首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The binding of the fluorescence probe 1-anilinonaphthalene-8-sulfonate (Ans) to alpha-chymotrypsin (alpha-CHT) at pH 3.6 is accompanied by a dramatic enhancement of Ans fluorescence and a shift of the emission maximum to shorter wavelengths. Our study reveals that one Ans molecule binds to alpha-CHT at a site different from either the active site of alpha-CHT or the 2-p-toluidinylnapthalene-6-sulfonate binding site. the binding constant of Ans is about the same (10(4) M-1) at pH 3.6 and 6.4. Nanosecond fluorescence depolarization data indicate that Ans is rigidly bound to alpha-CHT. The fluorescence enhancement due to binding of Ans to alpha-CHT at low pH could be due to binding either to a hydrophobic site or to a site where local dipoles do not relax during the excited-state lifetime of Ans. As the pH is increased, fluorescence intensity of the Ans-alpha-CHT complex decreases appreciably; and the emission maximum shifts to longer wavelengths. The fluorescence decay curves exhibit a corresponding sensitivity to pH. The pH effect on the fluorescence of Ans-alpha-CHT can be interpreted in terms of a pH-dependent equilibrium between alpha-CHT conformers differing in the degree of mobility of polar residues and water molecules at the Ans binding site or structural changes in the Ans binding site.  相似文献   

3.
The existence of a hydrophobic cluster on the COOH-telopeptides of type I collagen has been observed by studies on the binding of 1-anilinonaphthalene-8-sulfonic acid (ANS) to this protein. Collagen contains one binding site for the fluorescent probe. This hydrophobic cluster remains after pepsin digestion thus indicating that it is formed by the undegraded portions of the COOH-extrahelical ends of the protein. Energy transfer from tyrosine to ANS has been observed. The triple helix of collagen does not bind ANS.  相似文献   

4.
5.
Calf intestinal alkaline phosphatase is inhibited by 8-anilinonaphthalene-1-sulphonate (ANS). The inhibition is uncompetitive but non-linear. Hill plots of the inhibition data have slopes of 1.4-1.8 suggestive of positive cooperativity. Fluorescence titration revealed that 2 molecules of ANS bind per molecule of enzyme with no evidence of cooperativity. The Kd for ANS obtained by fluorescence was 1.8 X 10(-6) mol/l but the approximate Ki for inhibition was 1 X 10(-3) mol/l. Thus, the fluorescence and kinetic experiments appear to monitor different events.  相似文献   

6.
7.
1. The interactions of the lysine-rich histone F1 with DNA have been studied at various histone to DNA ratios, in water and in the presence of uni- and bi-valent cations. In water only, histone F1, even in fourfold excess, is unable to precipitate all the DNA. In 0.14m-sodium chloride, 0.8mg. of histone F1 is required to precipitate 1mg. of DNA, whereas in 0.07m-magnesium chloride only 0.4mg. is required. 2. Bivalent cations are also shown to be more effective in dissociating the DNA-histone complex. Histone F1 can be selectively removed from deoxyribonucleoprotein with 0.1m-magnesium chloride. 3. The precipitation of DNA by histone F1 is a reversible process and the complex can be taken in and out of solution by changing the ionic environment. 4. The bearing of these results on the observed ability of various DNA-histone complexes to act as templates for RNA synthesis is discussed.  相似文献   

8.
The effects of adding D2SO4, and p-toluenesulfonic acid-d to D-cellobiose dissolved in D2O were investigated at 23 °C by plotting 13C NMR chemical shift changes (Δδ) against the acid to D-cellobiose molar ratio. 13C Chemical shifts of all 18 carbon signals from α and β anomers of D-cellobiose showed gradual decreases due to increasing acidity in aqueous D2SO4 medium. The C-1 of the α anomer showed a slightly higher response to increasing D+ concentration in the surrounding. In the aqueous p-toluenesulfonic acid-d medium, C-6′ and C-4′ carbons of both α, and β anomeric forms of D-cellobiose are significantly affected by increasing the sulfonic acid concentrations, and this may be due to a 1:1 interaction of p-toluenesulfonic acid-d with the C-6′, C-4′ region of the cellobiose molecule.  相似文献   

9.
10.
13C-nmr spectroscopy was used to determine the location of the structured segment of the chain of histone H1 in water and NaCl solutions. The segment found (41–89) is contained in the area proposed by others on the basis of 1H-nmr studies. The number of basic groups left in the mobile ends of the protein matches the number of bases of internucleosomal DNA.  相似文献   

11.
The effects of adding D(2)SO(4), and p-toluenesulfonic acid-d to D-cellobiose dissolved in D(2)O were investigated at 23°C by plotting (13)C NMR chemical shift changes (Δδ) against the acid to D-cellobiose molar ratio. (13)C Chemical shifts of all 18 carbon signals from α and β anomers of D-cellobiose showed gradual decreases due to increasing acidity in aqueous D(2)SO(4) medium. The C-1 of the α anomer showed a slightly higher response to increasing D(+) concentration in the surrounding. In the aqueous p-toluenesulfonic acid-d medium, C-6' and C-4' carbons of both α, and β anomeric forms of D-cellobiose are significantly affected by increasing the sulfonic acid concentrations, and this may be due to a 1:1 interaction of p-toluenesulfonic acid-d with the C-6', C-4' region of the cellobiose molecule.  相似文献   

12.
An investigation on the dependence of electrophoretic mobilities of unilamellar vesicles of phosphatidylcholine-cholesterol-phosphatidylinositol (PC-Chol-PI) on the concentration of several cations with variations in the relation charge/radius in the range Na+, K+, Cs+, Mg2+, Ca2+, Ba2+, Al3+, and La3+ has been realized. Plots of zeta potential against ion concentration exhibit a maximum for all the cations under study, the position of the maximum is greatly affected by the charge of the ion. From the feature of these plots two phenomenon were observed: an initial binding of cations into the slipping plane for ion concentration below the maximum and a phenomenon of vesicle association for concentration above the maximum. To confirm these observations measurements on dynamic light scattering were performed to obtain the corresponding size distribution of the liposomes at different ion concentrations. Finally the ability of the Stern isotherm to describe the adsorption of the cations to vesicles was tested by two methods. The two main parameters of the theory: the total number of adsorption sites per unit area, N1, and the equilibrium constant, K; (and consequently the free energy of adsorption, deltaG0ads) were calculated for the different ions, showing good agreement. The equilibrium constants of adsorption have been found to obey a linear relationship with ion radius the slope of which decreases with the ion charge.  相似文献   

13.
Human monoclonal, aglycosyl-IgG produced in vitro in the presence of tunicamycin, was compared with its native and acid pH-altered counterparts for their respective abilities to bind the fluorescent hydrophobicity probe, 8-anilinonaphthalene sulfonate. A novel technique based on continuous-flow dynamic dialysis (Sparrow et al., 1982, Anal. Biochem. 123:255-264) allowed binding studies under non-equilibrium conditions. While the native IgG conformation exhibits two, weak ANS binding sites (ca. 10(3) l/mol), aglycosyl-IgG has one weak and one moderate affinity (least squares average Ka = 2 X 10(4) l/mol) site, and the acid conformer binds yet another two ANS molecules with moderate affinity (4 X 10(4) l/mol). Increases in affinity and in the number of sites correlate roughly with increased relative percent fluorescence by conventional fluorimetry. The fluorescence lifetime of ANS bound to altered IgGs is about 10% longer (T2 = 15 nsec by time-resolved fluorimetry) than that for native IgG. All populations also exhibit a rapid decay component (T1 = 3 nsec) analogous to that seen for ANS in 50% aqueous dioxane. Results are discussed in relation to structural role(s) for IgG-linked heterosaccharides.  相似文献   

14.
M Dizdaroglu 《Biochemistry》1985,24(16):4476-4481
Isolation and characterization of a novel radiation-induced product, i.e., the 8-hydroxyguanine residue, produced in deoxyribonucleic acid (DNA), 2'-deoxyguanosine, and 2'-deoxyguanosine 5'-monophosphate by gamma-irradiation in aqueous solution, are described. For this purpose, gamma-irradiated DNA was first hydrolyzed with a mixture of four enzymes, i.e., DNase I, spleen and snake venom exonucleases, and alkaline phosphatase. Analysis of the resulting mixture by capillary gas chromatography-mass spectrometry after trimethylsilylation revealed the presence of a product, which was identified as 8-hydroxy-2'-deoxyguanosine on the basis of the typical fragment ions of its trimethylsilyl (Me3Si) derivative. This product was then isolated by using reversed-phase high-performance liquid chromatography. The UV and proton nuclear magnetic resonance spectra taken from the isolated product confirmed the structure suggested by the mass spectrum of its Me3Si derivative. In addition, the accurate molecular mass of the Me3Si derivative of the isolated product was determined by MS. The obtained value agreed with the theoretical molecular mass within 1 millimass unit. The yield of 8-hydroxyguanine was also measured. Its mechanism of formation is believed to involve OH radical addition to the C-8 position of guanine followed by oxidation of the radical adduct.  相似文献   

15.
The interactions of ATP and ADP with rubisco activase purified from spinach were investigated by measuring enhanced fluorescence due to ANS-binding to the protein. Evidence of conformational changes was observed from the differences in the interaction of ANS with rubisco activase in the presence of excess ATP and ADP. Fluorescent changes associated with the titration of a rubisco activase-ANS mixture with ATP and ADP indicated that the binding of ADP to rubisco activase was much tighter than that of ATP. The concentration of Mg2+ and pH had significant effects on the affinities of rubisco activase for ATP and ADP, with higher pH and Mg2+ concentration facilitating the binding of ATP to rubisco activase in the presence of ADP. The physiological implications of the binding characteristics of ATP and ADP with rubisco activase on the light-dark regulation of rubisco are discussed.  相似文献   

16.
17.
The binding of the apolar fluorescent dye 8-anilinonaphthalene-1-sulfonate (ANS) to bovine serum albumin (BSA), phospholipase A2 (PLA2), ovalbumin, lysozyme, cobrotoxin and N-acetyltryptophanamide was used to assess the factors affecting the efficiency of energy transfer from Trp residues to the ANS molecule. We found that the efficiency of energy transfer from Trp residues to ANS was associated with the ability of proteins to enhance the ANS fluorescence. At the same molar concentration of protein, BSA enhanced ANS fluorescence most among these proteins; its Trp fluorescence was drastically quenched by the addition of ANS. Fluorescence enhancement of ANS in PLA2-ANS complex increased upon addition of Ca2+ or change of the buffer to acidicpH, resulting in a higher efficiency of energy transfer from Trp residues to ANS. There was limited ANS fluorescence enhancement with ovalbumin, lysozyme, cobrotoxin, and N-acetyltryptophanamide and a less efficient quenching in Trp fluorescence. The capabilities of proteins for binding with ANS correlated with the decrease in their Trp fluorescence being quenching by ANS. However, the microenvironment surrounding Trp residues of proteins did not affect the energy transfer. Based on these results, the factors that affected the energy transfer from Trp residues to ANS are discussed.  相似文献   

18.
Phosphorylase kinase contains four approximately equivalent binding sites for 1-anilinonaphthalene-8-sulfonate (1,8-ANS). Measurements of the time decay of fluorescence anisotropy have failed to give any indication of internal degrees of rotational freedom involving a significant portion of the tertiary structure. In the presence of 1 mM Ca2+, calmodulin binds one molecule of 1,8-ANS. No binding occurs in the absence of Ca2+. The binding is strongly temperature-dependent, a decrease in binding occurring with increasing temperature. Determinations of the time decay of fluorescence anisotropy indicate the presence of internal rotations, which become more important with increasing temperature. Complex formation between phosphorylase kinase and calmodulin reduces the binding of 1,8-ANS.  相似文献   

19.
This is the first report on the formation of air-stable copper nitrosyl complexes. The interaction of nitric oxide, NO, with Cu(DTC)(2).3H(2)O (DTC: dithiocarbamate) and was studied in aqueous solution at pH 7.4 and 293 K. The stability constants were determined from UV-Vis data, using LETAGROP program. The high values obtained, log beta(1)=9.743(5) and log beta(2)=15.44(2) for Cu(ProDTC)(2)-NO, (ProDTC=L-prolinedithiocarbamate) and log beta(1)=8.723(5) and log beta(2)=11.45(2) for Cu(MorDTC)(2)-NO system, (MorDTC=morpholyldithiocarbamate), indicate the formation of two stable nitrosyl complexes, Cu(DTC)(2)NO and Cu(DTC)(2)(NO)(2). Coordinated NO is neither affected by the presence of air nor when the solution is purged with Ar. Cu(MorDTC)(2)NO.3H(2)O was isolated in the solid state and its nuNO (IR) band at 1682 cm(-1), but affected by temperature variations over 333 K.  相似文献   

20.
The quenching by radiationless energy transfer of the ultraviolet fluorescence of Tyr-99 and Tyr-138 by bound 1-anilinonaphthalene-8-sulfonate (1,8-ANS) has been employed to determine the separation of a hydrophobic binding site of 1,8-ANS from each of the tyrosines. The results suggest that the dominant binding site is located in the N-terminal region of domain III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号