首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.

Objective

In a previous study, we reported the upregulation of Nerve Growth Factor (NGF) and trkANGFR expression in Ocular Cicatricial Pemphigoid (OCP), an inflammatory and remodeling eye disease. Herein, we hypothesize a potential NGF-driven mechanism on fibroblasts (FBs) during OCP remodeling events. To verify, human derived OCP-FBs were isolated and characterized either at baseline or after NGF exposure.

Materials and Methods

Conjunctival biopsies were obtained from 7 patients having OCP and 6 control subjects (cataract surgery). Both conjunctivas and primary FB cultures were characterised for αSMA, NGF and trkANGFR/p75NTR expression. Subcultures were exposed to NGF and evaluated for αSMA, NGF, trkANGFR/p75NTR expression as well as TGFβ1/IL4 release. For analysis, early and advanced subgroups were defined according to clinical parameters.

Results

OCP-conjunctivas showed αSMA-expressing FBs and high NGF levels. Advanced OCP-FBs showed higher αSMA expression associated with higher p75NTR and lower trkANGFR expression, as compared to early counterparts. αSMA expression was in keeping with disease severity and correlated to p75NTR. NGF exposure did not affect trkANGFR levels in early OCP-FBs while decreased both αSMA/p75NTR expression and TGFβ1/IL4 release. These effects were not observed in advanced OCP-FBs.

Conclusions

Taken together, these data are suggestive for a NGF/p75NTR task in the potential modulation of OCP fibrosis and encourages further studies to fully understand the underlying mechanism occurring in fibrosis. NGF/p75NTR might be viewed as a potential therapeutic target.  相似文献   

2.
Nerve growth factor (NGF) is generated from a precursor, proNGF, that is proteolytically processed. NGF preferentially binds a trophic tyrosine kinase receptor, TrkA, while proNGF binds a neurotrophin receptor (NTR), p75NTR, that can have neurotoxic activity. Previously, we along with others showed that the soluble protein α2-macroglobulin (α2M) is neurotoxic. Toxicity is due in part to α2M binding to NGF and inhibiting trophic activity, presumably by preventing NGF binding to TrkA. However, the mechanisms remained unclear. Here, we show ex vivo and in vivo three mechanisms for α2M neurotoxicity. First, unexpectedly the α2M-NGF complexes do bind TrkA receptors but do not induce TrkA dimerization or activation, resulting in deficient trophic support. Second, α2M makes stable complexes with proNGF, conveying resistance to proteolysis that results in more proNGF and less NGF. Third, α2M-proNGF complexes bind p75NTR and are more potent agonists than free proNGF, inducing tumor necrosis factor alpha (TNF-α) production. Hence, α2M regulates proNGF/p75NTR positively and mature NGF/TrkA negatively, causing neuronal death ex vivo. These three mechanisms are operative in vivo, and α2M causes neurodegeneration in a p75NTR- and proNGF-dependent manner. α2M could be exploited as a therapeutic target, or as a modifier of neurotrophin signals.  相似文献   

3.
Cleavage of transmembrane receptors by γ-secretase is the final step in the process of regulated intramembrane proteolysis (RIP) and has a significant impact on receptor function. Although relatively little is known about the molecular mechanism of γ-secretase enzymatic activity, it is becoming clear that substrate dimerization and/or the α-helical structure of the substrate can regulate the site and rate of γ-secretase activity. Here we show that the transmembrane domain of the pan-neurotrophin receptor p75NTR, best known for regulating neuronal death, is sufficient for its homodimerization. Although the p75NTR ligands NGF and pro-NGF do not induce homerdimerization or RIP, homodimers of p75NTR are γ-secretase substrates. However, dimerization is not a requirement for p75NTR cleavage, suggesting that γ-secretase has the ability to recognize and cleave each receptor molecule independently. The transmembrane cysteine 257, which mediates covalent p75NTR interactions, is not crucial for homodimerization, but this residue is required for normal rates of γ-secretase cleavage. Similarly, mutation of the residues alanine 262 and glycine 266 of an AXXXG dimerization motif flanking the γ-secretase cleavage site within the p75NTR transmembrane domain alters the orientation of the domain and inhibits γ-secretase cleavage of p75NTR. Nonetheless, heteromer interactions of p75NTR with TrkA increase full-length p75NTR homodimerization, which in turn potentiates the rate of γ-cleavage following TrkA activation independently of rates of α-cleavage. These results provide support for the idea that the helical structure of the p75NTR transmembrane domain, which may be affected by co-receptor interactions, is a key element in γ-secretase-catalyzed cleavage.  相似文献   

4.
The p75NTR (where NTR is neurotrophin receptor) can mediate many distinct cellular functions, including cell survival and apoptosis, axonal growth and cell proliferation, depending on the cellular context. This multifunctional receptor is widely expressed in the CNS (central nervous system) during development, but its expression is restricted in the adult brain. However, p75NTR is induced by a variety of pathophysiological insults, including seizures, lesions and degenerative disease. We have demonstrated previously that p75NTR is induced by seizures in neurons, where it induces apoptosis, and in astrocytes, where it may regulate proliferation. In the present study, we have investigated whether the inflammatory cytokines IL (interleukin)-1β and TNF-α (tumour necrosis factor-α), that are commonly elevated in these pathological conditions, mediate the regulation of p75NTR in neurons and astrocytes. We have further analysed the signal transduction pathways by which these cytokines induce p75NTR expression in the different cell types, specifically investigating the roles of the NF-κB (nuclear factor κB) and p38 MAPK (mitogen-activated protein kinase) pathways. We have demonstrated that both cytokines regulate p75NTR expression; however, the mechanisms governing this regulation are cytokine- and cell-type specific. The distinct mechanisms of cytokine-mediated p75NTR regulation that we demonstrate in the present study may facilitate therapeutic intervention in regulation of this receptor in a cell-selective manner.  相似文献   

5.

Background

The cleavage of β-amyloid precursor protein (APP) generates multiple proteins: Soluble β-amyloid Precursor Protein Alpha (sAPPα), sAPPβ, and amyloid β (Aβ). Previous studies have shown that sAPPα and sAPPβ possess neurotrophic properties, whereas Aβ is neurotoxic. However, the underlying mechanism of the opposing effects of APP fragments remains poorly understood. In this study, we have investigated the mechanism of sAPPα-mediated neurotrophic effects. sAPPα and sAPPβ interact with p75 neurotrophin receptor (p75NTR), and sAPPα promotes neurite outgrowth.

Methods and Findings

First, we investigated whether APP fragments interact with p75NTR, because full-length APP and Aβ have been shown to interact with p75NTR in vitro. Both sAPPα and sAPPβ were co-immunoprecipitated with p75NTR and co-localized with p75NTR on COS-7 cells. The binding affinity of sAPPα and sAPPβ for p75NTR was confirmed by enzyme-linked immunosorbent assay (ELISA). Next, we investigated the effect of sAPPα on neurite outgrowth in mouse cortical neurons. Neurite outgrowth was promoted by sAPPα, but sAPPα was uneffective in a knockdown of p75NTR.

Conclusion

We conclude that p75NTR is the receptor for sAPPα to mediate neurotrophic effects.  相似文献   

6.
The p75 neurotrophin receptor (p75NTR) mediates the death of specific populations of neurons during the development of the nervous system or after cellular injury. The receptor has also been implicated as a contributor to neurodegeneration caused by numerous pathological conditions. Because many of these conditions are associated with increases in reactive oxygen species, we investigated whether p75NTR has a role in neurodegeneration in response to oxidative stress. Here we demonstrate that p75NTR signaling is activated by 4-hydroxynonenal (HNE), a lipid peroxidation product generated naturally during oxidative stress. Exposure of sympathetic neurons to HNE resulted in neurite degeneration and apoptosis. However, these effects were reduced markedly in neurons from p75NTR−/− mice. The neurodegenerative effects of HNE were not associated with production of neurotrophins and were unaffected by pretreatment with a receptor-blocking antibody, suggesting that oxidative stress activates p75NTR via a ligand-independent mechanism. Previous studies have established that proteolysis of p75NTR by the metalloprotease TNFα-converting enzyme and γ-secretase is necessary for p75NTR-mediated apoptotic signaling. Exposure of sympathetic neurons to HNE resulted in metalloprotease- and γ-secretase-dependent cleavage of p75NTR. Pharmacological blockade of p75NTR proteolysis protected sympathetic neurons from HNE-induced neurite degeneration and apoptosis, suggesting that cleavage of p75NTR is necessary for oxidant-induced neurodegeneration. In vivo, p75NTR−/− mice exhibited resistance to axonal degeneration associated with oxidative injury following administration of the neurotoxin 6-hydroxydopamine. Together, these data suggest a novel mechanism linking oxidative stress to ligand-independent cleavage of p75NTR, resulting in axonal fragmentation and neuronal death.  相似文献   

7.
Recent work has shown that estrogen receptor mRNA and protein co-localize with neurotrophin receptor systems in the developing basal forebrain. In the present study we examined the potential for reciprocal regulation of estrogen and neurotrophin receptor systems by their ligands in a prototypical neurotrophin target, the PC12 cell. using in situ hybridization histochemistry, RT-PCR and a modified nuclear exchange assay, we found both estrogen receptor mRNA and estrogen binding in PC12 cells. Moreover, while estrogen binding was relatively low in naive PC12 cells, long-term exposure to NGF enhanced estrogen binding in these cells by sixfold. Furthermore, concurrent exposure to estrogen and NGF receptor mRNAs deifferentially regulated the expression of the two NGF receptor mRNAs. The expression of trkA mRNA was up-regulated, while p75NGFR mRNA was down-regulated transiently. The present data indicate that NGF may increase neuronal sensitivity to estrogen, and that estrogen, by differentially regulating p75NGFR and trkA mRNA, may alter the ratio fo the two NGF receptors, and, conseuqnetly, neurotrophin responsivity. In view of the widespread co-localization of estrogen and neurotrophin receptor systems in the developing CNS, the reciprocal regulation of these receptor systems by NGF and estrogen may have important implications for processes governing neural maturation and the maintenance of neural funciton. 1994 John Wiley & Sons, Inc.  相似文献   

8.
The p75 neurotrophin receptor (p75NTR) is expressed by neurons particularly vulnerable in Alzheimer''s disease (AD). We tested the hypothesis that non-peptide, small molecule p75NTR ligands found to promote survival signaling might prevent Aβ-induced degeneration and synaptic dysfunction. These ligands inhibited Aβ-induced neuritic dystrophy, death of cultured neurons and Aβ-induced death of pyramidal neurons in hippocampal slice cultures. Moreover, ligands inhibited Aβ-induced activation of molecules involved in AD pathology including calpain/cdk5, GSK3β and c-Jun, and tau phosphorylation, and prevented Aβ-induced inactivation of AKT and CREB. Finally, a p75NTR ligand blocked Aβ-induced hippocampal LTP impairment. These studies support an extensive intersection between p75NTR signaling and Aβ pathogenic mechanisms, and introduce a class of specific small molecule ligands with the unique ability to block multiple fundamental AD-related signaling pathways, reverse synaptic impairment and inhibit Aβ-induced neuronal dystrophy and death.  相似文献   

9.
The multifunctional signaling protein p75 neurotrophin receptor (p75NTR) is a central regulator and major contributor to the highly invasive nature of malignant gliomas. Here, we show that neurotrophin-dependent regulated intramembrane proteolysis (RIP) of p75NTR is required for p75NTR-mediated glioma invasion, and identify a previously unnamed process for targeted glioma therapy. Expression of cleavage-resistant chimeras of p75NTR or treatment of animals bearing p75NTR-positive intracranial tumors with clinically applicable γ-secretase inhibitors resulted in dramatically decreased glioma invasion and prolonged survival. Importantly, proteolytic processing of p75NTR was observed in p75NTR-positive patient tumor specimens and brain tumor initiating cells. This work highlights the importance of p75NTR as a therapeutic target, suggesting that γ-secretase inhibitors may have direct clinical application for the treatment of malignant glioma.  相似文献   

10.
11.
Axon outgrowth inhibition in response to trauma is thought to be mediated via the binding of myelin-associated inhibitory factors (e.g. Nogo-66, myelin-associated glycoprotein, oligodendrocyte myelin glycoprotein, and myelin basic protein) to a putative tripartite LINGO-1·p75NTR·Nogo-66 receptor (NgR) complex at the cell surface. We found that endogenous LINGO-1 expression in neurons in the cortex and cerebellum is intracellular. Mutation or truncation of the highly conserved LINGO-1 C terminus altered this intracellular localization, causing poor intracellular retention and increased plasma membrane expression. p75NTR associated predominantly with natively expressed LINGO-1 containing immature N-glycans, characteristic of protein that has not completed trans-Golgi-mediated processing, whereas mutant forms of LINGO-1 with enhanced plasma membrane expression did not associate with p75NTR. Co-immunoprecipitation experiments demonstrated that LINGO-1 and NgR competed for binding to p75NTR in a manner that is difficult to reconcile with the existence of a LINGO-1·p75NTR·NgR ternary complex. These findings contradict models postulating functional LINGO-1·p75NTR·NgR complexes in the plasma membrane.  相似文献   

12.
Amyloid β (Aβ) aggregates are the primary component of senile plaques in Alzheimer disease (AD) patient’s brain. Aβ is known to bind p75 neurotrophin receptor (p75NTR) and mediates Aβ-induced neuronal death. Recently, we showed that NGF leads to p75NTR polyubiquitination, which promotes neuronal cell survival. Here, we demonstrate that Aβ stimulation impaired the p75NTR polyubiquitination. TRAF6 and p62 are required for polyubiquitination of p75NTR on NGF stimulation. Interestingly, we found that overexpression of TRAF6/p62 restored p75NTR polyubiquitination upon Aβ/NGF treatment. Aβ significantly reduced NF-κB activity by attenuating the interaction of p75NTR with IKKβ. p75NTR increased NF-κB activity by recruiting TRAF6/p62, which thereby mediated cell survival. These findings indicate that TRAF6/p62 abrogated the Aβ-mediated inhibition of p75NTR polyubiquitination and restored neuronal cell survival.  相似文献   

13.
This study evaluated the relative mRNA expression levels of nerve growth factor (NGF) and the p75 neurothrophin receptor (p75NTR) in different histological stages of human liver disease. Fifty-one liver biopsy specimens obtained from patients with hepatitis B virus (n = 6), hepatitis C virus (n = 28), and non-viral hepatitis – (n = 9) and standard histological liver (n = 8) as controls (CT) were subjected to qPCR and histopathological exams. Our data revealed a significant difference in the NGF expression levels between the three patient groups and the Control group. p75NTR expression levels in the HCV and NVH groups were higher than those observed in the HBV and Control groups. In cases of liver cirrhosis, higher p75NTR mRNA expression was observed, whereas NGF was expressed at higher levels in patients with hepatic fibrosis. NGF expression was lower in the F1 liver fibrosis stage, and p75NTR receptor expression continuously and proportionately increased compared to the increase in the degree of fibrosis and was significantly higher in livers in fibrosis stages 3 and 4. The hepatic levels of NGF and p75NTR were decreased and increased, respectively, relative to the stage of inflammatory activity. A positive correlation between p75NTR and NGF gene expression was observed in livers with mild to moderate fibrosis, though not in cases of severe fibrosis and cirrhosis.

Conclusion

Our results demonstrate that the course of chronic liver disease can be regulated by NGF and p75NTR, which function by decreasing or inhibiting hepatocyte regeneration and proliferation.  相似文献   

14.
Amyloid β (Aβ) aggregates are the primary component of senile plaques in Alzheimer disease (AD) patient’s brain. Aβ is known to bind p75 neurotrophin receptor (p75NTR) and mediates Aβ-induced neuronal death. Recently, we showed that NGF leads to p75NTR polyubiquitination, which promotes neuronal cell survival. Here, we demonstrate that Aβ stimulation impaired the p75NTR polyubiquitination. TRAF6 and p62 are required for polyubiquitination of p75NTR on NGF stimulation. Interestingly, we found that overexpression of TRAF6/p62 restored p75NTR polyubiquitination upon Aβ/NGF treatment. Aβ significantly reduced NF-κB activity by attenuating the interaction of p75NTR with IKKβ. p75NTR increased NF-κB activity by recruiting TRAF6/p62, which thereby mediated cell survival. These findings indicate that TRAF6/p62 abrogated the Aβ-mediated inhibition of p75NTR polyubiquitination and restored neuronal cell survival.  相似文献   

15.
Alzheimer's disease (AD) is pathologically characterized by deposition of β-amyloid (Aβ) peptides, which closely correlates with the balance of nerve growth factor (NGF)-related TrkA/p75NTR signaling. (?)-Epigallocatechin-3-gallate (EGCG) is used for prevention and treatment of many neurodegenerative diseases, including AD. However, whether the neuroprotective effects of EGCG treatment were via modulating the balance of TrkA/p75NTR signaling was still unknown. In this study, we found that EGCG treatment (2 mg · kg –1 · day –1) dramatically ameliorated the cognitive impairments, reduced the overexpressions of Aβ(1–40) and amyloid precursor protein (APP), and inhibited the neuronal apoptosis in the APP/PS1 mice. Interestingly, the EGCG treatment enhanced the relative expression level of NGF by increasing the NGF/proNGF ratio in the APP/PS1 mice. Moreover, after EGCG treatment, TrkA signaling was activated by increasing the phosphorylation of TrkA following the increased phosphorylation of c-Raf, ERK1/2, and cAMP response element-binding protein (CREB), simultaneously the p75NTR signaling was significantly inhibited by decreasing the p75ICD expression, JNK2 phosphorylation, and cleaved-caspase 3 expression, so that the Aβ deposits and neuronal apoptosis in the hippocampus were inhibited.  相似文献   

16.
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal lung disease characterized by the overgrowth, hardening, and scarring of lung tissue. The exact mechanisms of how IPF develops and progresses are unknown. IPF is characterized by extracellular matrix remodeling and accumulation of active TGFβ, which promotes collagen expression and the differentiation of smooth muscle α-actin (SMA)-positive myofibroblasts. Aortic carboxypeptidase-like protein (ACLP) is an extracellular matrix protein secreted by fibroblasts and myofibroblasts and is expressed in fibrotic human lung tissue and in mice with bleomycin-induced fibrosis. Importantly, ACLP knockout mice are significantly protected from bleomycin-induced fibrosis. The goal of this study was to identify the mechanisms of ACLP action on fibroblast differentiation. As primary lung fibroblasts differentiated into myofibroblasts, ACLP expression preceded SMA and collagen expression. Recombinant ACLP induced SMA and collagen expression in mouse and human lung fibroblasts. Knockdown of ACLP slowed the fibroblast-to-myofibroblast transition and partially reverted differentiated myofibroblasts by reducing SMA expression. We hypothesized that ACLP stimulates myofibroblast formation partly through activating TGFβ signaling. Treatment of fibroblasts with recombinant ACLP induced phosphorylation and nuclear translocation of Smad3. This phosphorylation and induction of SMA was dependent on TGFβ receptor binding and kinase activity. ACLP-induced collagen expression was independent of interaction with the TGFβ receptor. These findings indicate that ACLP stimulates the fibroblast-to-myofibroblast transition by promoting SMA expression via TGFβ signaling and promoting collagen expression through a TGFβ receptor-independent pathway.  相似文献   

17.
A prevalent model of Alzheimer’s disease (AD) pathogenesis postulates the generation of neurotoxic fragments derived from the amyloid precursor protein (APP) after its internalization to endocytic compartments. The molecular pathways that regulate APP internalization and intracellular trafficking in neurons are incompletely understood. Here, we report that 5xFAD mice, an animal model of AD, expressing signaling‐deficient variants of the p75 neurotrophin receptor (p75NTR) show greater neuroprotection from AD neuropathology than animals lacking this receptor. p75NTR knock‐in mice lacking the death domain or transmembrane Cys259 showed lower levels of Aβ species, amyloid plaque burden, gliosis, mitochondrial stress, and neurite dystrophy than global knock‐outs. Strikingly, long‐term synaptic plasticity and memory, which are completely disrupted in 5xFAD mice, were fully recovered in the knock‐in mice. Mechanistically, we found that p75NTR interacts with APP at the plasma membrane and regulates its internalization and intracellular trafficking in hippocampal neurons. Inactive p75NTR variants internalized considerably slower than wild‐type p75NTR and showed increased association with the recycling pathway, thereby reducing APP internalization and co‐localization with BACE1, the critical protease for generation of neurotoxic APP fragments, favoring non‐amyloidogenic APP cleavage. These results reveal a novel pathway that directly and specifically regulates APP internalization, amyloidogenic processing, and disease progression, and suggest that inhibitors targeting the p75NTR transmembrane domain may be an effective therapeutic strategy in AD.  相似文献   

18.
Throughout postnatal development, the gastric epithelium expresses Transforming Growth Factor beta1 (TGFβ1), but it is also exposed to luminal peptides that are part of milk. During suckling period, fasting promotes the withdrawal of milk-born molecules while it stimulates gastric epithelial cell proliferation. Such response can be reversed by exogenous TGFβ1, as it directly affects cell cycle through the regulation of p27 levels. We used fasting condition to induce the hyperproliferation of gastric epithelial cells in 14-day-old Wistar rats, and evaluated the effects of TGFβ1 gavage on p27 expression, phosphorylation at threonine 187 (phospho-p27Thr187) and degradation. p27 protein level was reduced during fasting when compared to suckling counterparts, while phospho-p27Thr187/p27 ratio was increased. TGFβ1 gavage reversed this response, which was confirmed through immunostaining. By using a neutralizing antibody against TGFβ1, we found that it restored the p27 and phosphorylation levels detected during fasting, indicating the specific role of the growth factor. We noted that neither fasting nor TGFβ1 changed p27 expression, but after cycloheximide administration, we observed that protein synthesis was influenced by TGFβ1. Next, we evaluated the capacity of the gastric mucosa to degrade p27 and we recorded a higher concentration of the remaining protein in pups treated with TGFβ1, suggesting augmented stability under this condition. Thus, we showed for the first time that luminal TGFβ1 increased p27 levels in the rat gastric mucosa by up- regulating translation and reducing protein degradation. We concluded that such mechanisms might be used by rapidly proliferating cells to respond to milk-born TGFβ1 and food restriction.  相似文献   

19.
20.
Nerve growth factor (NGF) is critical for the proliferation, differentiation, and survival of neurons through its binding to the p75NTR and TrkA receptors. Dysregulation of NGF has been implicated in several pathologies, including neurodegeneration (i.e., Parkinson's and Alzheimer's diseases) and both inflammatory and neuropathic pain states. Therefore, small molecule inhibitors that block NGF–receptor interactions have significant therapeutic potential. Small molecule antagonists ALE-0540, PD90780, Ro 08-2750, and PQC 083 have all been reported to inhibit NGF from binding the TrkA receptor. Interestingly, the characterization of the ability of these molecules to block NGF–p75NTR interactions has not been performed. In addition, the inhibitory action of these molecules has never been evaluated using surface plasmon resonance (SPR) spectroscopy, which has been proven to be highly useful in drug discovery applications. In the current study, we used SPR biosensors to characterize the binding of NGF to the p75NTR receptor in addition to characterizing the inhibitory potential of the known NGF antagonists. The results of this study provide the first evaluation of the ability of these compounds to block NGF binding to p75NTR receptor. In addition, only PD90780 was effective at inhibiting the interaction of NGF with p75NTR, suggesting receptor selectivity between known NGF inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号