首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The hypoxia-inducible factor 1α (HIF-1α) is the master regulator of the cellular response to hypoxia. A key regulator of HIF-1α is von Hippel-Lindau protein (pVHL), which mediates the oxygen-dependent, proteasomal degradation of HIF-1α in normoxia. Here, we describe a new regulator of HIF-1α, the hypoxia-associated factor (HAF), a novel E3-ubiquitin ligase that binds HIF-1α leading to its proteasome-dependent degradation irrespective of cellular oxygen tension. HAF, a protein expressed in proliferating cells, binds and ubiquitinates HIF-1α in vitro, and both binding and E3 ligase activity are mediated by HAF amino acids 654 to 800. Furthermore, HAF overexpression decreases HIF-1α levels in normoxia and hypoxia in both pVHL-competent and -deficient cells, whereas HAF knockdown increases HIF-1α levels in normoxia, hypoxia, and under epidermal growth factor stimulation. In contrast, HIF-2α is not regulated by HAF. In vivo, tumor xenografts from cells overexpressing HAF show decreased levels of HIF-1α accompanied by decreased tumor growth and angiogenesis. Therefore, HAF is the key mediator of a new HIF-1α-specific degradation pathway that degrades HIF-1α through a new, oxygen-independent mechanism.  相似文献   

3.
Recently, we have shown that CXCL12/CXCR4 signaling plays an important role in gemcitabine resistance of pancreatic cancer (PC) cells. Here, we explored the effect of gemcitabine on this resistance mechanism. Our data demonstrate that gemcitabine induces CXCR4 expression in two PC cell lines (MiaPaCa and Colo357) in a dose- and time-dependent manner. Gemcitabine-induced CXCR4 expression is dependent on reactive oxygen species (ROS) generation because it is abrogated by pretreatment of PC cells with the free radical scavenger N-acetyl-L-cysteine. CXCR4 up-regulation by gemcitabine correlates with time-dependent accumulation of NF-κB and HIF-1α in the nucleus. Enhanced binding of NF-κB and HIF-1α to the CXCR4 promoter is observed in gemcitabine-treated PC cells, whereas their silencing by RNA interference causes suppression of gemcitabine-induced CXCR4 expression. ROS induction upon gemcitabine treatment precedes the nuclear accumulation of NF-κB and HIF-1α, and suppression of ROS diminishes these effects. The effect of ROS on NF-κB and HIF-1α is mediated through activation of ERK1/2 and Akt, and their pharmacological inhibition also suppresses gemcitabine-induced CXCR4 up-regulation. Interestingly, our data demonstrate that nuclear accumulation of NF-κB results from phosphorylation-induced degradation of IκBα, whereas HIF-1α up-regulation is NF-κB-dependent. Lastly, our data demonstrate that gemcitabine-treated PC cells are more motile and exhibit significantly greater invasiveness against a CXCL12 gradient. Together, these findings reinforce the role of CXCL12/CXCR4 signaling in gemcitabine resistance and point toward an unintended and undesired effect of chemotherapy.  相似文献   

4.
5.
Hypoxia promotes tumor evolution and metastasis, and hypoxia-inducible factor-1α (HIF-1α) is a key regulator of hypoxia-related cellular processes in cancer. The eIF4E translation initiation factors, eIF4E1, eIF4E2, and eIF4E3, are essential for translation initiation. However, whether and how HIF-1α affects cap-dependent translation through eIF4Es in hypoxic cancer cells has been unknown. Here, we report that HIF-1α promoted cap-dependent translation of selective mRNAs through up-regulation of eIF4E1 in hypoxic breast cancer cells. Hypoxia-promoted breast cancer tumorsphere growth was HIF-1α-dependent. We found that eIF4E1, not eIF4E2 or eIF4E3, is the dominant eIF4E family member in breast cancer cells under both normoxia and hypoxia conditions. eIF4E3 expression was largely sequestered in breast cancer cells at normoxia and hypoxia. Hypoxia up-regulated the expression of eIF4E1 and eIF4E2, but only eIF4E1 expression was HIF-1α-dependent. In hypoxic cancer cells, HIF-1α-up-regulated eIF4E1 enhanced cap-dependent translation of a subset of mRNAs encoding proteins important for breast cancer cell mammosphere growth. In searching for correlations, we discovered that human eIF4E1 promoter harbors multiple potential hypoxia response elements. Furthermore, using chromatin immunoprecipitation (ChIP) and luciferase and point mutation assays, we found that HIF-1α utilized hypoxia response elements in the human eIF4E1 proximal promoter region to activate eIF4E1 expression. Our study suggests that HIF-1α promotes cap-dependent translation of selective mRNAs through up-regulating eIF4E1, which contributes to tumorsphere growth of breast cancer cells at hypoxia. The data shown provide new insights into protein synthesis mechanisms in cancer cells at low oxygen levels.  相似文献   

6.
7.
8.
9.

Background

Hypoxia-inducible factor-1 alpha (HIF-1α) is one of the key regulators of hypoxia/ischemia. MicroRNA-494 (miR-494) had cardioprotective effects against ischemia/reperfusion (I/R)-induced injury, but its functional relationship with HIF-1α was unknown. This study was undertaken to determine if miR-494 was involved in the induction of HIF-1α.

Results

Quantitative RT-PCR showed that miR-494 was up-regulated to peak after 4 hours of hypoxia in human liver cell line L02. To investigate the role of miR-494, cells were transfected with miR-494 mimic or miR-negative control, followed by incubation under normoxia or hypoxia. Our results indicated that overexpression of miR-494 significantly induced the expression of p-Akt, HIF-1α and HO-1 determined by qRT-PCR and western blot under normoxia and hypoxia, compared to negative control (p < 0.05). While LY294002 treatment markedly abolished miR-494-inducing Akt activation, HIF-1α and HO-1 increase under both normoxic and hypoxic conditions (p < 0.05). Moreover, apoptosis detection using Annexin V indicated that overexpression of miR-494 significantly decreased hypoxia-induced apoptosis in L02 cells, compared to control (p < 0.05). MiR-494 overexpression also decreased caspase-3/7 activity by 1.27-fold under hypoxia in L02 cells.

Conclusions

Overexpression of miR-494 upregulated HIF-1α expression through activating PI3K/Akt pathway under both normoxia and hypoxia, and had protective effects against hypoxia-induced apoptosis in L02 cells. Thus, these findings suggested that miR-494 might be a target of therapy for hepatic hypoxia/ischemia injury.  相似文献   

10.
11.
The glycolytic response of hypoxic cells is primarily mediated by the hypoxia inducible factor alpha (HIF-1α) but even in the presence of abundant oxygen tumours typically show high rates of glycolysis. Higher levels of HIF-1α in tumours are associated with a poorer prognosis and up-regulation of markers of epithelial mesenchymal transition (EMT) due to HIF-1α actions. We have recently shown that EMT occurs within the CD44high cancer stem cell (CSC) fraction and that epithelial and EMT CSCs are distinguished by high and low ESA expression, respectively. We here show that hypoxia induces a marked shift of the CSC fraction towards EMT leading to altered cell morphology, an increased proportion of CD44high/ESAlow cells, patterns of gene expression typical of EMT, and enhanced sphere-forming ability. The size of EMT fractions returned to control levels in normoxia indicating a reversible process. Surprisingly, however, even under normoxic conditions a fraction of EMT CSCs was present and maintained high levels of HIF-1α, apparently due to actions of cytokines such as TNFα. Functionally, this EMT CSC fraction showed decreased mitochondrial mass and membrane potential, consumed far less oxygen per cell, and produced markedly reduced levels of reactive oxygen species (ROS). These differences in the patterns of oxygen metabolism of sub-fractions of tumour cells provide an explanation for the general therapeutic resistance of CSCs and for the even greater resistance of EMT CSCs. They also identify potential mechanisms for manipulation of CSCs.  相似文献   

12.
The estrogen receptor (ER) β variant ERβ2 is expressed in aggressive castration-resistant prostate cancer and has been shown to correlate with decreased overall survival. Genome-wide expression analysis after ERβ2 expression in prostate cancer cells revealed that hypoxia was an overrepresented theme. Here we show that ERβ2 interacts with and stabilizes HIF-1α protein in normoxia, thereby inducing a hypoxic gene expression signature. HIF-1α is known to stimulate metastasis by increasing expression of Twist1 and increasing vascularization by directly activating VEGF expression. We found that ERβ2 interacts with HIF-1α and piggybacks to the HIF-1α response element present on the proximal Twist1 and VEGF promoters. These findings suggest that at least part of the oncogenic effects of ERβ2 is mediated by HIF-1α and that targeting of this ERβ2 – HIF-1α interaction may be a strategy to treat prostate cancer.  相似文献   

13.
Hypoxia-inducible factor 1α (HIF-1α), a major mediator of tumor physiology, is activated during tumor progression, and its abundance is correlated with therapeutic resistance in a broad range of solid tumors. The accumulation of HIF-1α is mainly caused by hypoxia or through the mutated succinate dehydrogenase A (SDHA) or fumarate hydratase (FH) expression to inhibit its degradation. However, its activation under normoxic conditions, termed pseudohypoxia, in cells without mutated SDHA or FH is not well documented. Here, we show that dimethyl-2-ketoglutarate (DKG), a cell membrane-permeable precursor of a key metabolic intermediate, α-ketoglutarate (α-KG), known for its ability to rescue glutamine deficiency, transiently stabilized HIF-1α by inhibiting activity of the HIF prolyl hydroxylase domain-containing protein, PHD2. Consequently, prolonged DKG-treatment under normoxia elevated HIF-1α abundance and up-regulated the expression of its downstream target genes, thereby inducing a pseudohypoxic condition. This HIF-1α stabilization phenotype is similar to that from treatment of cells with desferrioxamine (DFO), an iron chelator, or dimethyloxalyglycine (DMOG), an established PHD inhibitor, but was not recapitulated with other α-KG analogues, such as Octyl-2KG, MPTOM001 and MPTOM002. Our study is the first example of an α-KG precursor to increase HIF-1α abundance and activity. We propose that DKG acts as a potent HIF-1α activator, highlighting the potential use of DKG to investigate the contribution of PHD2-HIF-1α pathway to tumor biology.  相似文献   

14.
15.
B cells that interact with T cells play a role in regulating the defense function by producing antibodies and inflammatory cytokines. C-X-C chemokine receptor type 4 (CXCR4) is a specific receptor for stromal cell-derived factor 1 (SDF-1) that controls various B cell functions. Here, we investigated whether CXCR4 regulates B cell viability by inducing hypoxia-inducible factor (HIF)-1α and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) under a hypoxic condition in WiL2-NS human B cells. Nrf2 and CXCR4 expressions increased significantly when WiL2-NS cells were incubated under a hypoxic condition. Interfering with CXCR4 expression using CXCR4-siRNA inhibited cell viability. CXCR4 expression also decreased after treatment with a HIF inhibitor under the hypoxic condition, leading to inhibited cell viability. Increased reactive oxygen species (ROS) levels and the expression of HIF-1α and Nrf2 decreased under the hypoxic condition following incubation with N-acetylcysteine, a ROS scavenger, which was associated with a decrease in CXCR4 expression. CXCR4 expression was augmented by overexpressing Nrf2 after transfecting the pcDNA3.1-Nrf2 plasmid. CXCR4 expression decreased and HIF-1α accumulation decreased when Nrf2 was inhibited by doxycycline in tet-shNrf2-expressed stable cells. Nrf2 or HIF-1α bound from −718 to −561 of the CXCR4 gene promoter as judged by a chromatin immunoprecipitation assay. Taken together, these data show that B cell viability under a hypoxic condition could be regulated by CXCR4 expression through binding of HIF-1α and Nrf2 to the CXCR4 gene promoter cooperatively. These results suggest that CXCR4 could be an additional therapeutic target to control B cells with roles at disease sites under hypoxic conditions.Subject terms: Stress signalling, Immune cell death  相似文献   

16.
17.
18.
19.
20.
Previous studies have shown that chemotactic factor stromal-cell derived factor 1α (SDF1α) promotes cell recovery from hypoxic injury via its main receptor C-X-C chemokine receptor type (CXCR) 4. However, the role of its new receptor CXCR7 on cell repair against hypoxia and cell response to SDF1α remains largely unknown. In this study, neurons induced from hippocampal progenitor cells were pre-conditioned in hypoxia for 4h and subsequently monitored to investigate the function of SDF1α on cell repair after hypoxia. Neurons were assessed for their cell morphology, actin filament polymerization and migration capability. SDF1α protein levels increased significantly 1 h after hypoxia compared to control (P<0.01), and it reached a peak at 24 h after hypoxia. Moreover, addition of SDF1α promoted neurite outgrowth and actin filament polymerization both in normoxic and hypoxic cells compared to untreated cells. Cell migration showed a time-dependent increase with SDF1α stimulation in both groups, and hypoxic cells illustrated a significant augment at 0.5 h, 1 h and 12 h after SDF1α application compared to normoxic cells (P<0.01). CXCR7 expression also increased with time dependence after hypoxia and demonstrated a two-fold upregulation compared to control at 24 h after hypoxia. With CXCR7 silencing, axon elongation and actin filament polymerization induced by SDF1α were inhibited sharply both in normoxic and hypoxic cells. CXCR7 silencing also leads to reduced hypoxic cell migration at 0.5 h, 1 h, 12 h, 24 h and 36 h after SDF1α application (P<0.01), but it failed to reduce normoxic cell migration induced by SDF1α at 0.5 h, 1 h and 12 h (P>0.05). 24 h SDF1α stimulation led to higher ERK1/2 phosphorylation compared to control, and ERK1/2 phosphorylation increased more in hypoxic cells than that in normoxic cells. This study suggested that CXCR7 plays an important role on cell repair processing induced by SDF1α, and CXCR7 silencing attenuates cell adaptive response to acute SDF1α stimulation (≤12 h) after hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号