiella pneumoniae, DhaD and GldA, were expressed in Escherichia coli, purified and characterized for substrate specificity and kinetic parameters. Both DhaD and GldA could catalyze the interconversion of (3R)-acetoin/(2R,3R)-2,3-butanediol or (3S)-acetoin/meso-2,3-butanediol, in addition to glycerol oxidation. Although purified GldA appeared more active than DhaD, in vivo inactivation and quantitation of their respective mRNAs indicate that dhaD is highly induced by glycerol and plays a dual role in glycerol metabolism and 2,3-butanediol formation. Complementation in K. pneumoniae further confirmed the dual role of DhaD. Promiscuity of DhaD may have vital physiological consequences for K. pneumoniae growing on glycerol, which include balancing the intracellular NADH/NAD+ ratio, preventing acidification, and storing carbon and energy. According to the kinetic response of DhaD to modified NADH concentrations, DhaD appears to show positive homotropic interaction with NADH, suggesting that the physiological role could be regulated by intracellular NADH levels. The co-existence of two functional GDH enzymes might be due to a gene duplication event. We propose that whereas DhaD is specialized for glycerol utilization, GldA plays a role in backup compensation and can turn into a more proficient catalyst to promote a survival advantage to the organism. Revelation of the dual role of DhaD could further the understanding of mechanisms responsible for enzyme evolution through promiscuity, and guide metabolic engineering methods of glycerol metabolism. 相似文献
12.
13.
14.
Shui Ying Tsang Songfa Zhong Lingling Mei Jianhuan Chen Siu-Kin Ng Frank W. Pun Cunyou Zhao Bingyi Jing Robin Chark Jianhua Guo Yunlong Tan Lijun Li Chuanyue Wang Soo Hong Chew Hong Xue 《PloS one》2013,8(4)
The occurrence of positive selection in schizophrenia-associated GABRB2 suggests a broader impact of the gene product on population fitness. The present study considered the possibility of cognition-related GABRB2 involvement by examining the association of GABRB2 with psychosis and altruism, respectively representing psychiatric and psychological facets of social cognition. Four single nucleotide polymorphisms (SNPs) were genotyped for quantitative trait analyses and population-based association studies. Psychosis was measured by either the Positive and Negative Syndrome Scale (PANSS) or antipsychotics dosage, and altruism was based on a self-report altruism scale. The minor alleles of SNPs rs6556547, rs1816071 and rs187269 in GABRB2 were correlated with high PANSS score for positive symptoms in a Han Chinese schizophrenic cohort, whereas those of rs1816071 and rs1816072 were associated with high antipsychotics dosage in a US Caucasian schizophrenic cohort. Moreover, strongly significant GABRB2-disease associations were found among schizophrenics with severe psychosis based on high PANSS positive score, but no significant association was observed for schizophrenics with only mild psychosis. Interestingly, in addition to association with psychosis in schizophrenics, rs187269 was also associated with altruism in healthy Han Chinese. Furthermore, parallel to correlation with severe psychosis, its minor allele was correlated with high altruism scores. These findings revealed that GABRB2 is associated with psychosis, the core symptom and an endophenotype of schizophrenia. Importantly, the association was found across the breadth of the psychiatric (psychosis) to psychological (altruism) spectrum of social cognition suggesting GABRB2 involvement in human cognition. 相似文献
15.
Elongated, more highly polyunsaturated derivatives of linoleic acid (18:2 omega-6) and linolenic acid (18:3 omega-3) accumulate in brain, but their sites of synthesis and mechanism of entry are not well characterized. To investigate the role of the blood-brain barrier in this process, cultured murine cerebromicrovascular endothelia were incubated with [1-14C]18:2 omega-6 or [1-14C]18:3 omega-3 and their elongation/desaturation products determined. The major metabolite of 18:2 omega-6 was 20:4 omega-6, whereas the primary product from 18:3 omega-3 was 20:5 omega-3. Although these products were found primarily in cell lipids, they were also released from the cells and gradually accumulated in the extracellular fluid. Eicosanoid production was observed from the 20:4 omega-6 and 20:5 omega-3 that were formed. No 22:5 omega-6 or 22:6 omega-3 fatty acids were detected, suggesting that these endothelial cells are not the site of the final desaturation step. Although the uptake of 18:3 omega-3 and 18:2 omega-6 was nearly identical, 18:3 omega-3 was more extensively elongated and desaturated. Competition experiments demonstrated a preference for 18:3 omega-3 by the elongation/desaturation pathway. These findings suggest that the blood-brain barrier can play an important role in the elongation and desaturation of omega-3 and omega-6 essential fatty acids during their transfer from the circulation into the brain. 相似文献
16.
Peter D. Newell Shiro Yoshioka Kelli L. Hvorecny Russell D. Monds George A. O'Toole 《Journal of bacteriology》2011,193(18):4685-4698
Cyclic di-GMP (c-di-GMP) is a broadly conserved, intracellular second-messenger molecule that regulates biofilm formation by many bacteria. The synthesis of c-di-GMP is catalyzed by diguanylate cyclases (DGCs) containing the GGDEF domain, while its degradation is achieved through the phosphodiesterase activities of EAL and HD-GYP domains. c-di-GMP controls biofilm formation by Pseudomonas fluorescens Pf0-1 by promoting the cell surface localization of a large adhesive protein, LapA. LapA localization is regulated posttranslationally by a c-di-GMP effector system consisting of LapD and LapG, which senses cytoplasmic c-di-GMP and modifies the LapA protein in the outer membrane. Despite the apparent requirement for c-di-GMP for biofilm formation by P. fluorescens Pf0-1, no DGCs from this strain have been characterized to date. In this study, we undertook a systematic mutagenesis of 30 predicted DGCs and found that mutations in just 4 cause reductions in biofilm formation by P. fluorescens Pf0-1 under the conditions tested. These DGCs were characterized genetically and biochemically to corroborate the hypothesis that they function to produce c-di-GMP in vivo. The effects of DGC gene mutations on phenotypes associated with biofilm formation were analyzed. One DGC preferentially affects LapA localization, another DGC mainly controls swimming motility, while a third DGC affects both LapA and motility. Our data support the conclusion that different c-di-GMP-regulated outputs can be specifically controlled by distinct DGCs. 相似文献
17.
18.
19.