首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine testicular β-galactosidase is rapidly assimilated by generalized gangliosidosis skin fibroblasts. The enzyme contains equimolar amounts of mannose and glucosamine and strongly binds to concanavalin A-Sepharose. Pretreatment of β-galactosidase with a mannosidase preparation from Aspergillusniger reduced the rate of assimilation of the enzyme 97%. These data indicate that mannosyl residues play a role in assimilation of the enzyme. This conclusion is supported by observed inhibition of β-galactosidase assimilation by mannose, methyl α- and β-mannopyranosides, and mannose-containing testicular glycoproteins.  相似文献   

2.
Egg white proteins of three species of tortoises and turtle and of hen have been compared by electrophoretic and immunochemical methods. The proteins lacked similarity in electrophoresis, but tortoise and turtle egg white proteins which did not crossreact with those of the hen showed some cross-reaction among themselves. The occurrence of lysozyme as two allelic variants which were distinguishable in electrophoresis was noted only in the egg white of one of the species of tortoise, namely, Trionyx gangeticus Cuvier. Tortoise lysozyme which showed strong lytic activity toward cell walls of Micrococcus lysodeikticus did not exhibit any cross-reaction with hen lysoyzme. It was purified, crystallized, and found to be homogeneous in sodium dodecyl sulfatepolyacrylamide gel electrophoresis, immunochemical tests, and sedimentation. The physicochemical and enzymatic properties of tortoise lysozyme were found to be strikingly similar to those of hen lysozyme with minor differences which could be due to differences in their primary structure. Its average molecular weight of 15,400 was determined from sedimentation and diffusion coefficient values, Archibald experiment, and amino acid composition. The molecule appeared to undergo pH-dependent expansion at pH 2 and dimerization above pH 5.7. In enzymatic properties, tortoise lysozyme showed a specific activity of 29,000–31,000 units and gave a pH optimum at pH 7.5 and an apparent Ka value of 250 mg· liter?1. Like hen lysozyme, its activity showed strong ionic strength dependence, weak chitinase activity, susceptibility to inhibition by N-acetyl-glucosamine, and stability toward heat.  相似文献   

3.
A soluble rat liver nuclear extract containing total RNA polymerase activities also exhibits appreciable amounts of protein kinase activity. This unfractionated protein kinase catalyzes the phosphorylation of both endogenous proteins and exogenous lysine-rich histone in the presence of [γ-32P]ATP and Mg2+. The optimal concentration of Mg2+ is 5 mm for histone phosphorylation and 25 mm for the phosphorylation of endogenous proteins. Cyclic AMP has no effect on the phosphorylation of lysine-rich histone by this unfractionated nuclear protein kinase. However, addition of cyclic AMP causes a reduction in the 32P-labeling of an endogenous protein (CAI) which can be characterized by its mobility during SDS-acrylamide gel electrophoresis and elution in the unbound fraction of a DEAESephadex column. If CAI is first labeled with 32P and then incubated with 10?6m cyclic AMP under conditions where protein kinase activity is inhibited, the presence of the cyclic nucleotide causes a loss of the 32P-labeling of this protein, implying the activation of a substrate-specific protein phosphatase. When rat liver RNA polymerases are purified by DEAE-Sephadex chromatography, protein kinase activity is found in the unbound fraction and in those column fractions containing RNA polymerase I and II. The fractionated protein kinases exhibit different responses to cyclic AMP, the unbound protein kinase being stimulated and the RNA polymerase-associated protein kinases being dramatically inhibited. A second protein (CAII) whose phosphorylated state is modified by cyclic AMP is found within the DEAE-Sephadex column fractions containing RNA polymerase II. The cyclic nucleotide in this case appears to reduce labeling of CAII by inhibition of the protein kinase activity which co-chromatographs with both CAII and RNA polymerase II. Based on molecular weight estimates, neither CAI nor CAII appears to be an RNA polymerase subunit. The identity of CAI as a protein factor whose phosphorylated state influences nuclear RNA synthesis is suggested by the fact that addition of fractions containing CAI to purified RNA polymerase II inhibits the activity of this enzyme, but only if CAI has been previously incubated in the presence of cyclic AMP.  相似文献   

4.
5.
The kinetic properties and substrate specificities of dipeptidyl-aminopeptidase IV (EC 3.4.14.—) detergent-solubilized and purified from the brush border membrane of rat small intestinal mucosal cells were investigated. Kinetic analysis of purified dipeptidyl-aminopeptidase IV was carried out with a variety of oligopeptides and β-napthylamide derivatives as substrates. In general, peptides with proline penultimate to the amino terminus (XPro, X= amino acid) are more favored substrates while those with alanine (XAla) are hydrolyzed at a slower rate. There is some activity toward substrates having leucine at both the penultimate position and amino terminus (LeuLeu). The activity of the purified enzyme toward GlylProβ-napthylamide derivative is maximal at pH 8.4 in Tris-HCl buffer, with an activation energy of 7.98 kcal/mol. There is no requirement for metal ion. The ability of various dipeptides to inhibit Gly-l-Pro-β-napthylamide derivative hydrolysis was used to determine the binding specificity of the enzyme for the amino-terminal amino acid. These data show that a free amino acid group is necessary for enzymatic activity and increased hydrophobicity of the amino acid at the amino terminus enhances binding.  相似文献   

6.
Two isoenzymes of lactate dehydrogenase have been purified from Homarus americanus: One is found predominantly in the tail muscles; the other, in the walking leg muscles. This is the first demonstration of multiple forms of l-specific lactate dehydrogenase in an invertebrate organism. These proteins contain four essential sulfhydryl groups titratable by p-hydroxymercuribenzoate and 5,5′-dithiobis(2-nitrobenzoic acid). The molecular weights of these isoenzymes are dependent upon ionic strength. The native tetramer (Mr 145,000) exists in low ionic strength solutions; the active dimer (Mr 75,000), in high ionic strength solutions; this is the only example of lactate dehydrogenase disaggregation without concomitant loss in enzymatic activity. Microcomplement fixation studies suggest that there may be less than 4% difference in the primary structures of these two proteins.  相似文献   

7.
Soluble ATPase (F1) has been purified from pig heart mitochondria. The purified enzyme had a high specific activity and was homogeneous as checked by ultracentrifugation and electrofocusing. It could be dissociated into subunits by cold-treatment or sodium dodecyl sulfate denaturation. The molecular weights of the two major and three minor subunits could be estimated by sodium dodecyl sulfate gel electrophoresis. The native enzyme had an isoelectric point of 5.2 while the cold-denatured enzyme showed three main bands focusing at pH 5.0, 5.2, and 5.4. Kinetic properties (Vm and Km (atp) have been compared for the soluble and membrane bound ATPase in presence of various anions. Inhibitory effects of Quercetin and other flavonoids have been tested in order to get an insight on the interaction between ATPase and its natural inhibitor.  相似文献   

8.
During myogenesis in vitro the actin-binding protein filamin is present in myoblasts and early fused cells and is associated with α-actinin-containing filament bundles, as judged by double immunofluorescence using antibodies specific for these two proteins. Approximately one day after cell fusion, yet before the development of a-actinin-containing Z line striations, filamin disappears from the cells. Later in myogenesis, several days after the appearance of α-actinin-containing Z line striations, filamin reappears and accumulates in the cells. Double immunofluorescence with antibodies to filamin and vimentin (or desmin) reveals that the newly appearing filamin localizes now to the myofibril Z line and is visible there shortly before vimentin or desmin becomes associated with the Z line. Immunofluorescent localization of filamin in isolated chicken skeletal myofibrils and Z disc sheets indicates that filamin has the same distribution as desmin and vimentin; it surrounds each myofibril Z disc and forms honeycomb-like networks within each Z plane of the muscle fiber. Filamin may thus be involved in the transition of desmin and vimentin to the Z disc. Analysis of whole-cell extracts by SDS-polyacrylamide gel electrophoresis and by immunoautoradiography shows that filamin is present in myoblasts and in myotubes early after cell fusion. Concomitant with the absence of filamin fluorescence during the subsequent few days of myogenesis, the quantity of filamin is markedly reduced. During this time, metabolic pulse-labeling with 35S-methionine reveals that the synthetic rate of filamin is also markedly reduced. As filamin fluorescence appears at the Z line, the quantity of filamin and its synthetic rate both increase. The removal of filamin from the cells suggests that filamin either may not be required, or may actually interfere with a necessary process, during the early stages of sarcomere morphogenesis. These results also indicate that the periphery of the Z disc is assembled in at least two distinct steps during myogenesis.  相似文献   

9.
The four human Duchenne dystrophic isoenzymes (M-M, M-B, B-B, from the muscle and B-B from the brain) of ATP-creatine transphosphorylase (S. A. Kuby, H. J. Keutel, K. Okabe, H. K. Jacobs, F. Ziter, D. Gerber, and F. H. Tyler, 1977, J. Biol. Chem.252, 8382–8390) have now been compared physically and chemically with their normal human counterparts (viz., with the three isoenzymes, M-M, M-B, B-B, 2). All isoenzymes proved to be composed of two noncovalently linked polypeptide chains, by sedimentation equilibrium analyses in the presence and absence of disruptive agents. In the presence of 2-mercaptoethanol at 0.16(Γ/2), pH 7.8, the two native muscle types yielded identical values for s20,w, concentration dependencies, and molecular weight, and similarly for the brain types (from the brain). But the human brain type proved to be slightly heavier than the muscle type (viz. 88,400 vs 85,900). All of the isoenzymes showed similar electrophoretic behavior between their several counterparts between pH 5–8, except perhaps between pH 8–10, where small differences appeared. The three native normal human isoenzymes, as well as the dystrophic human isoenzymes (M-M from the muscle and B-B from the brain) all contain 2 reactive sulfhydryl groups per mole or 1 per polypeptide chain of these two-chain proteins, which may be titrated with 5,5′-dithiobis(2-nitrobenzoic acid) (Nbs2); and under acidic conditions, quantitative titrations with 4,4′-dithiodipyridine yield a total of 10 -SH groups per mole of each brain type and 8 -SH groups per mole of muscle type, in the case of man, dystrophic man, calf, and rabbit. The kinetics of reactions between Nbs2 and the sulfhydryl groups of all three normal human isoenzymes and two dystrophic human isoenzymes have been measured under several sets of denaturing conditions. A comparison of their reactive calculated second-order velocity constants reveal significant differences between these three normal human isoenzymes, but the ksecond order values for the reactions of the sulfhydryl groups of the dystrophic M-M and B-B with Nbs2, when compared with their normal counterparts, gave identical values in the presence of 7.3 m urea or 1.8% laurylsulfate, from which it may be inferred that very similar, if not identical, environments surround these two sets of sulfhydryl groups. A comparison of the amino acid compositions of the normal human muscle type and brain type with the human dystrophic M-M and B-B (from the brain) reveal essentially identical values for the muscle types but nearly identical values for the brain types, with a few differences. Their respective tryptic peptide maps have been compared of the S-carboxy-methylated proteins (alkylated with iodo[2-14C]acetic acid at the two exposed -SH groups per mole). Thus, the muscle types, normal and dystrophic, yield identical maps, but the brain types nearly identical maps, with a few significant differences. Isolation of the tryptic tridecapeptide from the S-carboxymethylated normal human and dystrophic human dimeric muscle-type ATP-creatine transphosphorylases, labeled at the single exposed SH group per polypeptide chain with iodo[2-14C]acetate, yielded the following sequence for both proteins: ValLeuThrCys(CH2COOH)ProSerAsnLeuGlyThr GlyLeuArg [where Cys(CH2COOH) is S-carboxymethyl cysteine]. This sequence showed remarkable homology with a few other equivalent peptides reported to be derived from the exposed SH group of other ATP-creatine transphosphorylases. In conclusion, there does not appear to be a mutation in the structural genes for the muscle-type creatine kinases detectable by the analyses presented here. However, the brain types warrant further investigation.  相似文献   

10.
In this investigation, the interaction of mouse sperm with unfertilized eggs and embryos, solubilized zonae pellucidae isolated from eggs and embryos, and purified zona pellucida glycoproteins ZP1, 2, and 3 (J. D. Bleil, and P. M. Wassarman, (1980b) Dev. Biol. 76, 185-202) has been examined in vitro by light and electron microscopy. The experiments described were carried out in order to determine the temporal sequence of events during sperm-egg interaction in vitro and to identify the component(s) of zonae pellucidae responsible for inducing mouse sperm to undergo the acrosome reaction. "Pulse-chase" analysis of the sequence of sperm-egg interactions revealed that mouse sperm first "attach" loosely and then "bind" tightly to the unfertilized egg's zona pellucida. Binding of sperm to egg zonae pellucidae is followed by induction of the acrosome reaction. Induction of the acrosome reaction can be mediated by the zona pellucida, since solubilized zonae pellucidae isolated from unfertilized eggs were found to be just as effective as the calcium ionophore A23187 in inducing the reaction in vitro. Furthermore, ZP3 purified from zonae pellucidae isolated from unfertilized eggs, but not from two-cell embryos, was also just as effective as either solubilized zonae pellucidae from eggs or ionophore A23187 in inducing the acrosome reaction. ZP1 and 2 from both eggs and embryos, and ZP3 from embryos, had little effect on the extent of the acrosome reaction as compared to control samples. The results of these and other experiments (J. D. Bleil, and P. M. Wassarman, (1980b) Cell 20, 873-882) strongly suggest that, at least in vitro, mouse sperm recognize and bind to ZP3 of egg zonae pellucidae, and that such binding leads to the induction of the acrosome reaction. Modification of ZP3 following fertilization eliminates sperm binding to zonae pellucidae and, consequently, induction of the acrosome reaction is precluded.  相似文献   

11.
Human serum albumin (HSA) has been shown to bind 2–3 mol of Zn2+, Ni2+, or Cd2+ per mole of protein with apparent dissociation constants (Kd) in the range of 10 μm. Rabbit histidine-rich glycoprotein (HRG) binds 13, 9, and 6 mol of Zn2+, Ni2+, and Cd2+ per mole of protein, respectively, with apparent Kds also near 10 μm. However, the binding of metals by HRG exhibits positive cooperativity, so that the apparent Kds may underestimate HRGs true affinity for metal ions. The relative affinities of HSA and HRG for metal ions were found to be Zn2+ > Ni2+ > Cd2+. In addition, histidine (a serum metal chelator) affected the binding of Ni2+ by both proteins but not that of Zn2+ or Cd2+. At physiological concentrations of HSA (250 μm), HRG (2.5 μm), and histidine (100 μm), HRG bound 36% of the Zn2+, 9% of the Ni2+, and 13% of the Cd2+ at a total metal concentration of 25 μm. Under the same conditions HSA held 37% of the Zn2+, 14% of the Ni2+, and 56% of the Cd2+. Thus, HSA appears to have a lower intrinsic affinity for the three metals than HRG but would be expected to bind a higher proportion of these metals in serum. A specific immunoadsorbent column was prepared and used to study the metal binding by HRG in serum directly. Both 65Zn2+ and 63Ni2+ were associated with HRG in aliquots of rabbit serum after incubation with the corresponding metal ion. This evidence indicates that HRG must be considered as a metal binding component of serum.  相似文献   

12.
J Pouysségur  K M Yamada 《Cell》1978,13(1):139-140
We have isolated and immunochemically characterized a major membrane glycoprotein of mouse 3T3 cells. This GRP (glucose/glycosylation-regulated protein) is labeled by lactoperoxidase-mediated iodination and by 14C-glucosamine, binds concanavalin A and has an apparent molecular weight in SDS-polyacrylamide gels of 92,000 daltons (or 97,000 daltons in a discontinuous gel system). Glycosylated GRP was isolated from plasma membranes using Triton X-100 extraction, affinity chromatography on concanavalin A-Sepharose and preparative SDS gel electrophoresis.Antibody against this glycosylated GRP stains the external surfaces of mouse cells and induces patches and caps. Immunofluorescence and immunoprecipitation studies indicate that this glycoprotein can exist in the membrane in two molecular forms, either as a glycosylated or as a nonglycosylated protein. The nonglycosylated form is induced under conditions of limited glycosylation or glucose deprivation. This nonglycosylated GRP remains accessible to antibodies on the exterior of cells, but becomes inaccessible to lactoperoxidase.The immunoprecipitation of the 92K GRP with its specific antibody is always associated with the precipitation of a small fraction of the other major GRP of molecular weight 75,000 daltons. We suggest that both GRP (92K and 75K) may function in close association in the membrane.  相似文献   

13.
Using improved fixation procedures we have found that extensive endocytotic activity is turned on at fertilization in eggs of three species of sea urchins. Beginning after completion of cortical granule exocytosis and after exocytotic pits have completely smoothed over, the entire activated egg surface engages in a limited period of extensive removal of membrane via uptake into coated vesicles. This “burst phase” lasts about 3–5 min after which the number of invaginating coated vesicles decreases rapidly. At the end of this burst phase all the patches of cortical granule membranes have disappeared, and the egg surface is left uniformly covered by microvilli. For the remainder of the first cell cycle coated pits continue to form at a slower but steady rate. Endocytotic activity continues past the time of first cleavage. There is distinct overlap in onset and duration of the burst phase of endocytosis with the period of medium acidification during normal development. However, activation of eggs in choline sea water, which inhibits acid secretion, results in an endocytic burst whose timing and duration are similar to those in normal eggs. The endocytic burst is, therefore, independent of cytoplasmic alkalinization. These results suggest, in accord with the two-step model of egg activation (D. Epel, R. A. Steinhardt, and R. A. Humphreys, 1974; Dev. Biol.40, 245–255; D. Epel, 1978, Curr. Top. Dev. Biol.12, 185–246) that initiation of endocytosis is most likely a Ca2+-dependent event.  相似文献   

14.
A new micro-method was used to determine the effects of cold acclimation of rats on the levels of prostaglandin E2 and F alpha in both white and brown adipose tissues. Whereas PGF alpha levels were significantly higher than PGE2 levels in white fat, no difference between the amounts of the two prostaglandins was observed in brown fat. In both tissues, cold acclimation did not induce any change in prostaglandin levels.  相似文献   

15.
The results of this investigation show that the visible and near ultraviolet extinction coefficients of the ferritin iron core increase as the content of iron per ferritin molecule increases. Additionally, the absorption spectrum of ferritin undergoes a red shift as the content of iron per molecule increases. These results suggest that use of the visible absorbance of ferritin to attempt to quantitate iron content or rate of iron exchange is subject to question. The experimentally determined coefficients of ferritin were used to calculate guidelines for the determination of the protein concentration of low-iron apoferritin or ferritin solutions by either absorbance or differential refractometry or a combination of both.  相似文献   

16.
The effect of choline deficiency on the kinetic properties of the microsomal enzyme UDP-glucuronyltransferase (EC2.4.1.17) was investigated in rats. Animals fed choline-deficient diets, as compared with animals fed a choline-replete diet or standard laboratory chow, showed almost a three-fold increase in enzyme activity when the enzyme was assayed at physiological concentrations of UDP-glucuronic acid (0.25 mM). The increase in activity appeared to be due to an enhanced affinity of the enzyme for UDP-glucuronic acid rather than to an increase in the amount of enzyme. These data indicate that the kinetic properties of tightly bound membrane enzymes are altered by a dietary change that is known to cause liver disease in the rat.  相似文献   

17.
Although spermatozoa possess a very active carnitine acetyltransferase, there is no satisfactory explanation for such a high activity. In order to help elucidate possible roles for carnitine acetyltransferase in spermatozoa, we examined the intracellular location and properties of carnitine acetyltransferase from ejaculated ram spermatozoa. The spermatozoa were disrupted by hypotonic treatment with 10 mm phosphate buffer (pH 7.4), followed by mild sonication. The resulting homogenate was separated by sucrose step-gradient centrifugation into soluble, plasma membrane, acrosomal membrane, and mitochondrial fractions. These fractions were characterized by electron microscopy and marker enzyme assays. The particulate fractions were made soluble by treatment with 0.1% deoxycholate and then were assayed for carnitine acetyltransferase activity. Carnitine acetyltransferase activity was found exclusively in the mitochondrial fraction with a specific activity of 0.151 μmol CoASH · min?1 · mg?1. The apparent Km values for acetyl-CoA and l-carnitine were 1.1 × 10?5 and 1.3 × 10?4m respectively.  相似文献   

18.
Selected chemical and physical properties were measured for different forms of ferritin subunits which had been separated by reverse-phase high-performance liquid chromatography. Ferritin subunits from porcine spleen behaved, on sodium dodecyl sulfatepolyacrylamide gel electrophoresis, as though they were ~ Mr 2000 larger than equine spleen ferritin, whereas no difference in size was observed by gel chromatography in 6 m guanidinium chloride. All subunit species exhibited similar isoelectric focusing properties. In contrast to previous reports, no carbohydrate could be found associated with any of the isolated subunit species. Thus, the aberrant behavior of the porcine ferritin subunits between the two empirical molecular weight estimation methods appears to be the result of factor(s) other than protein intrinsic charge or covalently attached carbohydrate.  相似文献   

19.
P Kerjan  J Szulmajster 《Biochimie》1976,58(5):533-541
A ribonuclease was isolated and completely purified from sporulating cells of Bacillus subtilis. This RNase has a M.W. of about 150,000 daltons. It hydrolyzes single stranded RNA and single stranded synthetic polynucleotides yielding nucleoside 5'-monophosphates. The enzyme is an exonuclease which degrades polynucleotides from the 3'-end in the direction of the 5'-terminal. The RNase activity is strikingly inhibited by cGMP and to a lesser extent by cAMP. This inhibition (Ki = 0.1 mM) is of a non competitive nature. It appeared that in addition to the inhibition site, the enzyme contains a high affinity binding site for the two cyclic mononucleotides (K (cAMP) = 8.3 x 10-8; K (cGMP) = 2.5 x 10-7). The RNase activity is also strongly inhibited by spermidine. This inhibition appeared to be due to the polyamine binding with the RNA, thus lowering the affinity of the substrate for the active site of the enzyme. This RNase may play a role in vivo in selective degradation of newly synthesized mRNA during sporulation.  相似文献   

20.
The inhibition of acetylcholinesterase by arsenite and fluoride   总被引:1,自引:0,他引:1  
The effect of fluoride on the rate of reaction of acetylcholinesterase with arsenite, on the rate of dissociation of the enzyme-arsenite complex, and on the equilibrium between enzyme and arsenite was studied. Fluoride decreases the rate of the reaction between acetylcholinesterase and arsenite and changes the apparent equilibrium dissociation constant between the enzyme and arsenite, but even at concentrations as high as 0.2 M has no effect on the rate of dissociation of the enzyme-arsenite complex. The binding of fluoride and arsenite with the enzyme is highly anticooperative and may well be mutually exclusive. These results are consistent with a model in which the binding sites overlap and in which the same functional groups are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号