首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. The concept of species pool is reviewed. It is suggested to maintain the terms regional pool and local pool but replace actual pool by community pool. The regional and local pool are considered as selections from the regional and local flora based on ecological similarity. It is also suggested to include in the community pool a selection of species present only as diaspores in the diaspore bank (including diaspores from the seed rain), the selection being based on the same ecological criteria. Four approaches to determine the species pool are discussed: ecological, functional and phytosociological similarity, and an experimental approach. The phytosociological approach appears to be promising. The species pool is elaborated as a fuzzy set in the sense that each species of a community or a local or regional flora is a member of any community, local or regional species pool with different degrees of membership. This membership is defined as a probability of a species to become part of the community pool of a target community which is a function of the ecological (environmen-tal/functional/phytosociological) similarity of the species with the target community; the shortness of the distance of its nearest populations, the frequency/abundance, the dispersal capacity, the actual presence of dispersal mechanisms, the germinability of newly arrived diaspores, and the longevity of seeds (viability) in the diaspore bank. The information on species pools is needed for designing experiments where the number of species in a community is to be manipulated, for instance in restoration management.  相似文献   

2.
The large, comprehensive vegetation database of Mecklenburg-Vorpommern/NE Germany with 51,328 relevés allowed us to study an entire regional flora of 133 non-native plants (NNP, immigration after 1492 AD) with regard to their preferences to all kinds of habitats and along different ecological gradients. For each relevé, we computed average Ellenberg indicator values (EIV) for temperature, light, moisture, reaction, nutrients and salt as well as plant strategy type weights. We partitioned the dataset into relevés with and without occurrences of NNP and compared them with respect to the relative frequencies of EIVs and strategy type weights. We identified deviations from random differences by testing against permuted indicator values. To account for bias in EIV between community types, NNP preferences were differentiated for 34 phytosociological classes. We tested significance of preferences for the group of NNP as a whole, as well as for single NNP species within the entire dataset, as well as differentiated by phytosociological classes and formations. NNP as a group prefer communities with high EIVs for temperature and nutrients and low EIVs for moisture. They avoid communities with low EIV for reaction and high EIV for salt. NNP prefer communities with high proportions of ruderal and low proportion of stress strategists. The differentiation by phytosociological classes reinforces the general trends for temperature, nutrients, moisture, R and S strategy types. Nevertheless, preferences of single species reveal that NNP are not a congruent group but show individualistic ecological preferences.  相似文献   

3.
Aims For plants to establish in a local community from a pool of possible colonizers from the region, it must pass through a series of filters. Which of the filters is most important in this process has been much debated. In this study, we explored how species are filtered from the regional species pool into local communities. The aim was to determine if differences in species abundance and functional traits could explain which species from the regional species pool establish at the local scale and if the filtering differed between grassland communities.Methods This study took place in a cultivated landscape in southeastern Sweden. We estimated plant species abundance in 12 ex-arable field sites and 8 adjacent seminatural grassland sites and in a 100-m radius around the center of each site. We used Monte Carlo simulations to examine if species abundance and functional traits (height, seed mass, clonal abilities, specific leaf area and dispersal method) controlled the filtering of species from the regional pool into local communities.Important findings On average, only 28% of species found in the regional pool established in the ex-arable field sites and 45% in the seminatural grassland sites, indicating that the size of the regional species pool was not limiting local richness. For both grassland types, species abundance in the regional pool was positively correlated with species occurrence at the local scale. We found evidence for both species interaction filtering and dispersal limitation influencing the local assembly. Both local and regional processes were thus influencing the filtering of species from the regional species pool into local communities. In addition, the age of the communities influenced species filtering, indicating that community assembly and the importance of different filters in that process change over succession.  相似文献   

4.
Kristine N. Hopfensperger 《Oikos》2007,116(9):1438-1448
The relationship between above and belowground species composition has been researched in forests, grasslands, and wetlands to understand what mechanisms control community composition. I thoroughly reviewed 108 articles published between 1945 and 2006 that summarized and provided specific values on similarities between above and belowground communities to identify common trends among ecosystems. Using Sørenson's index of similarity, I found that standing vegetation and its associated seed bank was the least similar in forest ecosystems, most similar in grasslands, and of intermediate similarity in wetlands. I also discovered that species richness was not related to seed bank – vegetation similarity in any of the three ecosystems. Disturbances were a common mechanism driving community composition in all ecosystems, where similarity decreased with time since disturbance in forest and wetland ecosystems and increased with time since disturbance in grasslands. Knowing the relationships between seed bank and standing vegetation may help conservationists to manage against exotic species, plan for community responses to disturbances, restore diversity, and better understand the resilience of an ecosystem.  相似文献   

5.
This study is based on a phytosociological table and a matrix of species and morphological characters. The relevés were taken along a transect in a Myrica faya-Erica arborea formation on Tenerife (Canary Islands). The analysis of the phytosociological table reveals a vegetational succession and a corresponding ecological gradient. The study of correlations between morphological and ecological data leads to the creation of groups of species with different combinations of characters, and to a discussion of the adaptive values of each character combination. The species of each group occupy similar niches.Abbreviations AOC= Analysis of Concentration - P/C= index ratio between the perimeter of a leaf and the circumference of a circle having the same area as the leaf  相似文献   

6.
The increasing importance of the conservation value of managed grasslands has led to many studies exploring edaphic determinants of grassland biodiversity. Most studies, however, come either from very large areas, where biogeographical factors such as dispersal limitation may play a role, or from small, but ecologically rather uniform, regions. In addition, few studies further distinguish between plant specialists and generalists in the interpretation of the observed patterns. Here we studied species richness in semi-natural, managed grasslands in the Strá?ovské vrchy Mountains in the West Carpathians, Slovakia, where there is a matrix of different bedrocks (crystalline, sandstone, claystone, limestone) on a steep altitudinal gradient. In 89 vegetation plots we sampled the species composition of vascular plants and bryophytes and measured soil chemistry, slope angle, heat index, altitude and soil depth. We further applied Ellenberg indicator values and classified species into community specialists or generalists based on the analysis of a large phytosociological database. Using cluster analysis, we delimited five vegetation types that clearly differed in response to soil characteristics. Species richness varied between 19 and 64 species per 16?m2. The main compositional gradient correlated with measured soil pH and calcium, but species richness was not significantly correlated with these factors. Soil available phosphorus was not associated with species composition as has been found elsewhere, but it did correlate negatively with species richness and the richness of specialists. Overall, species richness was largely driven by the number of specialists in the plot and particular vegetation types differed conspicuously in their number. We further found significant effects of iron, potassium and sodium on species richness, species composition and the representation of specialists and generalists. Our results provide new insights into the determinants of diversity in managed grasslands as well as to the theoretical species pool concept, explaining species richness variation along a pH gradient.  相似文献   

7.
不同处理措施下浙江天童灌丛群落组成结构的变化   总被引:8,自引:2,他引:6  
采用物种丰富度,Simpson指数,Shannon-Wiener指数,群落均匀度指数研究浙江天童灌丛群落在人工处理下群落的α多样性动态特征,采用β多样性指数和相似性系数测定该区灌丛群落在处理后群落间多样性的变化,此外,还分析了实验样地及对照样地在处理前后的种类组成及其重要值的变化。结果表明,除对照样地外,各实验样地的种类组成及其重要都有不同程度的改变;与处理前相比,实验样地灌木层的物种多样性有所减少,但生态优势度及群落均匀度有所提高,β多样性的研究结果同样表明在实验处理措施下各实验样地的种类组成已经发生了一定的变化。  相似文献   

8.
Aims To identify the relative contributions of environmental determinism, dispersal limitation and historical factors in the spatial structure of the floristic data of inselbergs at the local and regional scales, and to test if the extent of species spatial aggregation is related to dispersal abilities. Location Rain forest inselbergs of Equatorial Guinea, northern Gabon and southern Cameroon (western central Africa). Methods We use phytosociological relevés and herbarium collections obtained from 27 inselbergs using a stratified sampling scheme considering six plant formations. Data analysis focused on Rubiaceae, Orchidaceae, Melastomataceae, Poaceae, Commelinaceae, Acanthaceae, Begoniaceae and Pteridophytes. Data were investigated using ordination methods (detrended correspondence analysis, DCA; canonical correspondence analysis, CCA), Sørensen's coefficient of similarity and spatial autocorrelation statistics. Comparisons were made at the local and regional scales using ordinations of life‐form spectra and ordinations of species data. Results At the local scale, the forest‐inselberg ecotone is the main gradient structuring the floristic data. At the regional scale, this is still the main gradient in the ordination of life‐form spectra, but other factors become predominant in analyses of species assemblages. CCA identified three environmental variables explaining a significant part of the variation in floristic data. Spatial autocorrelation analyses showed that both the flora and the environmental factors are spatially autocorrelated: the similarity of species compositions within plant formations decreasing approximately linearly with the logarithm of the spatial distance. The extent of species distribution was correlated with their a priori dispersal abilities as assessed by their diaspore types. Main conclusions At a local scale, species composition is best explained by a continuous cline of edaphic conditions along the forest‐inselberg ecotone, generating a wide array of ecological niches. At a regional scale, these ecological niches are occupied by different species depending on the available local species pool. These subregional species pools probably result from varying environmental conditions, dispersal limitation and the history of past vegetation changes due to climatic fluctuations.  相似文献   

9.
Questions: Trait differentiation among species occurs at different spatial scales within a region. How does the partitioning of functional diversity help to identify different community assembly mechanisms? Location: Northeastern Spain. Methods: Functional diversity can be partitioned into within‐community (α) and among‐communities (β) components, in analogy to Whittaker's classical α and β species diversity concept. In light of ecological null models, we test and discuss two algorithms as a framework to measure α and β functional diversity (the Rao quadratic entropy index and the variance of trait values). Species and trait (specific leaf area) data from pastures under different climatic conditions in NE Spain are used as a case study. Results: The proposed indices show different mathematical properties but similarly account for the spatial components of functional diversity. For all vegetation types along the climatic gradient, the observed α functional diversity was lower than expected at random, an observation consistent with the hypothesis of trait convergence resulting from habitat filtering. On the other hand, our data exhibited a remarkably higher functional diversity within communities compared to among communities (α?β). In contrast to the high species turnover, there was a limited functional diversity turnover among communities, and a large part of the trait divergence occurred among coexisting species. Conclusions: Partitioning functional diversity within and among communities revealed that both trait convergence and divergence occur in the formation of assemblages from the local species pool. A considerable trait convergence exists at the regional scale in spite of changes in species composition, suggesting the existence of ecological redundancy among communities.  相似文献   

10.
Understanding the influence of the environment on the functional structure of ecological communities is essential to predict the response of biodiversity to global change drivers. Ecological theory suggests that multiple environmental factors shape local species assemblages by progressively filtering species from the regional species pool to local communities. These successive filters should influence the various components of community functional structure in different ways. In this paper, we tested the relative influence of multiple environmental filters on various metrics of plant functional trait structure (i.e. ‘community weighted mean trait’ and components of functional trait diversity, i.e. functional richness, evenness and divergence) in 82 vegetation plots in the Guisane Valley, French Alps. For the 211 sampled species we measured traits known to capture key aspects of ecological strategies amongst vascular plant species, i.e. leaf traits, plant height and seed mass (LHS). A comprehensive information theory framework, together with null model based resampling techniques, was used to test the various environmental effects. Particular community components of functional structure responded differently to various environmental gradients, especially concerning the spatial scale at which the environmental factors seem to operate. Environmental factors acting at a large spatial scale (e.g. temperature) were found to predominantly shape community weighted mean trait values, while fine‐scale factors (topography and soil characteristics) mostly influenced functional diversity and the distribution of trait values among the dominant species. Our results emphasize the hierarchical nature of ecological forces shaping local species assemblage: large‐scale environmental filters having a primary effect, i.e. selecting the pool of species adapted to a site, and then filters at finer scales determining species abundances and local species coexistence. This suggests that different components of functional community structure will respond differently to environmental change, so that predicting plant community responses will require a hierarchical multi‐facet approach.  相似文献   

11.
In general, community similarity is thought to decay with distance; however, this view may be complicated by the relative roles of different ecological processes at different geographical scales, and by the compositional perspective (e.g. species, functional group and phylogenetic lineage) used. Coastal salt marshes are widely distributed worldwide, but no studies have explicitly examined variation in salt marsh plant community composition across geographical scales, and from species, functional and phylogenetic perspectives. Based on studies in other ecosystems, we hypothesized that, in coastal salt marshes, community turnover would be more rapid at local versus larger geographical scales; and that community turnover patterns would diverge among compositional perspectives, with a greater distance decay at the species level than at the functional or phylogenetic levels. We tested these hypotheses in salt marshes of two regions: The southern Atlantic and Gulf Coasts of the United States. We examined the characteristics of plant community composition at each salt marsh site, how community similarity decayed with distance within individual salt marshes versus among sites in each region, and how community similarity differed among regions, using species, functional and phylogenetic perspectives. We found that results from the three compositional perspectives generally showed similar patterns: there was strong variation in community composition within individual salt marsh sites across elevation; in contrast, community similarity decayed with distance four to five orders of magnitude more slowly across sites within each region. Overall, community dissimilarity of salt marshes was lowest on the southern Atlantic Coast, intermediate on the Gulf Coast, and highest between the two regions. Our results indicated that local gradients are relatively more important than regional processes in structuring coastal salt marsh communities. Our results also suggested that in ecosystems with low species diversity, functional and phylogenetic approaches may not provide additional insight over a species-based approach.  相似文献   

12.
通过野外试验布设陷阱捕捉传粉昆虫,调查豫西山地春秋两季不同人为强度土地利用下的传粉昆虫多度、丰富度等,并结合实地的植被群落特征,研究传粉昆虫的多样性、群落相似性及物种重要度(重要值).结果表明: 春秋两季累计捕获传粉昆虫23275头,优势类群多为膜翅目、双翅目等.春季捕获传粉昆虫的数量约是秋季数量的1.8倍,且两个季节传粉昆虫的个体多度差异达到极显著水平.春秋季捕获的双翅目、膜翅目相对多度较高,且季节之间变化不大.鳞翅目、鞘翅目个体数量较少,其中春季捕获的鳞翅目数量极少,秋季的鞘翅目数量也偏低.丘陵的Shannon多样性指数、Pielou均匀度指数和Margalef丰富度指数要明显高于其他两种地貌类型;山地的优势度指数和物种的个体数均高于其他两种地貌类型.不同地貌传粉昆虫的多样性和优势度差异达到显著水平,丘陵传粉昆虫多样性与山地和平原均有显著差异,山地的优势度与丘陵有显著差异.季节变化对传粉昆虫群落影响较小,但群落内各物种组成之间存在一定差异.从Morisita-Horn和Sørensen相似系数来看,仅有膜翅目群落在山地和丘陵间有显著差异.春秋季的物种重要值也存在差异,春季中胡蜂科的重要值最高,寄蝇科、果蝇科次之;秋季中花蝇科重要值最高,胡蜂科次之.传粉昆虫与农作物密切相关,影响着作物生长和粮食产量.在种植作物过程中因地制宜,合理规划土地利用方式,根据不同地貌内的植被类型适当调整物种组成,保护其多样性,对维持农业可持续发展和提高生态系统服务意义重大.  相似文献   

13.
The species composition of a community is a subset of the regional species pool, and predicting the species composition of a community from ecological traits of organisms is an important objective in ecology. If such a prediction can be made feasible, we could assess the risk of invasion of locally new species (alien species and genetically modified species) into natural communities. We developed and tested statistical models to predict a community’s species composition from ecological traits of the species pool. Various types of communities (forest, meadow, and weed communities) exist in a small area of traditional rural landscape in Japan, and have been maintained by human activities. These communities and the tracheophytes species pool in the 1-km2 research area were considered. We used logistic regression and decision-tree analysis to construct predictive models of community species composition based on plant traits, using the presence or absence of species in a community as the dependent variable and ecological traits as independent variables. Plant traits were grouped by cluster analysis, and the average in each trait group was used for model building to avoid multiple collinearity. Statistical prediction models were significant in all communities. About 60–75% of species composition could be predicted from the measured plant traits in forest communities, but 33–56% in the meadow and weed communities. Our results showed the possibility of predicting the species composition of plant communities from the ecological traits of the plant species together with the information on local species pool.  相似文献   

14.
Semi-arid scrubland in the Middle East consists of a soil crust matrix overlain with patches of perennial shrubs. To understand factors influencing biodiversity in this vulnerable landscape we need to understand how this mosaic of habitats influences associated fauna. Spiders are particularly abundant in this habitat so we asked if spider diversity differed between habitat patches and if different patch types contained either a subset of the regional species pool or specific species guilds. We also asked whether changes in the fractal nature of the microphytic and macrophytic patch mosaic altered spider diversity in this habitat. We found that the semi-arid scrubland at Sayeret Shaked Park (Israel) contains different spider communities that require patches of a certain quality to develop fully. Different patch types contain communities of different species, but the community structure of the patches is similar. We suggest that large-scale environmental factors typical of the site as a whole influence coarse-grained community structure, while small-scale differences between patch types result in the specialisation of species to different patch types.  相似文献   

15.
分别以群丛类型和生长基质类型(包括树生、石生、土生)作为资源轴,对小秦岭56个样方中苔藓植物的生态位特征进行分析和对比。结果表明:(1)两种资源轴上苔藓物种的生态位特征存在一定差异,不同资源轴上,苔藓物种生态位宽度排序发生一定改变。两种资源轴上,青藓属(Brachythecium)均具有较大的生态位宽度,而酸土藓属(Oxystegus)和叶苔属(Jungermania)在不同资源轴上生态位宽度差异较大。(2)对比两种资源轴上的生态位重叠值,生长基质类型明显高于群丛类型;在不同资源轴上,个别物种生态位重叠值排序还会发生明显改变。树平藓属(Homaliodendron)与金灰藓属(Pylaisiella)在两种资源轴上表现出完全相反结果。(3)与维管植物相似,生态位宽度较大的苔藓物种生态位重叠值高,生态位宽度小的苔藓物种也会有较大生态位重叠。  相似文献   

16.
Abstract. Recently established forests are commonly characterized by an impoverished understorey. Restoration is mostly based on spontaneous secondary succession, but little is known about the time period needed to achieve a community species pool with species composition equal to that of ancient forests. Vegetation in transects of 197 plots in 13 recent forest stands contiguous to the Meerdaalwoud ancient forest complex was surveyed. The recent forest stands ranged in age from 36 to 132 yr. The community species pool was described with an ecological, functional and phytosociological approach and based on groups derived from a CCA. Differences in community species pool between age classes of recent forest stands were analysed. During establishment of a new forest competitive species, forest edge species and species with high Ellenberg values for light and nitrogen and a more persistent seed bank will dominate the understorey. After 90 yr of succession the cover by these species decreases and reaches equal values to ancient forest after ca. 105 yr. A large number of forest species will be able to colonize the forest in less than 90 yr. Some typical forest species, however, have very low colonization rates and still have low cover in recent forest more than 105 yr old, so that complete restoration of the understorey requires a time period of over a century. Anthropogenic introduction of forest plant species may reduce the time required for ancient forest vegetation equality.  相似文献   

17.
A new vegetation-ecological approach is proposed for classification and evaluation of vegetation zones by means of phytosociological landscape analysis, based on the potential natural vegetation. The study area is the “Fagetea crenatae region” of the cool-temperate zone of Tohoku (northern Honshu) and the northern parts of Kanto. The area was divided into 953 geographic quadrats on a base map at a scale of 1 ∶ 500000. Based on climax complexes of vegetation in each quadrat, 55 community sub-groups were distinguished as basic units of community complex and vegetation landscapes. The community sub-groups were then grouped into 17 larger community groups by the phytosociological table method. As a result, three phytogeographic vegetation zones (Japan Sea side, inland areas and Pacific side) were classified. For each of these community sub-groups, five geographical and climatic variables (average altitude, mean annual temperature, Kira's warmth index, annual precipitation and mean annual maximum snow depth) were averaged, and the community sub-groups in the same community group, which resembled each other ecologically, were assembled into 28 clusters. The clusters were combined into 11 ecological groups by means of Pearson's similarity ratio of geographical and climatic characteristics. By comparing these ecological groups as a vegetation complex, four phytogeographic vegetation zones (Japan Sea side, inland areas, Pacific side and northern Honshu) corresponding to each potential natural vegetation region with distinct environmental characteristics, were newly classified.  相似文献   

18.
Entropy and diversity   总被引:14,自引:0,他引:14  
LouJost 《Oikos》2006,113(2):363-375
Entropies such as the Shannon–Wiener and Gini–Simpson indices are not themselves diversities. Conversion of these to effective number of species is the key to a unified and intuitive interpretation of diversity. Effective numbers of species derived from standard diversity indices share a common set of intuitive mathematical properties and behave as one would expect of a diversity, while raw indices do not. Contrary to Keylock, the lack of concavity of effective numbers of species is irrelevant as long as they are used as transformations of concave alpha, beta, and gamma entropies. The practical importance of this transformation is demonstrated by applying it to a popular community similarity measure based on raw diversity indices or entropies. The standard similarity measure based on untransformed indices is shown to give misleading results, but transforming the indices or entropies to effective numbers of species produces a stable, easily interpreted, sensitive general similarity measure. General overlap measures derived from this transformed similarity measure yield the Jaccard index, Sørensen index, Horn index of overlap, and the Morisita–Horn index as special cases.  相似文献   

19.
Volcanoes often harbour specialized plant communities and shelter endemic plant species. Kula Volcano is one of 14 volcanoes in Turkey. Although this volcano is clearly a landmark of the Aegean region, only few botanical studies analysed the vegetation pattern at the Kula Volcano. None performed a phytosociological classification to delimit different plant communities. We applied a stratified random sampling design according to altitude and aspect and sampled 112 vegetation plots. We classified plant community types using a modified TWINSPAN analysis followed by the determination of diagnostic species based on φ coefficient fidelity values. Floristic relationships between plant community types were interpreted by ordination and ANOSIM analyses. Further, we used partial correlations of the ordination axes and environmental parameters in order to identify relationships between vegetation zonation and environment. We identified five major plant community types based on 85 diagnostic species. These plant community types were significantly correlated with altitude and aspect. Further, 13 endemic plant species were found from which one was endangered and one was classified as vulnerable according to International Union for Conservation of Nature (IUCN).  相似文献   

20.
Jrg Ewald 《植被学杂志》2002,13(2):191-198
Abstract. Species pools are increasingly recognized as important controls of local plant community structure and diversity. While existing approaches to estimate their content and size either rely on phytosociological expert knowledge or on simple response models across environmental gradients, the proposed application of phytosociological smoothing according to Beals exploits the full information of plant co‐occurrence patterns statistically. Where numerous representative compositional data are available, the new method yields robust estimates of the potential of sites to harbour plant species. To test the new method, a large phytosociological databank covering the forested regions of Oregon (US) was subsampled randomly and evenly across strata defined by geographic regions and elevation belts. The resulting matrix of species presence/absence in 874 plots was smoothed by calculating Beals' index of sociological favourability, which estimates the probability of encountering each species at each site from the actual plot composition and the pattern of species co‐occurrence in the matrix. In a second step, the resulting lists of sociologically probable species were intersected with complete species lists for each of 14 geographical subregions. Species pools were compared to observed species composition and richness. Species pool size exhibited much clearer spatial trends than plot richness and could be modelled much better as a function of climatic factors. In this framework the goal of modelling species pools is not to test a hypothesis, but to bridge the gap between manageable scales of empirical observation and the spatio‐temporal hierarchy of diversity patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号