首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study we examined the role of the cAMP/protein kinase A (PKA) pathway in affecting IOUD2 ES cell self-renewal and differentiation, Oct4 expression, and cell proliferation. Forskolin, the adenylate cyclase agonist, alone had no effect on ES cell self-renewal. However, when cells were treated with the differentiation-inducing agent retinoic acid, forskolin significantly promoted ES cell self-renewal. Effectively, forskolin rescued cells from a pathway of differentiation. Culturing ES cells in the presence of the phosphodiesterase inhibitor IBMX had no effect on ES cell self-renewal but did increase cell proliferation. In the presence of 100 μM IBMX without LIF, 10 μM forskolin significantly increased ES cell self-renewal. The cell permeable cAMP analog 8-Br-cAMP (1 and 5 mM) promoted ES cell differentiation in the presence of LIF, while in the absence of LIF, it promoted ES cell self-renewal. The effect of the PKA specific inhibitors H89 and KT5720 on Oct4 expression was, again, LIF-dependent. In the presence of LIF, these inhibitors decreased Oct4 expression, while they increased Oct4 expression in the absence of LIF. In general, ES cells maintained on a self-renewal pathway through the presence of LIF show little effect from altered cAMP signaling except at higher levels. However, in strict contrast, when ES cell are on a differentiation pathway through exposure to retinoic acid or the removal of LIF, altering cAMP levels can rescue the self-renewal process promoting Oct4 expression. This study clearly shows that the cAMP/PKA pathway plays a role in ES cell self-renewal pathways. This work was partly funded by the Millennium Research Fund National University of Ireland Galway.  相似文献   

3.
4.
The molecular basis of pluripotency in mouse embryonic stem cells   总被引:6,自引:0,他引:6  
  相似文献   

5.
6.
7.
8.
9.
Self-renewal and pluripotency of embryonic stem (ES) cells are maintained by several signaling cascades and by expression of intrinsic factors, such as Oct4, Nanog and Sox2. The mechanism regulating these signaling cascades in ES cells is of great interest. Recently, we have demonstrated that natriuretic peptide receptor A (NPR-A), a specific receptor for atrial and brain natriuretic peptides (ANP and BNP, respectively), is expressed in pre-implantation embryos and in ES cells. Here, we examined whether NPR-A is involved in the maintenance of ES cell pluripotency. RNA interference-mediated knockdown of NPR-A resulted in phenotypic changes, indicative of differentiation, downregulation of pluripotency factors (such as Oct4, Nanog and Sox2) and upregulation of differentiation genes. NPR-A knockdown also resulted in a marked downregulation of phosphorylated Akt. Furthermore, NPR-A knockdown induced accumulation of ES cells in the G1 phase of the cell cycle. Interestingly, we found that ANP was expressed in self-renewing ES cells, whereas its level was reduced after ES cell differentiation. Treatment of ES cells with ANP upregulated the expression of Oct4, Nanog and phosphorylated Akt, and this upregulation depended on NPR-A signaling, because it was completely reversed by pretreatment with either an NPR-A antagonist or a cGMP-dependent protein kinase inhibitor. These findings provide a novel role for NPR-A in the maintenance of self-renewal and pluripotency of ES cells.  相似文献   

10.
11.
12.
13.
Self-renewal is a feature common to both adult and embryonic stem (ES) cells, as well as tumor stem cells (TSCs). The cyclin-dependent kinase inhibitor, p18INK4c, is a known tumor suppressor that can inhibit self-renewal of tumor cells or adult stem cells. Here, we demonstrate an opposite effect of p18 on ES cells in comparison with teratoma cells. Our results unexpectedly showed that overexpression of p18 accelerated the growth of mouse ES cells and embryonic bodies (EB); on the contrary, inhibited the growth of late stage teratoma. Up-regulation of ES cell markers (i.e., Oct4, Nanog, Sox2, and Rex1) were detected in both ES and EB cells, while concomitant down-regulation of various differentiation markers was observed in EB cells. These results demonstrate that p18 has an opposite effect on ES cells as compared with tumor cells and adult stem cells. Mechanistically, expression of CDK4 was significantly increased with overexpression of p18 in ES cells, likely leading to a release of CDK2 from the inhibition by p21 and p27. As a result, self-renewal of ES cells was enhanced. Our current study suggests that targeting p18 in different cell types may yield different outcomes, thereby having implications for therapeutic manipulations of cell cycle machinery in stem cells.  相似文献   

14.
15.
Oct4 plays an essential role in maintaining the inner cell mass and pluripotence of embryonic stem (ES) cells. The expression of Oct4 is regulated by the proximal enhancer and promoter in the epiblast and by the distal enhancer and promoter at all other stages in the pluripotent cell lineage. Here we report that the orphan nuclear receptor LRH-1, which is expressed in undifferentiated ES cells, can bind to SF-1 response elements in the proximal promoter and proximal enhancer of the Oct4 gene and activate Oct4 reporter gene expression. LRH-1 is colocalized with Oct4 in the inner cell mass and the epiblast of embryos at early developmental stages. Disruption of the LRH-1 gene results in loss of Oct4 expression at the epiblast stage and early embryonic death. Using LRH-1(-/-) ES cells, we also show that LRH-1 is required to maintain Oct4 expression at early differentiation time points. In vitro and in vivo results show that LRH-1 plays an essential role in the maintenance of Oct4 expression in ES cells at the epiblast stage of embryonic development, thereby maintaining pluripotence at this crucial developmental stage prior to segregation of the primordial germ cell lineage at gastrulation.  相似文献   

16.
17.
18.
19.
Embryonic stem (ES) cell self-renewal and pluripotency are maintained by several signaling cascades and by expression of intrinsic factors, such as Oct3/4 and Nanog. The signaling cascades are activated by extrinsic factors, such as leukemia inhibitory factor, bone morphogenic protein, and Wnt. However, the mechanism that regulates extrinsic signaling in ES cells is unknown. Heparan sulfate (HS) chains are ubiquitously present as the cell surface proteoglycans and are known to play crucial roles in regulating several signaling pathways. Here we investigated whether HS chains on ES cells are involved in regulating signaling pathways that are important for the maintenance of ES cells. RNA interference-mediated knockdown of HS chain elongation inhibited mouse ES cell self-renewal and induced spontaneous differentiation of the cells into extraembryonic endoderm. Furthermore, autocrine/paracrine Wnt/beta-catenin signaling through HS chains was found to be required for the regulation of Nanog expression. We propose that HS chains are important for the extrinsic signaling required for mouse ES cell self-renewal and pluripotency.  相似文献   

20.
Recent studies suggest that Klf5 is required to maintain embryonic stem (ES) cells in an undifferentiated state. However, whether Klf5 can be inactivated by novel fusion technology of zinc finger nucleases (ZFN) has never before been examined. Therefore, we used ZFN technology to target the Klf5 gene in mouse ES cells, and examined the effects of the Klf5 gene on the expression of pluripotency-related genes, Oct3/4, Nanog, and Sox2 and on the self-renewal of ES cells. In Klf5–ZFN-transfected cells, expression of the Klf5 mRNA was downregulated by ~80 % compared to the control. Furthermore, expression of the Oct3/4 and Nanog mRNAs was significantly decreased in the Klf5–ZFN-targeted cells. RT-PCR analysis, however, showed no significant change in the level of Sox2 mRNA, but a decreased trend was evident in the Klf5–ZFN-targeted cells. Moreover, we observed the spontaneous differentiation of Klf5–ZFN-transfected cells and quantitative analysis revealed a significant decrease in colony formation in Klf5–ZFN-transfected cells. In conclusion, our data suggest that ZFN methodology is an effective approach to target the Klf5 gene and that Klf5 plays an important role in the maintenance of ES cell self-renewal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号