首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scutella separated from germinating grains of barley (Hordeum vulgare L. cv Himalaya) took up [14C]glutamine at an initial rate of about 10 micromoles·gram−1·hour−1 in the standard assay conditions (pH 5, 30°C, 1 millimolar glutamine). Inhibition by unlabeled glutamine and by dinitrophenol indicated that about 95% of the uptake was due to carrier-mediated active transport. The pH optimum of the uptake was 5, and after correction for a nonmediated component the uptake appeared to conform to Michaelis-Menten kinetics with an apparent Km of about 2 millimolar and a Vmax of about 25 micromoles·gram−1·hour−1.

The uptake of glutamine was inhibited by all of the 18 amino acids tested; the mode of inhibition was studied only with proline and was competitive. Eight of the ten amino acids tested at high concentrations appeared to be able to inhibit the mediated uptake of glutamine virtually completely. However, when the inhibitory effect of asparagine was extrapolated to an infinitely high concentration of asparagine, about 24% of the mediated uptake of glutamine remained uninhibited. These results suggest that glutamine is taken up by two (or more) rather unspecific amino acid uptake systems, the minor one having no affinity for asparagine.

Glutamine and alanine could completely inhibit the mediated uptake of 1 millimolar leucine, but about 12% of the mediated uptake appeared to be uninhibitable by asparagine. Furthermore, the ratio of the mediated uptake of glutamine to that of leucine changed from 0.9 to 1.7 between days 1 and 3 of germination. These results give further support for the presence of two unspecific amino acid uptake systems in barley scutella.

  相似文献   

2.
Uptake of proline by the scutellum of germinating barley grain   总被引:1,自引:1,他引:0  
Scutella separated from germinating grains of barley (Hordeum vulgare L. cv Himalaya) took up 1 millimolar l-[14C]proline at an initial rate of about 6.5 micromoles gram−1 fresh weight hour−1 (pH 5, 30°C). The uptake had a pH optimum at 5. The bulk of the uptake (93%) was via carrier-mediated active transport. All of the 19 l-amino acids tested at 10 millimolar concentration inhibited the mediated uptake of 1 millimolar proline, the inhibitions varying from 18 to 76%. By studying how large a fraction of the mediated uptake was inhibitable by asparagine, alanine, glutamine, and leucine, the mediated uptake was shown to be due to three components. Two of these are most probably attributable to the two nonspecific uptake systems proposed earlier to act in the uptake of glutamine and leucine. The third component was not inhibited by glutamine, asparagine, or alanine, but was inhibited by unlabeled proline and leucine. The uptake by this system was apparently carrier-mediated active transport. d-Proline inhibited this system as strongly as l-proline. Nine of the 16 l-amino acids tested at 50 millimolar concentrations did not inhibit the uptake of 1 millimolar proline by this system. Valine, leucine, isoleucine, and the basic amino acids were inhibitory, but in spite of this, they did not appear to be taken up by this system. It seems therefore that in addition to two nonspecific amino acid uptake systems the scutella have an uptake system which is specific for proline. It is likely that this proline-specific system accounts for the bulk of proline uptake in a germinating grain.  相似文献   

3.
The scutella separated from germinating barley grains (Hordeum vulgare L. cv. Himalaya) took up the dipeptide [14C]glycylglycine (Gly-Gly) rapidly from incubation media. The pH optimum of the process was about 4.5, and the rate of uptake conformed to Michaelis-Menten kinetics with an apparent Km of 2.3 mm and Vmax of 41 μmole gram−1 hour−1. The uptake was strongly inhibited by dinitrophenol and cyanide and by lack of O2.  相似文献   

4.
Scutella separated from grains of Himalaya barley after germination for 3 days rapidly took up l-leucine from aerated incubation media; with 1 millimolar leucine the rate varied between 4 and 14 micromoles per gram per hour and the pH optimum was at 3.5 to 5, both depending on buffer composition and prewashing time. The rate of the uptake increased with increasing concentration of leucine in a complex manner, which could be interpreted as multiphasic kinetics with apparent K(m) values of 3.4 and 15.5 millimolar below and above 3 millimolar leucine, respectively. The uptake took place against a concentration difference (highest estimated ratio 270: 1) and was strongly inhibited by dinitrophenol. Uptake was apparently due to active transport requiring metabolic energy.The development of the uptake activity during germination was studied using Pirkka barley. A low activity was present in the scutella of ungerminated grains. It began to increase after 6 hours imbibition, and the increase was biphasic, the major changes occurring during days 0 to 3 and 4 to 6. The total increase was about 20-fold.The regulation of the development was studied by allowing separated embryos to germinate on agar gel. The increase of uptake activity was strongly inhibited by inhibitors of RNA or protein synthesis. Increase did not require the presence of the embryo proper, and was not affected by gibberellic or abscisic acid. Removal of the endosperm greatly accelerated the increase of uptake activity, and the presence of 5 or 20 millimolar glutamine counteracted the removal of the endosperm. The results suggest that the availability of glutamine or amino acids in general in the endosperm may regulate the development or the activity of the transport system.  相似文献   

5.
Scutella from ungerminated grains of barley (Hordeum vulgare L. cv Pirkka) take up leucine at a slow rate, which increases rapidly during germination. When endosperms were removed from the grains after imbibition for 4 hours or after germination for 12 or 72 hours, the increase in the rate of leucine uptake was greatly accelerated during subsequent incubation of the embryos or scutella. These increases were rapidly inhibited by cordycepin and cycloheximide, suggesting that protein synthesis, probably synthesis of the carrier protein, was required for the development of the uptake activity.

In separated embryos or scutella, the increases in the leucine uptake activity were inhibited by glutamine. The inhibitions caused by glutamine and cycloheximide were not additive, suggesting that glutamine did not interfere with the function of the carrier but repressed its synthesis. Glutamine did not inhibit the simultaneous increase in peptide uptake; in this respect, its effect was specific for leucine uptake, which appears to be due to a general amino acid uptake system.

Some other protein amino acids also inhibited the increase in leucine uptake without inhibiting the increase in peptide uptake. However, these effects were smaller than that of glutamine.

These results suggest that the transfer of leucine (and other amino acids) from the endosperm to the seedling in a germinating barley grain is regulated at the uptake step by repression of the synthesis of the amino acid carrier protein by glutamine and—possibly to a lesser extent—by some other amino acids taken up from the endosperm.

  相似文献   

6.
7.
8.
A mathematical model of the diffusive transport of abscisic acid (ABA) and gibberellins (GAs) through the aleurone layer of barley (Hordeum vulgare L.) grain is presented. The model consists of two partial differential equations describing the accumulation of phytohormone in the apoplastic and symplasmic compartments of the aleurone layer, both spatially and temporally. The mathematical model contains the morphology of the barley grain and the physicochemical properties of the two phytohormones. A mathematical derivation of the accumulation ratios for the two phytohormones between the symplast and apoplast under equilibrium conditions resulted in different distribution mechanisms for GAs and ABA. A sensitivity analysis of the accumulation ratio for GAs indicated high sensitivity to the apoplastic pH and the membrane potential, whereas the accumulation ratio for ABA proved to be most sensitive to the pH difference between the apoplast and symplast. The diffusive transport time for GAs to the basal site of the aleurone layer as calculated with the mathematical model is within a physiologically plausible timescale according to experimental data from the literature. Abscisic acid cannot be transported by diffusion to the end of the aleurone layer as quickly as GAs, according to model simulations. Therefore, the functional role of ABA in germination is likely to be in the vicinity of the embryo.  相似文献   

9.
10.
Summary Cytochemical methods have been used in conjunction with light and electron microscopy to determine the nature of the inclusions in aleurone grains of barley aleurone layers. Two kinds of inclusions were found: (1) Globoids within globoid cavities which were not enclosed by a membrane: the globoids stained red with toluidin blue due to the presence of phytin, and with lipid stains; (2) Protein-carbohydrate bodies which stained green with toluidin blue. The characteristics of globoids and protein-carbohydrate bodies as seen in the electron microscope are described in detail using both glutaraldehyde- and permanganatefixed tissues. The protein-carbohydrate body was identified by silver-hexaminestaining; this was not caused by carbohydrate but by some component which stained green in toluidin blue and which also occurred in cell walls in a thin band adjacent to the cytoplasm. The characteristics of both bodies are discussed in relation to apparent confusion in their identities in previous electron-microscope studies.  相似文献   

11.
The effects of gibberellic acid (GA3) and calcium ions on the production of α-amylase and acid phosphatase by isolated aleurone layers of barley (Hordeum vulgare L. cv Himalaya) were studied. Aleurone layers not previously exposed to GA3 or Ca2+ show qualitative and quantitative changes in hydrolase production following incubation in either GA3 or Ca2+ or both. Incubation in H2O or Ca2+ results in the production of low levels of α-amylase or acid phosphatase. The addition of GA3 to the incubation medium causes a 10- to 20-fold increase in the amounts of these enzymes released from the tissue, and addition of Ca2+ at 10 millimolar causes a further 8- to 9-fold increase in α-amylase release and a 75% increase in phosphatase release. Production of α-amylase isoenzymes is also modified by the levels of GA3 and Ca2+ in the incubation medium. α-Amylase 2 is produced under all conditions of incubation, while α-amylase 1 appears only when layers are incubated in GA3 or GA3 plus Ca2+. The synthesis of α-amylases 3 and 4 requires the presence of both GA3 and Ca2+ in the incubation medium. Laurell rocket immuno-electrophoresis shows that two distinct groups of α-amylase antigens are present in incubation media of aleurone layers incubated with both GA3 and Ca2+, while only one group of antigens is found in media of layers incubated in GA3 alone. Strontium ions can be substituted for Ca2+ in increasing hydrolase production, although higher concentrations of Sr2+ are required for maximal response. We conclude that GA3 is required for the production of α-amylase 1 and that both GA3 and either Ca2+ or Sr2+ are required for the production of isoenzymes 3 and 4 of barley aleurone α-amylase.  相似文献   

12.
Lysophospholipase was measured in extracts of germinating barley by determining the amount of free [14C]palmitate released from [1-14C] 1-palmitoyl-lysophosphatidylcholine (LPC). Soluble and particulate lysophospholipase activity was measured at 1-day intervals in extracts from the aleurone and endosperm of barley seeds germinated for 8 days. The soluble and particulate activities of the aleurone increase approximately in parallel with one another and after 8 days of germination have 20–30 times more activity than at day 1. The activity profiles and the distribution of the activity between the soluble and particulate forms of lysophospholipase in the endosperm are markedly different. With the exception of the first 2 days when the aleurone activity is low, the endosperm activity is less than that associated with the aleurone. The soluble activity increases during the first 3 days and is more active than that of the aleurone. Thereafter it diminishes and remains low. The particulate enzyme, however, increases dramatically between days 4 and 5 and remains moderately high. The fourth and fifth day represent that stage of germination when starch-bound LPC is released in concert with the increase in amylase activity. It is proposed that it is this particulate form of the endosperm activity which may be responsible for maintaining the level of free LPC low in the endosperm of the germinating seed.  相似文献   

13.
The effect of gibberellic acid and Ca2+ on the accumulation of α-amylase mRNAs in aleurone layers of barley (Hordeum vulgare L. cv Himalaya) was studied using cDNA clones containing sequences of mRNAs for the high and low isoelectric point (pI) α-amylases. There is no significant hybridization between the two α-amylase cDNA clones under the hybridization and washing conditions employed. These clones were therefore used to monitor levels of mRNAs for high and low pI α-amylases. It is shown that although the synthesis of the high pI α-amylase proteins depends on the presence of Ca2+ in the incubation medium, the accumulation of mRNA for this group occurs to the same degree in the presence or the absence of Ca2+. The accumulation of low pI α-amylase mRNA is also not affected by the presence or absence of Ca2+ in the incubation medium. These results establish gibberellic acid, not Ca2+, as the principal regulator of α-amylase mRNA accumulation in barley aleurone, while Ca2+ controls high pI α-amylase synthesis at a later step in the biosynthetic pathway.  相似文献   

14.
ABA plays an important regulatory role in seed germination because it inhibits the response to GA in aleurone, a secretory tissue surrounding the endosperm. Phosphatidic acid (PA) is a well-known intermediary in ABA signaling, but the role of diacylglycerol pyrophosphate (DGPP) in germination processes is not clearly established. In this study, we show that PA produced by phospholipase D (E.C. 3.1.4.4) during the antagonist effect of ABA in GA signaling is rapidly phosphorylated by phosphatidate kinase (PAK) to DGPP. This is a crucial fact for aleurone function because exogenously added dioleoyl-DGPP inhibits secretion of alpha-amylase (E.C. 3.2.1.1). Aleurone treatment with ABA and 1-butanol results in normal secretory activity, and this effect is reversed by addition of dioleoyl-DGPP. We also found that ABA decreased the activity of an Mg2+-independent, N-ethylmaleimide-insensitive form of phosphatidate phosphohydrolase (PAP2) (E.C. 3.1.3.4), leading to reduction of PA dephosphorylation and increased PAK activity. Sequence analysis using Arabidopsis thaliana lipid phosphate phosphatase (LPP) sequences as queries identified two putative molecular homologues, termed HvLPP1 and HvLPP2, encoding putative Lpps with the presence of well-conserved structural Lpp domains. Our results are consistent with a role of DGPP as a regulator of ABA antagonist effect in GA signaling and provide evidence about regulation of PA level by a PAP2 during ABA response in aleurone.  相似文献   

15.
The effects of gibberellic acid (GA3) and Ca2+ on the synthesis and secretion of α-amylase from protoplasts of barley (Hordeum vulgare L. cv Himalaya) aleurone were studied. Protoplasts undergo dramatic morphological changes whether or not the incubation medium contains GA3, CaCl2, or both. Incubation of protoplasts in medium containing both GA3 and Ca2+, however, causes an increase in the α-amylase activity of both incubation medium and tissue extract relative to controls incubated in GA3 or Ca2+ alone. Isoelectric focusing shows that adding Ca2+ to incubation media containing GA3 increases the levels of α-amylase isozymes having high isoelectric points (pI). In the presence of GA3 alone, only isozymes with low pIs accumulate. The increase in α-amylase activity in the incubation medium begins after 36 hours of incubation, and secretion is complete after about 72 hours. Protoplasts require continuous exposure to Ca2+ to maintain elevated levels of α-amylase release. Immunoelectrophoresis shows that Ca2+ stimulates the release of low-pI α-amylase isozymes by 3-fold and high-pI isozymes by 30-fold over controls incubated in GA3 alone. Immunochemical data also show that the half-maximum concentration for this response is between 5 and 10 millimolar CaCl2. The response is not specific for Ca2+ since Sr2+ can substitute, although less effectively than Ca2+. Pulse-labeling experiments show that α-amylase isozymes produced by aleurone protoplasts in response to GA3 and Ca2+ are newly synthesized. The effects of Ca2+ on the process of enzyme synthesis and secretion is not mediated via an effect of this ion on α-amylase stability or on protoplast viability. We conclude that Ca2+ directly affects the process of enzyme synthesis and transport. Experiments with protoplasts also argue against the direct involvement of the cell wall in Ca2+-stimulated enzyme release.  相似文献   

16.
Schuurink RC  Sedee NJ  Wang M 《Plant physiology》1992,100(4):1834-1839
The relationship between barley grain dormancy and gibberellic acid (GA3) responsiveness of aleurone layers has been investigated. Barley (Hordeum distichum L. cvs Triumph and Kristina) grains were matured under defined conditions in a phytotron. Grains of Triumph plants grown under long-day/warm conditions had lower dormancy levels than grains of plants grown under short-day/cool conditions. Aleurone layers isolated from grains of long-day Triumph plants secreted more α-amylase and had a higher responsiveness to GA3 as measured by α-amylase secretion. Storage of the grains increased both the percentage of germination and the responsiveness of the aleurone to GA3. Use of different sterilization methods to break dormancy confirmed the correlation between germination percentage and aleurone layer GA3 responsiveness. The response of embryoless Triumph grains to GA3 was lower than that of the isolated aleurone layers, suggesting a role of the starchy endosperm in regulating the GA3 response of the aleurone layer. Grains of the cultivar Kristina harvested from short day- and long day-grown plants lacked dormancy, and their isolated aleurone layers had a similar responsiveness to GA3 as measured by α-amylase secretion. The data indicate that the physiological state of the aleurone layers contributes to the percentage germination of the grains.  相似文献   

17.
During germination of barley grains, the appearance of DNA fragmentation started in aleurone cells near the embryo and extended to the distal end in a time-dependent manner. DNA fragmentation was demonstrated to occur only after the expression of -amylase mRNA in the aleurone layer. In addition, cell wall degradation started in cells near the embryo on the sides facing the endosperm. Subsequently cell wall degradation extended to the lateral cell walls and to cells more to the distal end of the grain. A typical alteration of the nucleus was observed by electron microscopy and an almost complete degradation of DNA was found in the nucleus while the nuclear envelope remained intact. The results indicate that programmed cell death occurred in aleurone cells during germination. A model is proposed for the regulation of programmed cell death in aleurone cells during germination involving ABA levels and cell wall degradation.  相似文献   

18.
19.
Pulse-labeling of barley (Hordeum vulgare L. cv Himalaya) aleurone layers incubated for 13 hours in 2.5 micromolar gibberellic acid (GA3) with or without 5 millimolar CaCl2 shows that α-amylase isozymes 3 and 4 are not synthesized in vivo in the absence of Ca2+. A cDNA clone for α-amylase was isolated and used to measure α-amylase mRNA levels in aleurone layers incubated in the presence and absence of Ca2+. No difference was observed in α-amylase mRNA levels between layers incubated for 12 hours in 2.5 micromolar GA3 with 5 millimolar CaCl2 and layers incubated in GA3 alone. RNA isolated from layers incubated for 12 hours in GA3 with and without Ca2+ was translated in vitro and was found to produce the same complement of translation products regardless of the presence of Ca2+ in the incubation medium. Immunoprecipitation of translation products showed that the RNA for α-amylase synthesized in Ca2+-deprived aleurone layers was translatable. Ca2+ is required for the synthesis of α-amylase isozymes 3 and 4 at a step after mRNA accumulation and processing.  相似文献   

20.
Apparent transinhibition of peptide uptake in the scutellum of barley grain   总被引:1,自引:0,他引:1  
The uptake of glycylsarcosine (Gly-Sar) into scutella separated from germinating grains of barley ( Hordeum vulgare L. cv. Himalaya) is inhibited by other peptides; in most cases the inhibition is not purely competitive but of a mixed type (simultaneous increase in the apparent Km and decrease in Vmax) (Sopanen, T. 1979. FEBS Lett. 108: 447–450). The aim of the present experiments was to elucidate the mechanism of the mixed inhibition by studying how peptides already taken up into the cells affect the uptake of Gly-Sar.
When scutella were preincubated in the presence of various peptides, 11 of the 13 peptides tested inhibited the subsequent uptake of Gly-Sar by 10 to 45%. The inhibition, studied in detail with leucylleucine and prolylproline, was due to a decrease in Vmax. The two peptides having no effect were glycylglycine and D-alanyl-L-alanine which are the only peptides known to date acting as purely competitive inhibitors when present together with the substrate Gly-Sar.
Preincubation with leucine, proline and alanine was not inhibitory, although preincubation with the corresponding dipeptides was. This result, together with the demonstration of intact leucylleucine in the scutella after preincubation with leucylleucine, indicates that the inhibition was caused by the intact peptides.
The results support the notion that in the mixed type inhibition the increase in the apparent Km is due to competition for the carrier at the outside of the membrane, while the decrease in Vmax is due to peptides taken up and binding to the carrier at the inside of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号