首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mycobacterial lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM), regulate host defence mechanisms through their interaction with pattern recognition receptors such as Toll-like receptors (TLRs). We have developed a surface plasmon resonance assay to analyse the molecular basis for the recognition of Mycobacterium kansasii LM or LAM, by immobilized CD14 and LPS-binding protein (LBP) both being capable to promote presentation of bacterial glycolipids to TLRs. The affinity of either LM/LAM was higher to CD14 than to LBP. Kinetic and Scatchard analyses were consistent with a model involving a single class of binding sites. These interactions required the lipidic anchor, but not the carbohydrate domains, of LM or LAM. We also provide evidence that addition of recombinant LBP enhanced the stimulatory effect of LM or LAM on matrix metalloproteinase-9 expression and secretion in macrophages, through a TLR1/TLR2-dependent mechanism.  相似文献   

2.
Lipoarabinomannans (LAM) and lipomannans (LM) are integral parts of the mycobacterial cell wall recognized by cells involved in the innate immune response and have been found to modulate the cytokine response. Typically, mannosylated LAM from pathogenic mycobacteria have been reported to be anti-inflammatory, whereas phosphoinositol-substituted LAM from nonpathogenic species are proinflammatory molecules. In this study, we show that LM from several mycobacterial species, including Mycobacterium chelonae, Mycobacterium kansasii, and Mycobacterium bovis bacillus Calmette-Guérin, display a dual function by stimulating or inhibiting proinflammatory cytokine synthesis through different pathways in murine primary macrophages. LM, but none of the corresponding LAM, induce macrophage activation characterized by cell surface expression of CD40 and CD86 and by TNF and NO secretion. This activation is dependent on the presence of Toll-like receptor (TLR) 2 and mediated through the adaptor protein myeloid differentiation factor 88 (MyD88), but independent of either TLR4 or TLR6 recognition. Surprisingly, LM exerted also a potent inhibitory effect on TNF, IL-12p40, and NO production by LPS-activated macrophages. This TLR2-, TLR6-, and MyD88-independent inhibitory effect is also mediated by LAM from M. bovis bacillus Calmette-Guérin but not by LAM derived from M. chelonae and M. kansasii. This study provides evidence that mycobacterial LM bear structural motifs susceptible to interact with different pattern recognition receptors with pro- or anti-inflammatory effects. Thus, the ultimate response of the host may therefore depend on the prevailing LM or LAM in the mycobacterial envelope and the local host cell receptor availability.  相似文献   

3.
Lipomannan (LM) and lipoarabinomannan (LAM) are major glycolipids present in the mycobacterial cell wall that are able to modulate the host immune response. In this study, we have undertaken the structural determination of these important modulins in Mycobacterium chelonae, a fast growing pathogenic mycobacterial species. One-dimensional and two-dimensional NMR spectra were used to demonstrate that LM and LAM from M. chelonae, designated CheLM and CheLAM, respectively, possess structures that differ from the ones reported earlier in other mycobacterial species. Analysis by gas chromatography/mass spectrometry of the phosphatidyl-myo-inositol anchor, which is thought to play a role in the biological functions of these lipoglycans, pointed to a high degree of heterogeneity based on numerous combinations of acyl groups on the C-1 and C-2 positions of the glycerol moiety. Characterization of the mannan core of CheLM and CheLAM revealed the presence of novel alpha1,3-mannopyranosyl side chains. This motif, which reacted specifically with the lectin from Galanthus nivalis, was found to be unique among a panel of nine mycobacterial species. Then, CheLM and CheLAM were found to be devoid of both the mannooligosaccharide cap present in Mycobacterium tuberculosis and the inositol phosphate cap present in Mycobacterium smegmatis and other fast growing species. Tumor necrosis factor-alpha and interleukin-8 production were assessed from human macrophages with LAM preparations from different species. Our results suggest that the inositol phosphate capping may represent the major cytokine-inducing component of LAMs. This work not only underlines the diversity of LAM structures among various mycobacterial species but also provides new structures that could be useful to dissect the structure-function relationships of these complex molecules.  相似文献   

4.
Although Mycobacterium kansasii has emerged as an important pathogen frequently encountered in immunocompromised patients, little is known about the mechanisms of M. kansasii pathogenicity. Lipoarabinomannan (LAM), a major mycobacterial cell wall lipoglycan, is an important virulence factor for many mycobacteria, as it modulates the host immune response. Therefore, the detailed structures of the of M. kansasii LAM (KanLAM), as well as of its biosynthetic precursor lipomannan (KanLM), were determined in a clinical strain isolated from a human immunodeficiency virus-positive patient. Structural analyses revealed that these lipoglycans possess important differences as compared with those from other mycobacterial species. KanLAM carries a mannooligosaccharide cap but is devoid of the inositol phosphate cap present in Mycobacterium smegmatis. Characterization of the mannan core of KanLM and KanLAM demonstrated the following occurrences: 1) alpha1,2-oligo-mannopyranosyl side chains, contrasting with the single mannopyranosyl residues substituting the mannan core in all the other structures reported so far; and 2) 5-methylthiopentose residues that were described to substitute the arabinan moiety from Mycobacterium tuberculosis LAM. With respect to the arabinan domain of KanLAM, succinyl groups were found to substitute the C-3 position on 5-arabinofuranosyl residues, reported to be linked to the C-2 of the 3,5-arabinofuranose in Mycobacterium bovis bacillus calmette-guerin LAM. Because M. kansasii has been reported to induce apoptosis, we examined the possibility of the M. kansasii lipoglycans to induce apoptosis of THP-1 cells. Our results indicate that, in contrast to KanLAM, KanLM was a potent apoptosis-inducing factor. This work underlines the diversity of LAM structures among various pathogenic mycobacterial species and also provides evidence of LM being a potential virulence factor in M. kansasii infections by inducing apoptosis.  相似文献   

5.
Various bacterial cell wall components have been shown to induce hyporesponsiveness in macrophages (MAC). Here, mycobacterial glycolipids were employed to determine whether they induce a state of 'tolerance/hyporesponsiveness' in MAC in vitro in order to assess whether mycobacterial components negatively affect the immune response to Mycobacterium tuberculosis. Arabinosylated lipoarabinomannan (ARA-LAM) stimulated hyporesponsiveness by reducing TNF-alpha, GM-CSF, G-CSF, IL-10, and IL-6 release similarly to LPS, but caused no changes in IL-8 secretion. Mannose-capped LAM (MAN-LAM) acted in a different way in that TNF-alpha, GM-CSF, and IL-10 were upregulated after restimulation of MAC. Blocking experiments by mannan suggest mannose-receptor involvement in MAN-LAM activation only. Cross-stimulation experiments demonstrated a hierarchy of signaling, with LPS being the most potent stimulator and mediating abrogation of ARA-LAM-stimulated tolerance but not vice versa. MAN-LAM was the least potent stimulator of either MAC activation and induction of hyporesponsiveness. Similarly to LPS, ARA-LAM upregulated CD14 surface expression after restimulation. Recurrent MAN-LAM treatment either downmodulated or did not induce any change in CD14 expression. The role of MAN-LAM regulated cytokine secretion as well as implications regarding M. tuberculosis infection will be discussed.  相似文献   

6.
Recent studies have implicated a family of mammalian Toll-like receptors (TLR) in the activation of macrophages by Gram-negative and Gram-positive bacterial products. We have previously shown that different TLR proteins mediate cellular activation by the distinct CD14 ligands Gram-negative bacterial LPS and mycobacterial glycolipid lipoarabinomannan (LAM). Here we show that viable Mycobacterium tuberculosis bacilli activated both Chinese hamster ovary cells and murine macrophages that overexpressed either TLR2 or TLR4. This contrasted with Gram-positive bacteria and Mycobacterium avium, which activated cells via TLR2 but not TLR4. Both virulent and attenuated strains of M. tuberculosis could activate the cells in a TLR-dependent manner. Neither membrane-bound nor soluble CD14 was required for bacilli to activate cells in a TLR-dependent manner. We also assessed whether LAM was the mycobacterial cell wall component responsible for TLR-dependent cellular activation by M. tuberculosis. We found that TLR2, but not TLR4, could confer responsiveness to LAM isolated from rapidly growing mycobacteria. In contrast, LAM isolated from M. tuberculosis or Mycobacterium bovis bacillus Calmette-Guérin failed to induce TLR-dependent activation. Lastly, both soluble and cell wall-associated mycobacterial factors were capable of mediating activation via distinct TLR proteins. A soluble heat-stable and protease-resistant factor was found to mediate TLR2-dependent activation, whereas a heat-sensitive cell-associated mycobacterial factor mediated TLR4-dependent activation. Together, our data demonstrate that Toll-like receptors can mediate cellular activation by M. tuberculosis via CD14-independent ligands that are distinct from the mycobacterial cell wall glycolipid LAM.  相似文献   

7.
Mycobacterial species-specific antigens belong to the three following classes: phenolic glycolipids (Phe Gl), acyltrehalose-containing lipooligosaccharides and polar glycopeptidolipids. These antigens have been chemically defined and alkali-labile epitopes were found to characterize the lipooligosaccharide antigen type. In the present study the major Mycobacterium kansasii phenolic glycolipid epitope namely Phe Gl K-I was delineated as the distal monoacetylated disaccharidic residue: 2,6-dideoxy-4-O-methyl-alpha-D-arabino-hexopyranosyl-(1----3)-2-O-methyl -4-O- acetyl-alpha-L-fucopyranose. This acetoxy group is required for K-I epitope recognition demonstrating that alkali-labile epitopes also occur in the phenolic glycolipid antigen class. Using immunoelectron microscopy, the Phe Gl K-I epitope was localized around the electron-transparent layer on the M. kansasii cell-wall surface. Furthermore, two new phenolic glycolipids namely Phe Gl K-III and Phe Gl K-IV were discovered in minute amounts. They were purified and characterized by their retention time in direct-phase column HPLC. These molecules are also M. kansasii antigens, whose epitopes differ from that of Phe Gl K-I. The complete family of phenolic glycolipids Phe Gl K-I, K-II, K-III and K-IV was found in both rough and smooth variants of both M. kansasii and Mycobacterium gastri species.  相似文献   

8.
Mycobacterium tuberculosis lipomannans (LMs) modulate the host innate immune response. The total fraction of Mycobacterium bovis BCG LM was shown both to induce macrophage activation and pro-inflammatory cytokines through Toll-like receptor 2 (TLR2) and to inhibit pro-inflammatory cytokine production by lipopolysaccharide (LPS)-activated macrophages through a TLR2-independent pathway. The pro-inflammatory activity was attributed to tri- and tetra-acylated forms of BCG LM but not the mono- and di-acylated ones. Here, we further characterize the negative activities of M. bovis BCG LM on primary murine macrophage activation. We show that di-acylated LMs exhibit a potent inhibitory effect on cytokine and NO secretion by LPS-activated macrophages. The inhibitory activity of mycobacterial mannose-capped lipoarabino-mannans on human phagocytes was previously attributed to their binding to the C-type lectins mannose receptor or specific intracellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN). However, we found that di-acylated LM inhibition of LPS-induced tumor necrosis factor secretion by murine macrophages was independent of TLR2, mannose receptor, or the murine ortholog SIGNR1. We further determined that tri-acyl-LM, an agonist of TLR2/TLR1, promoted interleukin-12 p40 and NO secretion through the adaptor proteins MyD88 and TIRAP, whereas the fraction containing tetra-acylated LM activated macrophages in a MyD88-dependent fashion, mostly through TLR4. TLR4-dependent pro-inflammatory activity was also seen with M. tuberculosis LM, composed mostly of tri-acylated LM, suggesting that acylation degree per se might not be sufficient to determine TLR2 versus TLR4 usage. Therefore, LM acylation pattern determines the anti-inflammatory versus pro-inflammatory effects of LM through different pattern recognition receptors or signaling pathways and may represent an additional mean of regulating the host innate immunity by mycobacteria.  相似文献   

9.
Endotoxin from Gram-negative bacteria bound to CD14 signals through Toll-like receptor (TLR) 4, while components of Gram-positive bacteria, fungi, and Mycobacterium tuberculosis (M.tb.) preferentially use TLR2 signaling. We asked whether TLR4 plays any role in host resistance to M.tb. infection in vivo. Therefore, we infected the TLR4 mutant C3H/HeJ mice and their controls, C3H/HeN mice, with M.tb. by aerosol. TLR4 mutant mice had a reduced capacity to eliminate mycobacteria from the lungs, spread the infection to spleen and liver, with 10-100 times higher CFU organ levels than the wild-type mice and succumbed within 5-7 mo, whereas most of the wild-type mice controlled infection and survived the duration of the experiment. The lungs of TLR4 mutant mice showed chronic pneumonia with increased neutrophil infiltration, reduced macrophages recruitment, and abundant acid-fast bacilli. Furthermore, the pulmonary expression of TNF-alpha, IL-12p40, and monocyte chemoattractant protein 1 was significantly lower in C3H/HeJ mice when compared with the wild-type controls. C3H/HeJ-derived macrophages infected in vitro with M.tb. produced lower levels of TNF-alpha. Finally, the purified mycobacterial glycolipid, phosphatidylinositol mannosides, induced signaling in both a TLR2- and TLR4-dependent manner, thus suggesting that recognition of phosphatidylinositol mannosides in vivo may influence the development of protective immunity. In summary, macrophage recruitment and the proinflammatory response to M.tb. are impaired in TLR4 mutant mice, resulting in chronic infection with impaired elimination of mycobacteria. Therefore, TLR4 signaling is required to mount a protective response during chronic M.tb. infection.  相似文献   

10.
The clinical course of mycobacterial infections is linked to the capacity of pathogenic strains to modulate the initial antimycobacterial response of the macrophage. To elucidate some of the mechanisms involved, we studied early signal transduction events leading to cytokine formation by human monocyte-derived macrophages (MDM) in response to clinical isolates of Mycobacterium avium. TNF-alpha production induced by M. avium was inhibited by anti-CD14 mAbs, but not by Abs against the macrophage mannose receptor. Analysis of mitogen-activated protein (MAP) kinase activation (extracellular signal-regulated kinase 1/2, p38, and c-Jun NH(2)-terminal kinase) showed a rapid phosphorylation of all three subfamilies in response to M. avium, which was inhibited by anti-CD14 Abs. Using highly specific inhibitors of p38 (SB203580) and MAP kinase kinase-1 (PD98059), we found that activation of the extracellular signal-regulated kinase pathway, but not of p38, was essential for the M. avium-induced TNF-alpha formation. In contrast, IL-10 production was abrogated by the p38 inhibitor, but not by the MAP kinase kinase-1 inhibitor. In conclusion, M. avium-induced secretion of TNF-alpha and IL-10 by human macrophages is differentially regulated at the level of MAP kinase activity.  相似文献   

11.
TLR2 recognizes components of Mycobacterium tuberculosis and initiates APC activities that influence both innate and adaptive immunity. M. tuberculosis lipoproteins are an important class of TLR2 ligands. In this study, we focused on recombinant MPT83 (rMPT83) to determine its effects on mouse macrophages. We demonstrated that rMPT83 induced the production of TNF-α, IL-6, and IL-12 p40 and that cytokine induction depended on activated MAPKs, because we observed the rapid phosphorylation of ERK1/2, p38, and JNK in macrophages. Additionally, neutralizing Abs against TLR2 significantly inhibited cytokine secretion and reduced or attenuated the rMPT83-induced activation of p38 and JNK in RAW264.7 cells, a mouse macrophage cell line. Furthermore, rMPT83-induced cytokine production was significantly lower in macrophages from TLR2(-/-) mice than in macrophages from wild-type mice. We further found that prolonged exposure (>24 h) of RAW264.7 cells or macrophages from wild-type and TLR2(-/-) mice to rMPT83 resulted in a significant enhancement of IFN-γ-induced MHC class II expression and an enhanced ability of macrophages to present the rMPT83 peptide to CD4(+) T cells. These results indicated that rMPT83 is a TLR2 agonist that induces the production of cytokines by macrophages and upregulates macrophage function.  相似文献   

12.
Toll-like receptors (TLRs) are key mediators of the innate immune response to microbial pathogens. We investigated the role of TLRs in the recognition of Mycobacterium leprae and the significance of TLR2Arg(677)Trp, a recently discovered human polymorphism that is associated with lepromatous leprosy. In mice, TNF-alpha production in response to M. leprae was essentially absent in TLR2-deficient macrophages. Similarly, human TLR2 mediated M. leprae-dependent activation of NF-kappaB in transfected Chinese hamster ovary and human embryonic kidney 293 cells, with enhancement of this signaling in the presence of CD14. In contrast, activation of NF-kappaB by human TLR2Arg(677)Trp was abolished in response to M. leprae and Mycobacterium tuberculosis. The impaired function of this TLR2 variant provides a molecular mechanism for the poor cellular immune response associated with lepromatous leprosy and may have important implications for understanding the pathogenesis of other mycobacterial infections.  相似文献   

13.
The glycosylphosphatidyl anchored molecule CD14 to the monocyte membrane plays a prominent role in innate immunity, and the paradigms for CD14 selective signaling are beginning to be elucidated. In this study, transfected human monocytic cell line THP-1 and Chinese hamster ovary (CHO) fibroblastic cells were used to examine phagocytosis of Mycobacterium bovis bacillus Calmette-Guerin (BCG). Flow cytometry was combined with molecular and biochemical approaches to demonstrate a dual mechanism for BCG internalization involving either CD14 alone or a CD14-regulated complement receptor (CR)3-dependent pathway. Phagocytosis by CD14-positive THP-1 cells was attenuated by phosphatidylinositol-3 inhibitors LY294002 and wortmannin and experiments using transfected CHO cells showed substantial accumulation of phosphatidylinositol-3,4,5-trisphosphate at the BCG attachment site in CHO cells expressing CD14 and TLR2 suggesting that bacteria bind to CD14 and use TLR2 to initiate a PI3K signaling pathway. Additional experiments using blocking Abs showed that anti-TLR2 Abs inhibit phagocytosis of BCG by THP-1 cells. Furthermore, knockdown of cytohesin-1, a PI3K-regulated adaptor molecule for beta(2) integrin activation, specifically abrogated CD14-regulated CR3 ingestion of BCG consistent with the observation of physical association between CR3 and cytohesin-1 in cells stimulated with mycobacterial surface components. These findings reveal that mycobacteria promote their uptake through a process of "inside-out" signaling involving CD14, TLR2, PI3K, and cytohesin-1. This converts low avidity CR3 into an active receptor leading to increased bacterial internalization.  相似文献   

14.
Toll IL-1R 8/single Ig IL-1-related receptor (TIR8/SIGIRR) is a member of the IL-1R family, expressed by epithelial tissues and immature dendritic cells, and is regarded as a negative regulator of TLR/IL-1R signaling. Tir8-deficient mice were rapidly killed by intranasal administration of low doses of Mycobacterium tuberculosis, despite controlling efficiently the number of viable bacilli in different organs. Tir8(-/-)-infected mice showed an increased number of neutrophils and macrophages in the lungs; however, mycobacteria-specific CD4 and CD8 T cells were similar in Tir8(-/-) and Tir8(+/+) mice. Exaggerated mortality of Tir8(-/-) mice was due to massive liver necrosis and was accompanied by increased levels of IL-1beta and TNF-alpha in lung mononuclear cells and serum, as well as by increased production of IL-1beta and TNF-alpha by M. tuberculosis-infected dendritic cells in vitro. Accordingly, blocking IL-1beta and TNF-alpha with a mix of anti-cytokine Abs, significantly prolonged survival of Tir8(-/-) mice. Thus, TIR8/SIGIRR plays a key role in damping inflammation and tissue damage in M. tuberculosis infection.  相似文献   

15.
Infection with Mycobacterium tuberculosis induces Abs against a vast array of mycobacterial lipids and glycolipids. One of the most prominent lipid Ags recognized is cardiolipin (CL). The kinetics of the generation of anti-CL Abs during infection reveals that IgM titers to CL increase over time. Interestingly, at day 30 postinfection CL-specific IgG1 appears, an isotype usually dependent on T cell help. Using an immunization schedule with CL/anti-CL Ab complexes, which induces antiphospholipid syndrome in mice, we show that the generation of IgG1 to CL requires IL-4 and that optimal production is T cell dependent. IgG1 production to CL was impaired in nude (nu/nu) mice devoid in conventional T cells, but was not affected in mice deficient for either alphabeta TCR(+), gammadelta TCR(+), CD4(+), CD8(+), or NK1.1(+) T cells. We conclude that IgG1 production to CL depends on T cell help and IL-4, which can be provided by different T cell populations. This is the first report that IL-4 is indispensable for the induction of IgG1 Abs to lipid Ags.  相似文献   

16.
MyD88, the common adapter involved in TLR, IL-1, and IL-18 receptor signaling, is essential for the control of acute Mycobacterium tuberculosis (MTB) infection. Although TLR2, TLR4, and TLR9 have been implicated in the response to mycobacteria, gene disruption for these TLRs impairs only the long-term control of MTB infection. Here, we addressed the respective role of IL-1 and IL-18 receptor pathways in the MyD88-dependent control of acute MTB infection. Mice deficient for IL-1R1, IL-18R, or Toll-IL-1R domain-containing adaptor protein (TIRAP) were compared with MyD88-deficient mice in an acute model of aerogenic MTB infection. Although primary MyD88-deficient macrophages and dendritic cells were defective in cytokine production in response to mycobacterial stimulation, IL-1R1-deficient macrophages exhibited only a reduced IL-12p40 secretion with unaffected TNF, IL-6, and NO production and up-regulation of costimulatory molecules CD40 and CD86. Aerogenic MTB infection of IL-1R1-deficient mice was lethal within 4 wk with 2-log higher bacterial load in the lung and necrotic pneumonia but efficient pulmonary CD4 and CD8 T cell responses, as seen in MyD88-deficient mice. Mice deficient for IL-18R or TIRAP controlled acute MTB infection. These data demonstrate that absence of IL-1R signal leads to a dramatic defect of early control of MTB infection similar to that seen in the absence of MyD88, whereas IL-18R and TIRAP are dispensable, and that IL-1, together with IL-1-induced innate response, might account for most of MyD88-dependent host response to control acute MTB infection.  相似文献   

17.
The mycobacterial cell wall component lipoarabinomannan (LAM) has been described as one of the key virulence factors of Mycobacterium tuberculosis. Modification of the terminal arabinan residues of this lipoglycan with mannose caps in M. tuberculosis or with phosphoinositol caps in Mycobacterium smegmatis results in distinct host immune responses. Given that M. tuberculosis typically persists in the phagosomal vacuole after being phagocytosed by macrophages, we performed a proteomic analysis of that organelle after treatment of macrophages with LAMs purified from the two mycobacterial species. The quantitative changes in phagosomal proteins suggested a distinct role for mannose-capped LAM in modulating protein trafficking pathways that contribute to the arrest of phagosome maturation. Enlightened by our proteomic data, we performed further experiments to show that only the LAM from M. tuberculosis inhibits accumulation of autophagic vacuoles in the macrophage, suggesting a new function for this virulence-associated lipid.  相似文献   

18.
A novel mannose containing phenolic glycolipid from Mycobacterium kansasii   总被引:2,自引:0,他引:2  
Using high-performance liquid chromatography, a new kind of phenolic glycolipid quantitatively minor, called phenolic glycolipid-II, was isolated from a lipidic fraction of Mycobacterium kansasii. The structure was determined by fast atom bombardment-mass spectrometry and proton nuclear magnetic resonance spectroscopy, as: 2,4-di-O-Me-alpha-D-Manp(1----3) 4-O-Ac-2-O-Me-alpha-L-Fucp(1----3)2-O-Me- alpha-L-Rhap(1----3) 2,4-di-O-Me-alpha-L-Rhap 1----phenolphthiocerol dimycocerosate. Phenolic glycolipids I and II differ only by their distal monosaccharide hapten which is 2,6-dideoxy-4-O-Me-alpha-D-arabinohexopyranosyl and the 2,4-di-O-Me-alpha-D-mannopyranosyl, respectively. This sugar appears to be characteristic and apparently unique in the Mycobacterium genus. Moreover, phenolic glycolipids I and II constitute with the lipooligosaccharides two classes of antigens of M. kansasii.  相似文献   

19.
Dendritic cells (DC) are unique in their ability to initiate a primary immune response by the presentation of soluble Ags to T cells. Recent studies have shown that DC also phagocytose particulate Ags including the intracellular pathogen Mycobacterium tuberculosis. However, it is not known whether DC contain the growth of intracellular organisms or allow unlimited replication. To address this question, we infected human DC with a virulent strain of M. tuberculosis and monitored the intracellular growth. The bacteria grew two orders of magnitude within 7 days of culture. Among cytokines known to modulate mycobacterial growth particularly in murine macrophages (TNF-alpha, IFN-gamma, TGF-beta, IL-4), only IL-10 modulated the growth in human DC. This effect was specific for immature dendritic cells, as IL-10 did not induce growth inhibition in human macrophages. In searching for the mechanism of growth inhibition, we found that IL-10 induces the down-regulation of the DC marker CD1, while the macrophage marker CD14 was up-regulated. Functionally, IL-10-treated cells had a reduced capacity to induce an alloresponse, but phagocytic uptake of M. tuberculosis was more efficient. We also show that DC are inferior to macrophages in containing mycobacterial growth. These findings show that IL-10 converts DC into macrophage-like cells, thereby inducing the growth inhibition of an intracellular pathogen. At the site of a local immune response, such as a tuberculous granuloma, IL-10 might therefore participate in the composition of the cellular microenvironment by affecting the maturity and function of DC.  相似文献   

20.
GPIs isolated from Toxoplasma gondii, as well as a chemically synthesized GPI lacking the lipid moiety, activated a reporter gene in Chinese hamster ovary cells expressing TLR4, while the core glycan and lipid moieties cleaved from the GPIs activated both TLR4- and TLR2-expressing cells. MyD88, but not TLR2, TLR4, or CD14, is absolutely needed to trigger TNF-alpha production by macrophages exposed to T. gondii GPIs. Importantly, TNF-alpha response to GPIs was completely abrogated in macrophages from TLR2/4-double-deficient mice. MyD88(-/-) mice were more susceptible to death than wild-type (WT), TLR2(-/-), TLR4(-/-), TLR2/4(-/-), and CD14(-/-) mice infected with the ME-49 strain of T. gondii. The cyst number was higher in the brain of TLR2/4(-/-), but not TLR2(-/-), TLR4(-/-), and CD14(-/-), mice, as compared with WT mice. Upon infection with the ME-49 strain of T. gondii, we observed no decrease of IL-12 and IFN-gamma production in TLR2-, TLR4-, or CD14-deficient mice. Indeed, splenocytes from T. gondii-infected TLR2(-/-) and TLR2/4(-/-) mice produced more IFN-gamma than cells from WT mice in response to in vitro stimulation with parasite extracts enriched in GPI-linked surface proteins. Together, our results suggest that both TLR2 and TLR4 receptors may participate in the host defense against T. gondii infection through their activation by the GPIs and could work together with other MyD88-dependent receptors, like other TLRs or even IL-18R or IL-1R, to obtain an effective host response against T. gondii infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号