首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthocyanidin synthase (ANS), a member of the 2-oxoglutarate-dependent dioxygenase family in flavonoid biosynthesis, catalyzes the conversion of leucoanthocyanidins (e.g. 2R,3S,4S-cis-leucocyanidin, LCD) to flav-2-en-3,4-diols, a direct precursor of colored anthocyanidins via flavan-3,3,4-triols. The detailed oxygenation mechanism of 2R,3S,4S-cis-LCD to flav-2-en-3,4-diols was investigated using the density functional theory method. An initial model for the calculation was constructed from a structure obtained by a 100-ps molecular dynamics simulation of Arabidopsis ANS under physiological conditions. This model consisted of an LCD molecule as the substrate together with an iron atom, two histidine residues, an aspartic acid residue, a succinate, and an oxygen atom as ligands of the iron atom. The results of the calculation indicated that both the C-3 and C-4 positions of LCD can be oxidized, although C-4 oxidation is preferable. The C-3 oxidation required several steps to form flavan-3,3,4-triol: 1) formation of Fe(III)-OH and a substrate C-3 radical via hydrogen atom abstraction by Fe(IV)=O, 2) formation of a C-3 ketone and a water molecule, 3) addition of OH(-) into the C-3 position of the ketone, and 4) addition of H(+) to form flavan-3,3,4-triol. On the other hand, C-4 oxidation of 2R,3S,4S-cis-LCD resulted in the direct formation of 2R,3R-trans-dihydroquercetin. These results suggest that the oxidation at C-3 of LCD, a key reaction for coloring in anthocyanin biosynthesis, can be regarded as a "side reaction" from the viewpoint of quantum mechanics of enzymatic reactions. Molecular evolutional implications of ANS and related proteins are discussed in terms of reaction dynamics.  相似文献   

2.
Anthocyanidins were proposed to derive from (+)-naringenin via (2R,3R)-dihydroflavonol(s) and (2R,3S,4S)-leucocyanidin(s) which are eventually oxidized by anthocyanidin synthase (ANS). Recently, the role of ANS has been put into question, because the recombinant enzyme from Arabidopsis exhibited primarily flavonol synthase (FLS) activity with negligible ANS activity. This and other studies led to the proposal that ANS as well as FLS may select for dihydroflavonoid substrates carrying a "beta-face" C-3 hydroxyl group and initially form the 3-geminal diol by "alpha-face" hydroxylation. Assays with recombinant ANS from Gerbera hybrida fully supported the proposal and were extended to catechin and epicatechin isomers as potential substrates to delineate the enzyme specificity. Gerbera ANS converted (+)-catechin to two major and one minor product, whereas ent(-)-catechin (2S,3R-trans-catechin), (-)-epicatechin, ent(+)-epicatechin (2S,3S-cis-epicatechin) and (-)-gallocatechin were not accepted. The K(m) value for (+)-catechin was determined at 175 microM, and the products were identified by LC-MS(n) and NMR as the 4,4-dimer of oxidized (+)-catechin (93%), cyanidin (7%) and quercetin (trace). When these incubations were repeated in the presence of UDP-glucose:flavonoid 3-O-glucosyltransferase from Fragariaxananassa (FaGT1), the product ratio shifted to cyanidin 3-O-glucoside (60%), cyanidin (14%) and dimeric oxidized (+)-catechin (26%) at an overall equivalent rate of conversion. The data appear to identify (+)-catechin as another substrate of ANS in vivo and shed new light on the mechanism of its catalysis. Moreover, the enzymatic dimerization of catechin monomers is reported for the first time suggesting a role for ANS beyond the oxidation of leucocyanidins.  相似文献   

3.
Anthocyanidin synthase (ANS), an iron(II) and 2-oxoglutarate (2OG) dependent oxygenase, catalyses the penultimate step in anthocyanin biosynthesis by oxidation of the 2R,3S,4S-cis-leucoanthocyanidins. It has been believed that in vivo the products of ANS are the anthocyanidins. However, in vitro studies on ANS using optically active cis- and trans-leucocyanidin substrates identified cyanidin as only a minor product; instead both quercetin and dihydroquercetin are products with the distribution being dependent on the C-4 stereochemistry of the leucocyanidin substrates.  相似文献   

4.
Flavanone 3beta-hydroxylase (FHT) and flavone synthase I (FNS I) are 2-oxoglutarate-dependent dioxygenases with 80% sequence identity, which catalyze distinct reactions in flavonoid biosynthesis. However, FNS I has been reported exclusively from a few Apiaceae species, whereas FHTs are more abundant. Domain-swapping experiments joining the N terminus of parsley (Petroselinum crispum) FHT with the C terminus of parsley FNS I and vice versa revealed that the C-terminal portion is not essential for FNS I activity. Sequence alignments identified 26 amino acid substitutions conserved in FHT versus FNS I genes. Homology modeling, based on the related anthocyanidin synthase structure, assigned seven of these amino acids (FHT/FNS I, M106T, I115T, V116I, I131F, D195E, V200I, L215V, and K216R) to the active site. Accordingly, FHT was modified by site-directed mutagenesis, creating mutants encoding from one to seven substitutions, which were expressed in yeast (Saccharomyces cerevisiae) for FNS I and FHT assays. The exchange I131F in combination with either M106T and D195E or L215V and K216R replacements was sufficient to confer some FNS I side activity. Introduction of all seven FNS I substitutions into the FHT sequence, however, caused a nearly complete change in enzyme activity from FHT to FNS I. Both FHT and FNS I were proposed to initially withdraw the beta-face-configured hydrogen from carbon-3 of the naringenin substrate. Our results suggest that the 7-fold substitution affects the orientation of the substrate in the active-site pocket such that this is followed by syn-elimination of hydrogen from carbon-2 (FNS I reaction) rather than the rebound hydroxylation of carbon-3 (FHT reaction).  相似文献   

5.
6.
Enhanced shoot growth and a decrease in flavonoid concentration in apple trees grown under high nitrogen (N) supply was observed in previous studies, along with increasing scab susceptibility of cultivar "Golden Delicious" after high N nutrition. Several hypotheses have suggested that there is a trade-off between primary and secondary metabolism because of competition for common substrates, but nothing is known about regulation at the enzyme level. In this study, a set of experiments was performed to elucidate the effect of N nutrition on the activities of key enzymes involved in flavonoid biosynthesis (phenylalanine ammonia-lyase [PAL], chalcone synthase/chalcone isomerase [CHS/CHI}, flavanone 3-hydroxylase [FHT], flavonol synthase [FLS], dihydroflavonol 4-reductase [DFR]) and the accumulation of different groups of phenylpropanoids. The inhibition of flavonoid accumulation by high N nutrition could be confirmed, but the influence of N supply on the flavonoid enzymes CHS/CHI, FHT, DFR, and FLS was not evident. However, PAL activity seems to be downregulated, thus forming a bottleneck resulting in a generally decreased flavonoid accumulation. Furthermore, the response of the scab-resistant cultivar "Rewena" to high N nutrition was not as strong as that of the susceptible cultivar "Golden Delicious".  相似文献   

7.
In the conversion from colorless leucoanthocyanidin to colored anthocyanidin 3-glucoside, at least two enzymes, anthocyanidin synthase (ANS) and UDP-glucose:flavonoid 3-O-glucosyltransferase (3-GT), are postulated to be involved. Despite the importance of this reaction sequence for coloring in anthocyanin biosynthesis, the biochemical reaction mechanism has not been clarified, and the possible involvement of a dehydratase has not been excluded. Here we show that recombinant ANSs from several model plant species, snapdragon, petunia, torenia, and maize, catalyze the formation of anthocyanidin in vitro through a 2-oxoglutarate-dependent oxidation of leucoanthocyanidin. Crude extracts of Escherichia coli, expressing recombinant ANSs from these plant species, and purified recombinant enzymes of petunia and maize catalyzed the formation of anthocyanidin in the presence of ferrous ion, 2-oxoglutarate, and ascorbate. The in vitro formation of colored cyanidin 3-glucoside from leucocyanidin, via a cyanidin intermediate, was demonstrated using petunia ANS and 3-GT. The entire reaction sequence did not require any additional dehydratase but was dependent on moderate acidic pH conditions following the enzymatic steps. The present study indicated that the in vivo cytosolic reaction sequence involves an ANS-catalyzed 2-oxoglutarate-dependent conversion of leucoanthocyanidin (flavan-3,4-cis-diol) to 3-flaven-2,3-diol (pseudobase), most probably through 2,3-desaturation and isomerization, followed by glucosylation at the C-3 position by 3-GT.  相似文献   

8.
To elucidate gene regulation of flower colour formation, the gene expressions of the enzymes involved in flavonoid biosynthesis were investigated in correlation with their product during floral development in lisianthus. Full-length cDNA clones of major responsible genes in the central flavonoid biosynthetic pathway, including chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3',5'-hydroxylase (F3'5'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and flavonol synthase (FLS), were isolated and characterized. In lisianthus, the stage of the accumulation of flavonols and anthocyanins was shown to be divided clearly. The flavonol content increased prior to anthocyanin accumulation during floral development and declined when anthocyanin began to accumulate. CHS, CHI, and F3H were necessary for both flavonol and anthocyanin biosynthesis and were coordinately expressed throughout all stages of floral development; their expressions were activated independently at the stages corresponding to flavonol accumulation and anthocyanin accumulation, respectively. Consistent with flavonol and anthocyanin accumulation patterns, FLS, a key enzyme in flavonol biosynthesis, was expressed prior to the expression of the genes involved in anthocyanin biosynthesis. The genes encoding F3'5'H, DFR, and ANS were expressed at later stages, just before pigmentation. The genes responsible for the flavonoid pathways branching to anthocyanins and flavonols were strictly regulated and were coordinated temporally to correspond to the biosynthetic order of their respective enzymes in the pathways, as well as in specific organs. In lisianthus, FLS and DFR, at the position of branching to flavonols and anthocyanins, were supposed to play a critical role in regulation of each biosynthesis.  相似文献   

9.
The secosteroid hormone 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] is metabolized in its target tissues through modifications of both the side chain and the A-ring. The C-24 oxidation pathway, the previously well established main side chain modification pathway, is initiated by hydroxylation at C-24 of the side chain. The C-3 epimerization pathway, the newly discovered A-ring modification pathway, is initiated by epimerization of the hydroxyl group at C-3 of the A-ring. The end products of the metabolism of 1alpha,25(OH)2D3 through the C-24 oxidation and the C-3 epimerization pathways are calcitroic acid and 1alpha,25-dihydroxy-3-epi-vitamin-D3 respectively. During the past two decades, numerous noncalcemic analogs of 1alpha,25(OH)2D3 were synthesized. Several of the analogs have altered side chain structures and as a result some of these analogs have been shown to resist their metabolism through side chain modifications. For example, two of the analogs, namely, 1alpha,25-dihydroxy-16-ene-23-yne-vitamin D3 [1alpha,25(OH)2-16-ene-23-yne-D3] and 1alpha,25-dihydroxy-16-ene-23-yne-20-epi-vitamin D3 [1alpha,25(OH)2-16-ene-23-yne-20-epi-D3], have been shown to resist their metabolism through the C-24 oxidation pathway. However, the possibility of the metabolism of these two analogs through the C-3 epimerization pathway has not been studied. Therefore, in our present study, we investigated the metabolism of these two analogs in rat osteosarcoma cells (UMR 106) which are known to express the C-3 epimerization pathway. The results of our study indicate that both analogs [1alpha,25(OH)2-16-ene-23-yne-D3 and 1alpha,25(OH)2-16-ene-23-yne-20-epi-D3] are metabolized through the C-3 epimerization pathway in UMR 106 cells. The identity of the C-3 epimer of 1alpha,25(OH)2-16-ene-23-yne-D3 [1alpha,25(OH)2-16-ene-23-yne-3-epi-D3] was confirmed by GC/MS analysis and its comigration with synthetic 1alpha,25(OH)2-16-ene-23-yne-3-epi-D3 on both straight and reverse-phase HPLC systems. The identity of the C-3 epimer of 1alpha,25(OH)2-16-ene-23-yne-20-epi-D3 [1alpha,25(OH)2-16-ene-23-yne-20-epi-3-epi-D3] was confirmed by GC/MS and 1H NMR analysis. Thus, we indicate that vitamin D analogs which resist their metabolism through the C-24 oxidation pathway, have the potential to be metabolized through the C-3 epimerization pathway. In our present study, we also noted that the rate of C-3 epimerization of 1alpha,25(OH)2-16-ene-23-yne-20-epi-D3 is about 10 times greater than the rate of C-3 epimerization of 1alpha,25(OH)2-16-ene-23-yne-D3. Thus, we indicate for the first time that certain structural modifications of the side chain such as 20-epi modification can alter significantly the rate of C-3 epimerization of vitamin D compounds.  相似文献   

10.
该研究以杂交兰(Cymbidium hybrid)不同花色花香品种‘玉凤’(K18,黄色)和‘福韵丹霞’(K24,紫红色)为材料,采用RNA-Seq技术获得杂交兰不同花期的花朵转录组数据,分析杂交兰不同时期花色/花香相关基因的表达变化,探讨杂交兰花色花香形成的分子机理,为杂交的定向改良和新品种选育提供依据.结果表明:(...  相似文献   

11.
Arabidopsis thaliana L. produces flavonoid pigments, i.e. flavonols, anthocyanidins and proanthocyanidins, from dihydroflavonol substrates. A small family of putative flavonol synthase (FLS) genes had been recognized in Arabidopsis, and functional activity was attributed only to FLS1. Nevertheless, other FLS activities must be present, because A. thalianafls1 mutants still accumulate significant amounts of flavonols. The recombinant FLSs and leucoanthocyanidin dioxygenase (LDOX) proteins were therefore examined for their enzyme activities, which led to the identification of FLS3 as a second active FLS. This enzyme is therefore likely responsible for the formation of flavonols in the ldox/fls1-2 double mutant. These double mutant and biochemical data demonstrate for the first time that LDOX is capable of catalyzing the in planta formation of flavonols.  相似文献   

12.
13.
The mechanism of 3-dehydroquinate synthase was explored by incubating partially purified enzyme with mixtures of [1-14C]3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP) and one of the specifically tritiated substrates [4-3H]DAHP, [5-3H]DAHP, [6-3H]DAHP, (7RS)-[7-3H]DAHP, (7R)-[7-3H]DAHP, or (7S)-[7-3H]DAHP. Kinetic and secondary 3H isotope effects were calculated from 3H:14C ratios obtained in unreacted DAHP, 3-dehydroquinate, and 3-dehydroshikimate. 3H was not incorporated from the medium into 3-dehydroquinate, indicating that a carbanion (or methyl group) at C-7 is not formed. A kinetic isotope effect kH/k3H of 1.7 was observed at C-5, and afforded support for a mechanism involving oxidation of C-5 with NAD. A similar kinetic isotope effect was found at C-6 owing to removal of a proton in elimination of phosphate, which is reasonably assumed to be the next step in 3-dehydroquinate synthase. Hydrogen at C-7 of DAHP was not lost in the cyclization step of the reaction, indicating that the enol formed in phosphate elimination participated directly in an aldolase-type reaction with the carbonyl at C-2. In the dehydration of 3-dehydroquinate to 3-dehydroshikimate the (7R) proton from (7RS)- or (7R)-[7-3H]DAHP is lost, indicating that the 7R proton occupies the 2R position in dehydroquinate. Hence the cyclization step occurs with inversion of configuration at C-7. A kinetic isotope effect kH/k3H = 2.3 was observed in the conversion of (2R)-[2-3H]dehydroquinate to dehydroshikimate. Hence loss of a proton from the enzyme-dehydroquinate imine contributed to rate limitation in the reaction.  相似文献   

14.
Incubation of cholesterol with a bovine adrenocortical mitochondrial acetone-dried powder preparation yielded (22R)-22-hydroxycholesterol (I), (20R,22R)-20,22-dihydroxycholesterol(II), and pregnenolone (III) which were conclusively identified by combined gas chromatography-mass spectrometry. Incubations with [4-14C]cholesterol yielded I, II, and III with specific activities (determined from partial mass-spectral scans) not significantly different from those of the used substrate or the cholesterol reisolated after the incubation, demonstrating that the isolated compounds arose mostly, if not entirely, from the substrate cholesterol. Incubations in an 18O-enriched atmosphere yielded I, II, and III with 18O at position C-22, C-20 and C-22, and C-20, respectively, providing evidence that the hydroxyl groups of the side chain of I and II and the C-20 oxygen atom of III originated from molecular oxygen. The distribution of the oxygen atoms in II after incubation with 18O2 and 16O2 (devoid of 16O18O) proved that the hydroxyl groups of the side chain of II were introduced from two different molecules of oxygen, consistent with a sequential hydroxylation of cholesterol. No (20S)-20-hydroxycholesterol was found. Incubation of I in an 18O-enriched atmosphere afforded II and III with 18O at C-20.  相似文献   

15.
The secosteroid hormone, 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], induces differentiation of the human promyelocytic leukemia (HL-60) cells into monocytes/macrophages. At present, the metabolic pathways of 1alpha,25(OH)(2)D(3) and the biologic activity of its various natural intermediary metabolites in HL-60 cells are not fully understood. 1alpha,25(OH)(2)D(3) is metabolized in its target tissues via modifications of both the side chain and the A-ring. The C-24 oxidation pathway, the main side chain modification pathway initiated by hydroxylation at C-24 leads to the formation of the end product, calcitroic acid. The C-23 and C-26 oxidation pathways, the minor side chain modification pathways initiated by hydroxylations at C-23 and C-26 respectively together lead to the formation of the end product, 1alpha,25(OH)(2)D(3)-lactone. The C-3 epimerization pathway, the newly discovered A-ring modification pathway is initiated by epimerization of the hydroxyl group at C-3 to form 1alpha,25-dihydroxy-3-epi-vitamin-D(3). We performed the present study first to examine in detail the metabolism of 1alpha,25(OH)(2)D(3) in HL-60 cells and then to assess the ability of the various natural intermediary metabolites of 1alpha,25(OH)(2)D(3) in inducing differentiation and in inhibiting clonal growth of HL-60 cells. We incubated HL-60 cells with [1beta-(3)H] 1alpha,25(OH)(2)D(3) and demonstrated that these cells metabolize 1alpha,25(OH)(2)D(3) mainly via the C-24 oxidation pathway and to a lesser extent via the C-23 oxidation pathway, but not via the C-3-epimerization pathway. Three of the natural intermediary metabolites of 1alpha,25(OH)(2)D(3) derived via the C-24 oxidation pathway namely, 1alpha,24(R),25-trihydroxyvitamin D(3), 1alpha,25-dihydroxy-24-oxovitamin D(3) and 1alpha,23(S),25-trihydroxy-24-oxovitamin D(3) [1alpha,23(S),25(OH)(3)-24-oxo-D(3)] were almost as potent as 1alpha,25(OH)(2)D(3) in terms of their ability to differentiate HL-60 cells into monocytes/macrophages. We then selected 1alpha,23(S),25(OH)(3)-24-oxo-D(3) which has the least calcemic activity among all the three aforementioned natural intermediary metabolites of 1alpha,25(OH)(2)D(3) to examine further its effects on these cells. Our results indicated that 1alpha,23(S),25(OH)(3)-24-oxo-D(3) was also equipotent to its parent in inhibiting clonal growth of HL-60 cells and in inducing expression of CD11b protein. In summary, we report that 1alpha,25(OH)(2)D(3) is metabolized in HL-60 cells into several intermediary metabolites derived via both the C-24 and C-23 oxidation pathways but not via the C-3 epimerization pathway. Some of the intermediary metabolites derived via the C-24 oxidation pathway are found to be almost equipotent to 1alpha,25(OH)(2)D(3) in modulating growth and differentiation of HL-60 cells. In a previous study, the same metabolites when compared to 1alpha,25(OH)(2)D(3) were found to be less calcemic. Thus, the findings of our study suggest that some of the natural metabolites of 1alpha,25(OH)(2)D(3) may be responsible for the final expression of the noncalcemic actions that are presently being attributed to their parent, 1alpha,25(OH)(2)D(3).  相似文献   

16.
17.
Polyclonal antibodies were developed against the flavonoid biosynthetic enzymes, CHS, CHI, F3H, FLS, and LDOX from Arabidopsis thaliana. These antibodies were used to perform the first detailed analysis of coordinate expression of flavonoid metabolism at the protein level. The pattern of flavonoid enzyme expression over the course of seedling development was consistent with previous studies indicating that chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), and flavonol synthase (FLS) are encoded by early genes while leucoanthocyanidin dioxygenase (LDOX) is encoded by a late gene. This sequential expression may underlie the variations in flavonoid end-products produced during this developmental stage, as determined by HPLC analysis, which includes a shift in the ratio of the flavonols, quercetin and kaempferol. Moreover, immunoblot and HPLC analyses revealed that several transparent testa lines blocked at intermediate steps of the flavonoid pathway actually accumulated higher levels of specific flavonoid enzymes and end-products. These results suggest that specific intermediates may act as inducers of flavonoid metabolism.  相似文献   

18.
Flavonols are plant polyphenolic compounds that belong to the class of molecules collectively known as flavonoids. Because of their demonstrated health benefits towards a wide array of human pathological conditions, a great interest has emerged for their biosynthesis from well-characterized microbial hosts. We present the functional expression in Escherichia coli of a plant P450 flavonoid 3', 5'-hydroxylase (F3'5'H) as a fusion protein with a P450 reductase. This expression allowed metabolic engineering of E. coli to produce the flavonol kaempferol and the 3', 4' B-ring hydroxylated flavonol quercetin from the p-coumaric acid precursor by simultaneously co-expressing the fusion protein with 4-coumaroyl:CoA-ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3beta-hydroxylase (FHT) and flavonol synthase (FLS). Biosynthesis of the B-ring tri-hydroxylated flavonol myricetin from the engineered strains was accomplished when flavanones rather than phenylpropanoid acids were used as precursor molecules. Cultivation of the recombinant strains in rich medium increased the synthesis of all flavonoids with the exception of myricetin. The present work opens the possibility of the future production of several other hydroxylated flavonoid molecules in E. coli.  相似文献   

19.
Anthocyanidin synthase (ANS), an enzyme of the biosynthetic pathway to anthocyanin, has been postulated to catalyze the reaction(s) from the colorless leucoanthocyanidins to the colored anthocyanidins. Although cDNAs have been isolated that encode putative ANS, which exhibits significant similarities in amino acid sequence with members of a family of 2-oxoglutarate-dependent oxygenases, no biochemical evidence has been presented which identifies the actual reaction that is catalyzed by ANS. Here we show that anthocyanidins are formed in vitro through 2-oxoglutarate-dependent oxidation of leucoanthocyanidins catalyzed by the recombinant ANS and subsequent acid treatment. A cDNA encoding ANS was isolated from red and green formas of Perilla frutescens by differential display of mRNA. Recombinant ANS tagged with maltose-binding-protein (MBP) was purified, and the formation of anthocyanidins from leucoanthocyanidins was detected by the ANS-catalyzed reaction in the presence of ferrous ion, 2-oxoglutarate and ascorbate, being followed by acidification with HCI. Equimolar stoichiometry was confirmed for anthocyanidin formation and liberation of CO2 from 2-oxoglutarate. The presumptive two-copy gene of ANS was expressed in leaves and stems of the red forma of P. frutescens but not in the green forma plant. This corresponds to the accumulation pattern of anthocyanin. The mechanism of the reaction catalyzed by ANS is discussed in relation to the molecular evolution of a family of 2-oxoglutarate-dependent oxygenases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号