首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We previously described a putative role for inosine monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, in lipid accumulation. Here we present data which demonstrate that IMPDH activity is required for differentiation of preadipocytes into mature, lipid-laden adipocytes and maintenance of adipose tissue mass. In 3T3-L1 preadipocytes inhibition of IMPDH with mycophenolic acid (MPA) reduced intracellular GTP levels by 60% (p < 0.05) and blocked adipogenesis (p < 0.05). Co-treatment with guanosine, a substrate in the salvage pathway of nucleotide biosynthesis, restored GTP levels and adipogenesis demonstrating the specificity of these effects. Treatment of diet-induced obese mice with mycophenolate mofetil (MMF), the prodrug of MPA, for 28 days did not affect food intake or lean body mass but reduced body fat content (by 36%, p = 0.002) and adipocyte size (p = 0.03) and number. These data suggest that inhibition of IMPDH may represent a novel strategy to reduce adipose tissue mass.  相似文献   

2.
Inosine 5′-monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in the de novo GTP biosynthetic pathway and plays essential roles in cell proliferation. As a clinical target, IMPDH has been studied for decades, but it has only been within the last years that we are starting to understand the complexity of the mechanisms of its physiological regulation. Here, we report structural and functional insights into how adenine and guanine nucleotides control a conformational switch that modulates the assembly of the two human IMPDH enzymes into cytoophidia and allosterically regulates their catalytic activity. In vitro reconstituted micron-length cytoophidia-like structures show catalytic activity comparable to unassembled IMPDH but, in turn, are more resistant to GTP/GDP allosteric inhibition. Therefore, IMPDH cytoophidia formation facilitates the accumulation of high levels of guanine nucleotides when the cell requires it. Finally, we demonstrate that most of the IMPDH retinopathy-associated mutations abrogate GTP/GDP-induced allosteric inhibition and alter cytoophidia dynamics.  相似文献   

3.
Fungi cause serious life-threatening infections in immunocompromised individuals and current treatments are now complicated by toxicity issues and the emergence of drug resistant strains. Consequently, there is a need for development of new antifungal drugs. Inosine monophosphate dehydrogenase (IMPDH), a key component of the de novo purine biosynthetic pathway, is essential for growth and virulence of fungi and is a potential drug target. In this study, a high-throughput screen of 114,000 drug-like compounds against Cryptococcus neoformans IMPDH was performed. We identified three 3-((5-substituted)-1,3,4-oxadiazol-2-yl)thio benzo[b]thiophene 1,1-dioxides that inhibited Cryptococcus IMPDH and also possessed whole cell antifungal activity. Analogs were synthesized to explore the SAR of these hits. Modification of the fifth substituent on the 1,3,4-oxadiazole ring yielded compounds with nanomolar in vitro activity, but with associated cytotoxicity. In contrast, two analogs generated by substituting the 1,3,4-oxadiazole ring with imidazole and 1,2,4-triazole gave reduced IMPDH inhibition in vitro, but were not cytotoxic. During enzyme kinetic studies in the presence of DTT, nucleophilic attack of a free thiol occurred with the benzo[b]thiophene 1,1-dioxide. Two representative compounds with substitution at the 5 position of the 1,3,4-oxadiazole ring, showed mixed inhibition in the absence of DTT. Incubation of these compounds with Cryptococcus IMPDH followed by mass spectrometry analysis showed non-specific and covalent binding with IMPDH at multiple cysteine residues. These results support recent reports that the benzo[b]thiophene 1,1-dioxides moiety as PAINS (pan-assay interference compounds) contributor.  相似文献   

4.
The essential coenzyme nicotinamide adenine dinucleotide (NAD+) plays important roles in metabolic reactions and cell regulation in all organisms. Bacteria, fungi, plants, and animals use different pathways to synthesize NAD+. Our molecular and genetic data demonstrate that in the unicellular green alga Chlamydomonas NAD+ is synthesized from aspartate (de novo synthesis), as in plants, or nicotinamide, as in mammals (salvage synthesis). The de novo pathway requires five different enzymes: L-aspartate oxidase (ASO), quinolinate synthetase (QS), quinolate phosphoribosyltransferase (QPT), nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT), and NAD+ synthetase (NS). Sequence similarity searches, gene isolation and sequencing of mutant loci indicate that mutations in each enzyme result in a nicotinamide-requiring mutant phenotype in the previously isolated nic mutants. We rescued the mutant phenotype by the introduction of BAC DNA (nic2-1 and nic13-1) or plasmids with cloned genes (nic1-1 and nic15-1) into the mutants. NMNAT, which is also in the de novo pathway, and nicotinamide phosphoribosyltransferase (NAMPT) constitute the nicotinamide-dependent salvage pathway. A mutation in NAMPT (npt1-1) has no obvious growth defect and is not nicotinamide-dependent. However, double mutant strains with the npt1-1 mutation and any of the nic mutations are inviable. When the de novo pathway is inactive, the salvage pathway is essential to Chlamydomonas for the synthesis of NAD+. A homolog of the human SIRT6-like gene, SRT2, is upregulated in the NS mutant, which shows a longer vegetative life span than wild-type cells. Our results suggest that Chlamydomonas is an excellent model system to study NAD+ metabolism and cell longevity.  相似文献   

5.
Enzymes in the de novo purine biosynthesis pathway are recruited to form a dynamic metabolic complex referred to as the purinosome. Previous studies have demonstrated that purinosome assembly responds to purine levels in culture medium. Purine-depleted medium or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) treatment stimulates the purinosome assembly in HeLa cells. Here, several metabolomic technologies were applied to quantify the static cellular levels of purine nucleotides and measure the de novo biosynthesis rate of IMP, AMP, and GMP. Direct comparison of purinosome-rich cells (cultured in purine-depleted medium) and normal cells showed a 3-fold increase in IMP concentration in purinosome-rich cells and similar levels of AMP, GMP, and ratios of AMP/GMP and ATP/ADP for both. In addition, a higher level of IMP was also observed in HeLa cells treated with DMAT. Furthermore, increases in the de novo IMP/AMP/GMP biosynthetic flux rate under purine-depleted condition were observed. The synthetic enzymes, adenylosuccinate synthase (ADSS) and inosine monophosphate dehydrogenase (IMPDH), downstream of IMP were also shown to be part of the purinosome. Collectively, these results provide further evidence that purinosome assembly is directly related to activated de novo purine biosynthesis, consistent with the functionality of the purinosome.  相似文献   

6.
Pyrimidine biosynthesis in rat brain   总被引:2,自引:1,他引:1  
—Studies on the incorporation of [14C]NaHCO3 into both orotic acid and RNA in tissue slices reveal the occurrence of the complete orotate pathway for the de novo biosynthesis of pyrimidines in the rat brain. A comparison of the rates of incorporation of bicarbonate into orotic acid and RNA in tissue slices of brain and liver indicate the brain to be one-fourth to one-half as active as the liver in the de novo biosynthesis of pyrimidines. The results of this study favor the proposal that the adult rat brain can meet its needs for pyrimidines through de novo synthesis and is not dependent upon salvage activity and an extraneural supply of pyrimidines.  相似文献   

7.
8.
Summary Changes in pyrimidine metabolism were investigated in germinating white spruce somatic embryos by following the metabolic fate of [2-14C]uracil and [2-14C]uridine, intermediate metabolites of the salvage pathway and [6-14C]orotic acid, a central metabolite of the de novo. nucleotide biosynthesis. An active uridine salvage was found to be responsible for the enlargement of the nucleotide pool at the inception of germination. Uridine kinase, which catalyzes the conversion of uridine to uridine monophosphate (UMP), was found to be very active in partially dried embryos and during the early phases of imbibition. The contribution of uracil to the nucleotide pool was negligible since a large amount of radioactivity from [2-14C]uracil was recovered in degradation products. As germination progressed, the decline of the uridine salvage pathway was concomitant with an increase of the de novo biosynthetic pathway. The central enzyme of the de novo pathway, orotate phosphoribosyltransferase, showed increased activity and contributed to the larger amount of orotate being anabolized. These results suggest that although both the salvage and de novo pathways operate in germinating white spruce somatic embryos, their contribution to the enlargement of the nucleotide pool appears tightly regulated as germination progresses.  相似文献   

9.
Purine nucleoside phosphorylases (PNPs) and uridine phosphorylases (UPs) are closely related enzymes involved in purine and pyrimidine salvage, respectively, which catalyze the removal of the ribosyl moiety from nucleosides so that the nucleotide base may be recycled. Parasitic protozoa generally are incapable of de novo purine biosynthesis; hence, the purine salvage pathway is of potential therapeutic interest. Information about pyrimidine biosynthesis in these organisms is much more limited. Though all seem to carry at least a subset of enzymes from each pathway, the dependency on de novo pyrimidine synthesis versus salvage varies from organism to organism and even from one growth stage to another. We have structurally and biochemically characterized a putative nucleoside phosphorylase (NP) from the pathogenic protozoan Trypanosoma brucei and find that it is a homodimeric UP. This is the first characterization of a UP from a trypanosomal source despite this activity being observed decades ago. Although this gene was broadly annotated as a putative NP, it was widely inferred to be a purine nucleoside phosphorylase. Our characterization of this trypanosomal enzyme shows that it is possible to distinguish between PNP and UP activity at the sequence level based on the absence or presence of a characteristic UP-specificity insert. We suggest that this recognizable feature may aid in proper annotation of the substrate specificity of enzymes in the NP family.  相似文献   

10.
The ricinine content of etiolated seedlings of Ricinus communis increased nearly 12-fold over a 4-day period. In plants quinolinic acid is an intermediate in the de novo pathway for the synthesis of pyridine nucleotides. The only known enzyme in the de novo pathway for pyridine nucleotide biosynthesis, quinolinic acid phosphoribosyltransferase, increased 6-fold in activity over a 4-day period which preceded the onset of ricinine biosynthesis by 1 day. The activity of the remainder of the pyridine nucleotide cycle enzymes in the seedlings, as monitored by the specific activity of nicotinic acid phosphoribosyltransferase and nicotinamide deamidase, was similar to that found in the mature green plant. In the roots of Nicotiana rustica, where the pyridine alkaloid nicotine is synthesized, the level of quinolinic acid phosphoribosyltransferase was 38-fold higher than the level of nicotinic acid phosphoribosyltransferase, whereas in most other plants examined, the specific activity of quinolinic acid phosphoribosyltransferase was similar to the level of activity of enzymes in the pyridine nucleotide cycle itself. A positive correlation therefore exists between the specific activity of a de novo pathway enzyme catalyzing pyridine nucleotide biosynthesis in Ricinus communis and Nicotiana rustica and the biosynthesis of ricinine and nicotine, respectively.  相似文献   

11.

Background

Chemoresistance is the principal reason for poor survival and disease recurrence in osteosarcoma patients. Inosine 5′-monophosphate dehydrogenase type II (IMPDH2) encodes the rate-limiting enzyme in the de novo guanine nucleotide biosynthesis and has been linked to cell growth, differentiation, and malignant transformation. In a previous study we identified IMPDH2 as an independent prognostic factor and observed frequent IMPDH2 overexpression in osteosarcoma patients with poor response to chemotherapy. The aim of this study was to provide evidence for direct involvement of IMPDH2 in the development of chemoresistance.

Methodology/Principal Findings

Stable cell lines overexpressing IMPDH2 and IMPDH2 knock-down cells were generated using the osteosarcoma cell line Saos-2 as parental cell line. Chemosensitivity, proliferation, and the expression of apoptosis-related proteins were analyzed by flow cytometry, WST-1-assay, and western blot analysis. Overexpression of IMPDH2 in Saos-2 cells induced strong chemoresistance against cisplatin and methotrexate. The observed chemoresistance was mediated at least in part by increased expression of the anti-apoptotic proteins Bcl-2, Mcl-1, and XIAP, reduced activation of caspase-9, and, consequently, reduced cleavage of the caspase substrate PARP. Pharmacological inhibition of IMPDH induced a moderate reduction of cell viability and a strong decrease of cell proliferation, but no increase in chemosensitivity. However, chemoresistant IMPDH2-overexpressing cells could be resensitized by RNA interference-mediated downregulation of IMPDH2.

Conclusions

IMPDH2 is directly involved in the development of chemoresistance in osteosarcoma cells, suggesting that targeting of IMPDH2 by RNAi or more effective pharmacological inhibitors in combination with chemotherapy might be a promising means of overcoming chemoresistance in osteosarcomas with high IMPDH2 expression.  相似文献   

12.
Inosine monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme in the de novo synthesis of guanine nucleotides, is a major therapeutic target. A prototypic uncompetitive inhibitor of IMPDH, mycophenolic acid (MPA), is the active form of mycophenolate mofeteil (CellCept), a widely used immunosuppressive drug. We have found that MPA interacts with intracellular IMPDH in vivo to alter its mobility on SDS-polyacrylamide gels. MPA also induces a striking conformational change in IMPDH protein in intact cells, resulting in the formation of annular aggregates of protein with concomitant inhibition of IMPDH activity. These aggregates are not associated with any known intracellular organelles and are reversible by incubating cells with guanosine, which repletes intracellular GTP, or with GTPgammaS. GTP also restores IMPDH activity. Treatment of highly purified IMPDH with MPA also results in the formation of large aggregates of protein, a process that is both prevented and reversed by the addition of GTP. Finally, GTP binds to IMPDH at physiologic concentrations, induces the formation of linear arrays of tetrameric protein, and prevents the aggregation of protein induced by MPA. We conclude that intracellular GTP acts as an antagonist to MPA by directly binding to IMPDH and reversing the conformational changes in the protein.  相似文献   

13.
Pyrimidine metabolism was investigated at various stages ofsomatic embryo development of white spruce (Picea glauca). The contribution of thede novo and the salvage pathways of pyrimidine biosynthesis to nucleotide and nucleic acid formation and the catabolism of pyrimidine was estimated by the exogenously supplied [6-14C]orotic acid, an intermediate of thede novo pathway, and with [2-14C]uridine and [2-14C]uracil, substrates of the salvage pathways. Thede novo pathway was very active throughout embryo development. More than 80 percnt; of [6-14C]orotic acid taken up by the tissue was utilized for nucleotide and nucleic acid synthesis in all stages of this process. The salvage pathways of uridine and uracil were also operative. Relatively high nucleic acid biosynthesis from uridine was observed, whereas the contribution of uracil salvage to the pyrimidine nucleotide and nucleic acid synthesis was extremely limited. A large proportion of uracil was degraded as 14CO2, probably via β-ureidopropionate. Among the enzymes of pyrimidine metabolism, orotate phosphoribosyltransferase was high during the initial phases of embryo development, after which it gradually declined. Uridine kinase, responsible for the salvage of uridine, showed an opposite pattern, since its activity increased as embryos developed. Low activities of uracil phosphoribosyltransferase and non-specific nucleoside phosphotransferase were also detected throughout the developmental period. These results suggest that the flux of thede novo and salvage pathways of pyrimidine nucleotide biosynthesisin vivo is roughly controlled by the amount of these enzymes. However, changing patterns of enzyme activity during embryo development that were measuredin vitro did not exactly correlate with the flux estimated by the radioactive precursors. Therefore, other fine control mechanisms, such as the fluctuation of levels of substrates and/or effectors may also participate to the real control of pyrimidine metabolism during white spruce somatic embryo development.  相似文献   

14.
In recent years, the number of human infection cases produced by the food related species Saccharomyces cerevisiae has increased. Whereas many strains of this species are considered safe, other ‘opportunistic’ strains show a high degree of potential virulence attributes and can cause infections in immunocompromised patients. Here we studied the genetic characteristics of selected opportunistic strains isolated from dietary supplements and also from patients by array comparative genomic hybridization. Our results show increased copy numbers of IMD genes in opportunistic strains, which are implicated in the de novo biosynthesis of the purine nucleotides pathway. The importance of this pathway for virulence of S. cerevisiae was confirmed by infections in immunodeficient murine models using a GUA1 mutant, a key gene of this pathway. We show that exogenous guanine, an end product of this pathway in its triphosphorylated form, increases the survival of yeast strains in ex vivo blood infections. Finally, we show the importance of the DNA damage response that activates dNTP biosynthesis in yeast cells during ex vivo blood infections. We conclude that opportunistic yeasts may use an enhanced de novo biosynthesis of the purine nucleotides pathway to increase survival and favor infections in the host.  相似文献   

15.
Ceramide synthases (CerS1–CerS6), which catalyze the N-acylation of the (dihydro)sphingosine backbone to produce (dihydro)ceramide in both the de novo and the salvage or recycling pathway of ceramide generation, have been implicated in the control of programmed cell death. However, the regulation of the de novo pathway compared with the salvage pathway is not fully understood. In the current study, we have found that late accumulation of multiple ceramide and dihydroceramide species in MCF-7 cells treated with TNFα occurred by up-regulation of both pathways of ceramide synthesis. Nevertheless, fumonisin B1 but not myriocin was able to protect from TNFα-induced cell death, suggesting that ceramide synthase activity is crucial for the progression of cell death and that the pool of ceramide involved derives from the salvage pathway rather than de novo biosynthesis. Furthermore, compared with control cells, TNFα-treated cells exhibited reduced focal adhesion kinase and subsequent plasma membrane permeabilization, which was blocked exclusively by fumonisin B1. In addition, exogenously added C6-ceramide mimicked the effects of TNFα that lead to cell death, which were inhibited by fumonisin B1. Knockdown of individual ceramide synthases identified CerS6 and its product C16-ceramide as the ceramide synthase isoform essential for the regulation of cell death. In summary, our data suggest a novel role for CerS6/C16-ceramide as an upstream effector of the loss of focal adhesion protein and plasma membrane permeabilization, via the activation of caspase-7, and identify the salvage pathway as the critical mechanism of ceramide generation that controls cell death.  相似文献   

16.
Previous work has provided evidence that plants may require boron to maintain adequate levels of pyrimidine nucleotides, suggesting that the state of boron deficiency may actually be one of pyrimidine starvation. Since the availability of pyrimidine nucleotides is influenced by their rates of synthesis, salvage, and catabolism, we compared these activities in the terminal 3 centimeters of roots excised from boron-deficient and -sufficient squash plants (Cucurbita pepo L.). Transferring 5-day-old squash plants to a boron-deficient nutrient solution resulted in cessation of root elongation within 18 hours. However, withholding boron for up to 30 hours did not result in either impaired de novo pyrimidine biosynthesis or a change in the sensitivity of the de novo pathway to regulation by end product inhibition. Boron deprivation had no significant effect on pyrimidine salvage or catabolism. These results provide evidence that boron-deficient plants are not starved for uridine nucleotides collectively. Whether a particular pyrimidine nucleotide or derivative is limiting during boron deprivation remains to be examined.  相似文献   

17.
18.
19.
The intracellular parasite Trypanosoma cruzi is the aetiological agent of Chagas disease, a public health concern with an increasing incidence rate. This increase is due, among other reasons, to the parasite''s drug resistance mechanisms, which require nicotinamide adenine dinucleotide (NAD+). Furthermore, this molecule is involved in metabolic and intracellular signalling processes necessary for the survival of T. cruzi throughout its life cycle. NAD+ biosynthesis is performed by de novo and salvage pathways, which converge on the step that is catalysed by the enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT) (enzyme commission number: 2.7.7.1). The identification of the NMNAT of T. cruzi is important for the development of future therapeutic strategies to treat Chagas disease. In this study, a hypothetical open reading frame (ORF) for NMNAT was identified in the genome of T. cruzi. The corresponding putative protein was analysed by simulating structural models. The ORF was amplified from genomic DNA by polymerase chain reaction and was further used for the construction of a corresponding recombinant expression vector. The expressed recombinant protein was partially purified and its activity was evaluated using enzymatic assays. These results comprise the first identification of an NMNAT in T. cruzi using bioinformatics and experimental tools and hence represent the first step to understanding NAD+ metabolism in these parasites.  相似文献   

20.
Production of cellulose, a stress response‐mediated process in enterobacteria, is modulated in Escherichia coli by the activity of the two pyrimidine nucleotide biosynthetic pathways, namely, the de novo biosynthetic pathway and the salvage pathway, which relies on the environmental availability of pyrimidine nitrogenous bases. We had previously reported that prevalence of the salvage over the de novo pathway triggers cellulose production via synthesis of the second messenger c‐di‐GMP by the DgcQ (YedQ) diguanylate cyclase. In this work, we show that DgcQ enzymatic activity is enhanced by UTP, whilst being inhibited by N‐carbamoyl‐aspartate, an intermediate of the de novo pathway. Thus, direct allosteric control by these ligands allows full DgcQ activity exclusively in cells actively synthesizing pyrimidine nucleotides via the salvage pathway. Inhibition of DgcQ activity by N‐carbamoyl‐aspartate appears to be favoured by protein‐protein interaction between DgcQ and PyrB, a subunit of aspartate transcarbamylase, which synthesizes N‐carbamoyl‐aspartate. Our results suggest that availability of pyrimidine bases might be sensed, somehow paradoxically, as an environmental stress by E. coli. We hypothesize that this link might have evolved since stress events, leading to extensive DNA/RNA degradation or lysis of neighbouring cells, can result in increased pyrimidine concentrations and activation of the salvage pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号