共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Giovanni Maga Barbara van Loon Emmanuele Crespan Giuseppe Villani Ulrich H��bscher 《The Journal of biological chemistry》2009,284(21):14267-14275
Abasic (AP) sites are very frequent and dangerous DNA lesions. Their
ability to block the advancement of a replication fork has been always viewed
as a consequence of their inhibitory effect on the DNA synthetic activity of
replicative DNA polymerases (DNA pols). Here we show that AP sites can also
affect the strand displacement activity of the lagging strand DNA pol δ,
thus preventing proper Okazaki fragment maturation. This block can be overcome
through a polymerase switch, involving the combined physical and functional
interaction of DNA pol β and Flap endonuclease 1. Our data identify a
previously unnoticed deleterious effect of the AP site lesion on normal cell
metabolism and suggest the existence of a novel repair pathway that might be
important in preventing replication fork stalling.Loss of purine and pyrimidine bases is a significant source of DNA damage
in prokaryotic and eukaryotic organisms. Abasic (apurinic and apyrimidinic)
lesions occur spontaneously in DNA; in eukaryotes it has been estimated that
about 104 depurination and 102 depyrimidation events
occur per genome per day. An equally important source of abasic DNA lesions
results from the action of DNA glycosylases, such as uracil glycosylase, which
excises uracil arising primarily from spontaneous deamination of cytosines
(1). Although most AP sites are
removed by the base excision repair
(BER)5 pathway, a
small fraction of lesions persists, and DNA with AP lesions presents a strong
block to DNA synthesis by replicative DNA polymerases (DNA pols)
(2,
3). Several studies have been
performed to address the effects of AP sites on the template DNA strand on the
synthetic activity of a variety of DNA pols. The major replicative enzyme of
eukaryotic cells, DNA pol δ, was shown to be able to bypass an AP
lesion, but only in the presence of the auxiliary factor proliferating cell
nuclear antigen (PCNA) and at a very reduced catalytic efficiency if compared
with an undamaged DNA template
(4). On the other hand, the
family X DNA pols β and λ were shown to bypass an AP site but in a
very mutagenic way (5). Recent
genetic evidence in Saccharomyces cerevisiae cells showed that DNA
pol δ is the enzyme replicating the lagging strand
(6). According to the current
model for Okazaki fragment synthesis
(7–9),
the action of DNA pol δ is not only critical for the extension of the
newly synthesized Okazaki fragment but also for the displacement of an RNA/DNA
segment of about 30 nucleotides on the pre-existing downstream Okazaki
fragment to create an intermediate Flap structure that is the target for the
subsequent action of the Dna2 endonuclease and the Flap endonuclease 1
(Fen-1). This process has the advantage of removing the entire RNA/DNA hybrid
fragment synthesized by the DNA pol α/primase, potentially containing
nucleotide misincorporations caused by the lack of a proofreading exonuclease
activity of DNA pol α/primase. This results in a more accurate copy
synthesized by DNA pol δ. The intrinsic strand displacement activity of
DNA pol δ, in conjunction with Fen-1, PCNA, and replication protein A
(RP-A), has been also proposed to be essential for the S phase-specific long
patch BER pathway (10,
11). Although it is clear that
an AP site on the template strand is a strong block for DNA pol
δ-dependent synthesis on single-stranded DNA, the functional
consequences of such a lesion on the ability of DNA pol δ to carry on
strand displacement synthesis have never been investigated so far. Given the
high frequency of spontaneous hydrolysis and/or cytidine deamination events,
any detrimental effect of an AP site on the strand displacement activity of
DNA pol δ might have important consequences both for lagging strand DNA
synthesis and for long patch BER. In this work, we addressed this issue by
constructing a series of synthetic gapped DNA templates with a single AP site
at different positions with respect to the downstream primer to be displaced
by DNA pol δ (see Fig.
1A). We show that an AP site immediately upstream of a
single- to double-strand DNA junction constitutes a strong block to the strand
displacement activity of DNA pol δ, even in the presence of RP-A and
PCNA. Such a block could be resolved only through a “polymerase
switch” involving the concerted physical and functional interaction of
DNA pol β and Fen-1. The closely related DNA pol λ could only
partially substitute for DNA pol β. Based on our data, we propose that
stalling of a replication fork by an AP site not only is a consequence of its
ability to inhibit nucleotide incorporation by the replicative DNA pols but
can also stem from its effects on strand displacement during Okazaki fragment
maturation. In summary, our data suggest the existence of a novel repair
pathway that might be important in preventing replication fork stalling and
identify a previously unnoticed deleterious effect of the AP site lesion on
normal cell metabolism.Open in a separate windowFIGURE 1.An abasic site immediately upstream of a double-stranded DNA region
inhibits the strand displacement activity of DNA polymerase δ. The
reactions were performed as described under “Experimental
Procedures.” A, schematic representation of the various DNA
templates used. The size of the resulting gaps is indicated in nt. The
position of the AP site on the 100-mer template strand is indicated relative
to the 3′ end. Base pairs in the vicinity of the lesion are indicated by
dashes. The size of the gaps (35–38 nt) is consistent with the
size of ssDNA covered by a single RP-A molecule, which has to be released
during Okazaki fragment synthesis when the DNA pol is approaching the
5′-end of the downstream fragment. When the AP site is covered by the
downstream terminator oligonucleotide (Gap-3 and Gap-1 templates) the
nucleotide placed on the opposite strand is C to mimic the situation generated
by spontaneous loss of a guanine or excision of an oxidized guanine, whereas
when the AP site is covered by the primer (nicked AP template), the nucleotide
placed on the opposite strand is A to mimic the most frequent incorporation
event occurring opposite an AP site. B, human PCNA was titrated in
the presence of 15 nm (lanes 2–4 and
10–12) or 30 nm (lanes 6–8 and
14–16) recombinant human four subunit DNA pol δ, on a
linear control (lanes 1–8) or a 38-nt gap control (lanes
9–16) template. Lanes 1, 5, 9, and 13, control
reactions in the absence of PCNA. C, human PCNA was titrated in the
presence of 60 nm DNA pol δ, on a linear AP (lanes
2–4) or 38-nt gap AP (lanes 6–9) template. Lanes
1 and 5, control reactions in the absence of PCNA. 相似文献
3.
Xiangjing Gao Liya Kong Xianghong Lu Guanglin Zhang Linfeng Chi Ying Jiang Yihua Wu Chunlan Yan Penelope Duerksen-Hughes Xinqiang Zhu Jun Yang 《PloS one》2014,9(5)
Paraspeckle protein 1 (PSPC1) was first identified as a structural protein of the subnuclear structure termed paraspeckle. However, the exact physiological functions of PSPC1 are still largely unknown. Previously, using a proteomic approach, we have shown that exposure to cisplatin can induce PSPC1 expression in HeLa cells, indicating the possible involvement for PSPC1 in the DNA damage response (DDR). In the current study, the role of PSPC1 in DDR was examined. First, it was found that cisplatin treatment could indeed induce the expression of PSPC1 protein. Abolishing PSPC1 expression by siRNA significantly inhibited cell growth, caused spontaneous cell death, and increased DNA damage. However, PSPC1 did not co-localize with γH2AX, 53BP1, or Rad51, indicating no direct involvement in DNA repair pathways mediated by these molecules. Interestingly, knockdown of PSPC1 disrupted the normal cell cycle distribution, with more cells entering the G2/M phase. Furthermore, while cisplatin induced G1/S arrest in HeLa cells, knockdown of PSPC1 caused cells to escape the G1/S checkpoint and enter mitosis, and resulted in more cell death. Taken together, these observations indicate a new role for PSPC1 in maintaining genome integrity during the DDR, particularly in the G1/S checkpoint. 相似文献
4.
Ruth Wang'ondu Stuart Teal Richard Park Lee Heston Henri Delecluse George Miller 《PloS one》2015,10(5)
Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression. 相似文献
5.
Robert J. Kokoska Lela Stefanovic Hiep T. Tran Michael A. Resnick Dmitry A. Gordenin Thomas D. Petes 《Molecular and cellular biology》1998,18(5):2779-2788
We examined the effects of mutations in the Saccharomyces cerevisiae RAD27 (encoding a nuclease involved in the processing of Okazaki fragments) and POL3 (encoding DNA polymerase δ) genes on the stability of a minisatellite sequence (20-bp repeats) and microsatellites (1- to 8-bp repeat units). Both the rad27 and pol3-t mutations destabilized both classes of repeats, although the types of tract alterations observed in the two mutant strains were different. The tract alterations observed in rad27 strains were primarily additions, and those observed in pol3-t strains were primarily deletions. Measurements of the rates of repetitive tract alterations in strains with both rad27 and pol3-t indicated that the stimulation of microsatellite instability by rad27 was reduced by the effects of the pol3-t mutation. We also found that rad27 and pol3-01 (an allele carrying a mutation in the “proofreading” exonuclease domain of DNA polymerase δ) mutations were synthetically lethal.All eukaryotic genomes thus far examined contain many simple repetitive DNA sequences, tracts of DNA with one or a small number of bases repeated multiple times (48). These repetitive regions can be classified as microsatellites (small repeat units in tandem arrays 10 to 60 bp in length) and minisatellites (larger repeat units in tandem arrays several hundred base pairs to several kilobase pairs in length). In this paper, arrays with repeat units 14 bp or less will be considered microsatellites and arrays with longer repeat units will be considered minisatellites.Previous studies show that simple repetitive sequences are unstable relative to “normal” DNA sequences, frequently undergoing additions or deletions of repeat units, in Escherichia coli (24), Saccharomyces cerevisiae (12), and mammals (59). This mutability has two important consequences. First, it results in polymorphic loci that are useful in genetic mapping and forensic studies (15, 59). Second, although these repetitive tracts are usually located outside of coding sequences, alterations in the lengths of microsatellites or minisatellites located within coding sequences can produce frameshift mutations or novel protein variants (20, 22, 26).From studies of the effects of various mutations on microsatellite stability in yeast and E. coli (40) and the analysis of mutational changes caused by DNA polymerase in vitro (21), it is likely that most alterations reflect DNA polymerase slippage events (47). These events involve the transient dissociation of the primer and template strands during the replication of a microsatellite (Fig. (Fig.1).1). If the strands reassociate to yield an unpaired repeat on the primer strand, the net result is an addition of repeats (following a second round of DNA replication). Unpaired repeats on the template strand would result in a deletion by the same mechanism. Open in a separate windowFIG. 1“Classical” model for the generation of microsatellite alterations by DNA polymerase slippage. Two single strands of a replicating DNA molecule are shown, with each repeat unit indicated by a rectangle. Arrows indicate the 3′ ends of the strand, and the top and bottom strands represent the elongating primer strand and the template strand, respectively. Step 1, the primer and template strand dissociate; step 2, the primer and template strands reassociate in a misaligned configuration, resulting in an unpaired repeat on either the template strand (left side) or primer strand (right side); step 3, DNA synthesis is completed. If the unpaired repeats are not excised by the DNA mismatch repair system, after the next round of DNA synthesis one DNA molecule will be shortened by one repeat (left side) or lengthened by one repeat (right side).A number of mutations have been shown to elevate microsatellite instability. In E. coli (24, 46), yeast (44, 45), and mammalian cells (27), mutations in genes affecting DNA mismatch repair dramatically elevate the instability of a dinucleotide microsatellite. The most likely explanation of this result is that the DNA mismatches (unpaired repeats) resulting from DNA polymerase slippage events are efficiently removed from the newly synthesized strand by the DNA mismatch repair system. Thus, in the absence of mismatch repair, tract instability is elevated. From genetic studies, it has been found that mismatch repair in yeast efficiently corrects DNA mismatches involving 1- to 14-base loops (the size of the repeat units in microsatellites) but fails to correct mismatches involving loops larger than 16 bases (the size of the repeat units in minisatellites) (3, 41, 53). An inefficient mechanism, not involving the classical DNA mismatch repair system, is capable of correcting large DNA loops formed during meiotic recombination (19).In addition to mutations affecting DNA mismatch repair, some mutations affecting DNA replication in yeast destabilize microsatellites. Yeast strains bearing a null mutation in the RAD27 (RTH1) gene have high levels of instability of the dinucleotide poly(GT) and the trinucleotide CAG, specifically elevating single-repeat insertions (18, 39). RAD27 encodes the homolog of the mammalian FEN-1 protein, a 5′-to-3′ exonuclease (10, 11, 33). This nuclease activity is required for removing the terminal ribonucleotide residue from the 5′ end of the Okazaki fragment (9, 14, 35, 54, 55, 57); this step is necessary for the two adjoining fragments to be ligated together. FEN-1 appears to be active as either an exonuclease in the presence of a single-stranded gap upstream of the 5′ terminus or an endonuclease on a 5′ flap structure (13, 34). Since yeast strains that contain a null mutation in RAD27 grow poorly but are viable (38, 43), it is likely that less efficient nuclease activities that are also capable of 5′ Okazaki fragment processing are present in yeast. In addition to destabilizing dinucleotide microsatellites, rad27 strains have high levels of spontaneous mitotic recombination, elevated rates of forward mutation, and increased sensitivity to the alkylating agent methyl methanesulfonate (MMS) (18, 38, 43). In contrast to the mutations normally seen in mismatch repair mutants, i.e., point mutations or small frameshifts, the types of mutations observed in the absence of Rad27p are duplications of sequences flanked by short direct repeats (4 to 7 bp in length) (49). These duplications were not affected by the DNA mismatch repair system.The same class of sequences that are duplicated in the rad27 strains show an elevated rate (up to 1,000-fold) of deletion in strains containing a temperature-sensitive allele (pol3-t) of the yeast gene encoding DNA polymerase δ (52, 53). This mutant (initially named tex1) was isolated in a strain that exhibited an increased excision rate of a bacterial transposon with long terminal repeats inserted within a yeast gene (7). The pol3-t allele, which encodes a mutation (Gly641 to Ala641) (51) located near the putative nucleotide binding and active-site domains of the enzyme (58), is thought to diminish the rate of lagging-strand synthesis resulting in long stretches of single-stranded DNA on the lagging-strand template (8). This single-stranded DNA may have the potential to form intrastrand base-paired structures, creating interactions between short direct repeats. These interactions would result in an increased frequency of deletions caused by DNA polymerase slippage.Since rad27 and pol3-t mutations elevate the rates of duplications and deletions associated with short separated repeats in nonrepetitive DNA sequences, Kunkel et al. (22) suggested that these mutations could also destabilize minisatellites. In this paper, we examine the effects of rad27 and pol3-t mutations on the stability of simple repeats in which the repeat unit length varies between 1 and 20 bp. Our results show that both mutations destabilize both microsatellites and minisatellites, but that the mechanisms involved in the destabilization are different for the two mutations. 相似文献
6.
Karkhanis V Wang L Tae S Hu YJ Imbalzano AN Sif S 《The Journal of biological chemistry》2012,287(35):29801-29814
Covalent modification of histones by protein arginine methyltransferases (PRMTs) impacts genome organization and gene expression. In this report, we show that PRMT7 interacts with the BRG1-based hSWI/SNF chromatin remodeling complex and specifically methylates histone H2A Arg-3 (H2AR3) and histone H4 Arg-3 (H4R3). To elucidate the biological function of PRMT7, we knocked down its expression in NIH 3T3 cells and analyzed global gene expression. Our findings show that PRMT7 negatively regulates expression of genes involved in DNA repair, including ALKBH5, APEX2, POLD1, and POLD2. Chromatin immunoprecipitation (ChIP) revealed that PRMT7 and dimethylated H2AR3 and H4R3 are enriched at target DNA repair genes in parental cells, whereas PRMT7 knockdown caused a significant decrease in PRMT7 recruitment and H2AR3/H4R3 methylation. Decreased PRMT7 expression also resulted in derepression of target DNA repair genes and enhanced cell resistance to DNA-damaging agents. Furthermore, we show that BRG1 co-localizes with PRMT7 on target promoters and that expression of a catalytically inactive form of BRG1 results in derepression of PRMT7 target DNA repair genes. Remarkably, reducing expression of individual PRMT7 target DNA repair genes showed that only the catalytic subunit of DNA polymerase, POLD1, was able to resensitize PRMT7 knock-down cells to DNA-damaging agents. These results provide evidence for the important role played by PRMT7 in epigenetic regulation of DNA repair genes and cellular response to DNA damage. 相似文献
7.
《The Journal of biological chemistry》2015,290(27):16489
8.
9.
Xingang Dan Li Han Hasan Riaz Xuan Luo Xiaoran Liu Zhenglu Chong Liguo Yang 《Experimental Animals》2016,65(1):17-25
To further improve fertility of animals, a novel gene RFRP-3 (RF-amiderelated peptide-3, RFRP-3) was used to construct DNA vaccines with INHα (1–32) (inhibin, INH) fragment for the first time.The aim of this study was to evaluate the effects of novel DNA vaccines on fertility inmice. Synthesized SINH and SRFRP (INH and RFRP geneswere separately ligated to the C-terminus of the small envelope protein of the hepatitis Bvirus (HBV-S) gene) fragments were inserted into multiple cloning site of pIRES vector todevelop p-SINH/SRFRP. The synthesized tissue plasminogen activator (TPA) signal sequencewas then inserted into the p-SINH/SRFRP to construct p-TPA-SINH/TPA-SFRFP. Meanwhile,p-SINH was prepared and considered as positive control. Forty Kunming mice were equallydivided into four groups and respectively immunized by electroporation with p-SINH,p-SINH/SRFRP and p-TPA-SINH/TPA-SRFRP vaccine (three times at 2 weeks interval) and salineas control. Results showed that the average antibodies (P/N value) of anti-INH andanti-RFRP in mice inoculated with p-TPA-SINH/TPA-SFRFP were significantly higher(P<0.05) than those inoculated with p-SINH/SRFRP and the positiverates were 100% (anti-INH) and 90% (anti-RFRP) respectively, at 2 weeks after the thirdimmunization. Litter size of mice immunized with the three recombinant plasmids was higher(P<0.05) than that of the control, and litter size of mice immunizedwith p-TPA-SINH/TPA-SRFRP significantly increased (P<0.05) comparedwith p-SINH. These results suggested that the p-TPA-SINH/TPA-SRFRP harboringINH and RFRP genes was successfully constructed andhad good immunogenicity, and might effectively increase litter size. 相似文献
10.
Andrés E. Iba?ez Paola Smaldini Lorena M. Coria María V. Delpino Lucila G. G. Pacífico Sergio C. Oliveira Gabriela S. Risso Karina A. Pasquevich Carlos Alberto Fossati Guillermo H. Giambartolomei Guillermo H. Docena Juliana Cassataro 《PloS one》2013,8(7)
The discovery of novel mucosal adjuvants will help to develop new formulations to
control infectious and allergic diseases. In this work we demonstrate that
U-Omp16 from
Brucella
spp. delivered by the nasal
route (i.n.) induced an inflammatory immune response in bronchoalveolar lavage
(BAL) and lung tissues. Nasal co-administration of U-Omp16 with the model
antigen (Ag) ovalbumin (OVA) increased the amount of Ag in lung tissues and
induced OVA-specific systemic IgG and T helper (Th) 1 immune responses. The
usefulness of U-Omp16 was also assessed in a mouse model of food allergy.
U-Omp16 i.n. administration during sensitization ameliorated the
hypersensitivity responses of sensitized mice upon oral exposure to Cow’s Milk
Protein (CMP), decreased clinical signs, reduced anti-CMP IgE serum antibodies
and modulated the Th2 response in favor of Th1 immunity. Thus, U-Omp16 could be
used as a broad Th1 mucosal adjuvant for different Ag formulations. 相似文献
11.
Aki Tomikawa Masaki Seno Kunie Sato‐Kiyotaki Chizuru Ohtsuki Toshialu Hirai Toyofumi Yamaguchi 《Nucleosides, nucleotides & nucleic acids》2013,32(1-3):487-501
Abstract Starting from 2′,3′,5′-tri-O-acetyl-2-iodoadenosine, 9-(β-D-arabinofuranosyl)-2-(p-n-butylanilino)adenine and its 2′(S)-azido counterparts were synthesized in seven steps. These exhibited only moderate growth-inhibitory effects against mouse leukemic P388 cells (IC50 = 13–24 μM), although 5′-triphosphate derivatives showed strong and selective inhibitory action on calf thymus DNA polymerase α, but not on β- and ?-polymerases from eukaryotes. 相似文献
12.
Damian Mielecki Signe Saumaa Micha? Wrzesiński Agnieszka M. Maciejewska Karolina ?uchniewicz Anna Sikora Jan Piwowarski Jadwiga Nieminuszczy Maia Kivisaar El?bieta Grzesiuk 《PloS one》2013,8(10)
Alkylating agents introduce cytotoxic and/or mutagenic lesions to DNA bases leading to induction of adaptive (Ada) response, a mechanism protecting cells against deleterious effects of environmental chemicals. In Escherichia coli, the Ada response involves expression of four genes: ada, alkA, alkB, and aidB. In Pseudomonas putida, the organization of Ada regulon is different, raising questions regarding regulation of Ada gene expression. The aim of the presented studies was to analyze the role of AlkA glycosylase and AlkB dioxygenase in protecting P. putida cells against damage to DNA caused by alkylating agents. The results of bioinformatic analysis, of survival and mutagenesis of methyl methanesulfonate (MMS) or N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) treated P. putida mutants in ada, alkA and alkB genes as well as assay of promoter activity revealed diverse roles of Ada, AlkA and AlkB proteins in protecting cellular DNA against alkylating agents. We found AlkA protein crucial to abolish the cytotoxic but not the mutagenic effects of alkylans since: (i) the mutation in the alkA gene was the most deleterious for MMS/MNNG treated P. putida cells, (ii) the activity of the alkA promoter was Ada-dependent and the highest among the tested genes. P. putida AlkB (PpAlkB), characterized by optimal conditions for in vitro repair of specific substrates, complementation assay, and M13/MS2 survival test, allowed to establish conservation of enzymatic function of P. putida and E. coli AlkB protein. We found that the organization of P. putida Ada regulon differs from that of E. coli. AlkA protein induced within the Ada response is crucial for protecting P. putida against cytotoxicity, whereas Ada prevents the mutagenic action of alkylating agents. In contrast to E. coli AlkB (EcAlkB), PpAlkB remains beyond the Ada regulon and is expressed constitutively. It probably creates a backup system that protects P. putida strains defective in other DNA repair systems against alkylating agents of exo- and endogenous origin. 相似文献
13.
Bert W. Hoeksema 《ZooKeys》2012,(228):21-37
The coral species Leptoseris troglodyta
sp. n. (Scleractinia, Agariciidae) is described as new to science. It is the first known azooxanthellate shallow-water agariciid and is recorded from the ceilings of caves at 5-35 m depth in West Pacific coral reefs. The corals have monocentric cup-shaped calices. They may become colonial through extramural budding from the basal coenosteum, which may cause adjacent calices to fuse. The size, shape and habitat of Leptoseris troglodyta are unique compared to other Leptoseris species, many of which have been recorded from mesophotic depths. The absence of zooxanthellae indicates that it may survive well in darkness, but endolithic algae in some corals indicate that they may be able to get some light. The presence of menianes on the septal sides, which may help to absorb light at greater depths in zooxanthellate corals, have no obvious adaptive relevance in the new species and could have been inherited from ancestral species that perhaps were zooxanthellate. The new species may be azooxanthellate as derived through the loss of zooxanthellae, which would be a reversal in Leptoseris phylogeny. 相似文献
14.
G. Picariello D. Rignanese S. Chessa G. Ceriotti A. Trani A. Caroli A. Di Luccia 《The protein journal》2009,28(7-8):333-340
An interesting and quite complex protein pattern has been described at ovine milk proteins but the genetic control of the variation observed was assessed only in few cases. The aim of this work was to characterize the ovine α s2 -casein (CSN1S2) B variant, first observed in the Italian Gentile di Puglia, a fine-wooled ovine breed, and to investigate its occurrence in two further breeds, the Sarda and Camosciata, which are the most widespread dairy breeds in Italy. The B variant differs from the most common form A with two amino acid exchanges: Asp75 → Tyr75 and Ile105 → Val105. The first substitution, resulting in a loss of a negative charge, is responsible for the higher isoelectric point of the B protein variant, which allows its detection by isoelectric focusing electrophoresis (IEF). The occurrence of CSN1S2*B in Sarda and Comisana was demonstrated. Since the Asp75 → Tyr75 substitution modifies the protein electric charge, milk properties may result affected to some extent. 相似文献
15.
16.
The S-locus glycoprotein gene, SLG, which participates in the pollen-stigma interaction of self-incompatibility, and its unlinked homologue, SLR1, were analyzed in Raphanus sativus and three self-incompatible ornamental plants in the Brassicaceae. Among twenty-nine inbred lines of R. sativus, eighteen S haplotypes were identified on the basis of DNA polymorphisms detected by genomic Southern analysis using Brassica SLG probes. DNA fragments of SLG alleles specifically amplified from eight S haplotypes by PCR with class I SLG-specific primers showed different profiles following polyacrylamide gel electrophoresis, after digestion with a restriction endonuclease. The nucleotide sequences of the DNA fragments of these eight R. sativus SLG alleles were determined. Degrees of similarity of the nucleotide sequences to a Brassica SLG (S? 6 SLG) ranged from 85.6% to 91.9%. Amino acid sequences deduced from these had the twelve conserved cysteine residues and the three hypervariable regions characteristic of Brassica SLGs. Phylogenetic analysis of the SLG sequences from Raphanus and Brassica revealed that the Raphanus SLGs did not form an independent cluster, but were dispersed in the tree, clustering together with Brassica SLGs. These results suggest that diversification of the SLG alleles of Raphanus and Brassica occurred before differentiation of these genera. Although SLR1 sequences from Orychophragmus violaceus were shown to be relatively closely related to Brassica and Raphanus SLR1 sequences, DNA fragments that are highly homologous to the Brassica SLG were not detected in this species. Two other ornamental plants in the Brassicaceae, which are related more distantly to Brassica than Orychophragmus, also lacked sequences highly homologous to Brassica SLG genes. The evolution of self-incompatibility in the Brassicaceae is discussed. 相似文献
17.
Silvia Paciotti Emanuele Persichetti Katharina Klein Anna Tasegian Sandrine Duvet Dieter Hartmann Volkmar Gieselmann Tommaso Beccari 《The Journal of biological chemistry》2014,289(14):9611-9622
Free Man7–9GlcNAc2 is released during the biosynthesis pathway of N-linked glycans or from misfolded glycoproteins during the endoplasmic reticulum-associated degradation process and are reduced to Man5GlcNAc in the cytosol. In this form, free oligosaccharides can be transferred into the lysosomes to be degraded completely. α-Mannosidase (MAN2C1) is the enzyme responsible for the partial demannosylation occurring in the cytosol. It has been demonstrated that the inhibition of MAN2C1 expression induces accumulation of Man8–9GlcNAc oligosaccharides and apoptosis in vitro. We investigated the consequences caused by the lack of cytosolic α-mannosidase activity in vivo by the generation of Man2c1-deficient mice. Increased amounts of Man8–9GlcNAc oligosaccharides were recognized in all analyzed KO tissues. Histological analysis of the CNS revealed neuronal and glial degeneration with formation of multiple vacuoles in deep neocortical layers and major telencephalic white matter tracts. Enterocytes of the small intestine accumulate mannose-containing saccharides and glycogen particles in their apical cytoplasm as well as large clear vacuoles in retronuclear position. Liver tissue is characterized by groups of hepatocytes with increased content of mannosyl compounds and glycogen, some of them undergoing degeneration by hydropic swelling. In addition, lectin screening showed the presence of mannose-containing saccharides in the epithelium of proximal kidney tubules, whereas scattered glomeruli appeared collapsed or featured signs of fibrosis along Bowman''s capsule. Except for a moderate enrichment of mannosyl compounds and glycogen, heterozygous mice were normal, arguing against possible toxic effects of truncated Man2c1. These findings confirm the key role played by Man2c1 in the catabolism of free oligosaccharides. 相似文献
18.
19.
Owen W. Nadeau Laura A. Lane Dong Xu Jessica Sage Timothy S. Priddy Antonio Artigues Maria T. Villar Qing Yang Carol V. Robinson Yang Zhang Gerald M. Carlson 《The Journal of biological chemistry》2012,287(44):36651-36661
Phosphorylase kinase (PhK) is a hexadecameric (αβγδ)4 complex that regulates glycogenolysis in skeletal muscle. Activity of the catalytic γ subunit is regulated by allosteric activators targeting the regulatory α, β, and δ subunits. Three-dimensional EM reconstructions of PhK show it to be two large (αβγδ)2 lobes joined with D2 symmetry through interconnecting bridges. The subunit composition of these bridges was unknown, although indirect evidence suggested the β subunits may be involved in their formation. We have used biochemical, biophysical, and computational approaches to not only address the quaternary structure of the β subunits within the PhK complex, i.e. whether they compose the bridges, but also their secondary and tertiary structures. The secondary structure of β was determined to be predominantly helical by comparing the CD spectrum of an αγδ subcomplex with that of the native (αβγδ)4 complex. An atomic model displaying tertiary structure for the entire β subunit was constructed using chemical cross-linking, MS, threading, and ab initio approaches. Nearly all this model is covered by two templates corresponding to glycosyl hydrolase 15 family members and the A subunit of protein phosphatase 2A. Regarding the quaternary structure of the β subunits, they were directly determined to compose the four interconnecting bridges in the (αβγδ)4 kinase core, because a β4 subcomplex was observed through both chemical cross-linking and top-down MS of PhK. The predicted model of the β subunit was docked within the bridges of a cryoelectron microscopic density envelope of PhK utilizing known surface features of the subunit. 相似文献