首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
We isolated cDNA (pgCYR, about 2.1 kb) and genomic DNA (pgGYR, about 4 kb) clones coding for NADPH-cytochrome P450 reductase by immunoscreening of yeast Saccharomyces cerevisiae cDNA and genomic DNA libraries in phage lambda gt11. The clones were sequenced and found to encode a protein of 691 amino acid residues with a calculated molecular weight of 76,737 daltons. The amino-terminal sequence (excluding the initial methionine residue) deduced therefrom was in agreement with the protein sequence of the yeast reductase. In addition, the deduced sequence included the partial amino acid sequence determined with the papain-solubilized reductase. The total amino acid sequence of the yeast reductase showed 33-34% similarity with those of the rat, rabbit, pig, and trout reductases. In spite of low similarity in the total amino acid sequences, the possible functional domains related to binding of FAD, FMN, and NADPH were well conserved among all five species compared.  相似文献   

2.
Coding nucleotide sequence of rat liver malic enzyme mRNA   总被引:6,自引:0,他引:6  
The nucleotide sequence of the mRNA for malic enzyme ((S)-malate NADP+ oxidoreductase (oxaloacetate-decarboxylating, EC 1.1.1.40) from rat liver was determined from three overlapping cDNA clones. Together, these clones contain 2078 nucleotides complementary to rat liver malic enzyme mRNA. The single open reading frame of 1761 nucleotides codes for a 585-amino acid polypeptide with a calculated molecular mass of about 65,460 daltons. The cloned cDNAs contain the complete 3'-noncoding region of 301 nucleotides for the major mRNA species of rat liver and 16 nucleotides of the 5'-noncoding region. Amino acid sequences of seven tryptic peptides (67 amino acids) from the purified protein are distributed through the single open reading frame and show excellent correspondence with the translated nucleotide sequence. The putative NADP-binding site for malic enzyme was identified by amino acid sequence homology with the NADP-binding site of the enoyl reductase domain of fatty acid synthetase.  相似文献   

3.
4.
Secondary structure and membrane topology of cytochrome P450s   总被引:1,自引:0,他引:1  
The secondary structure prediction of 19 microsomal cytochrome P450s from two different families was made on the basis of their amino acid sequences. It was shown that there is structural similarity between the heme-binding sites in these enzymes and those in the bacterial P450cam. An average predicted secondary structure of cytochrome P450 proteins with 70% accuracy contains about 46% alpha-helices, 12% beta-sheets, 9% beta-turns, and 33% random coils. In the region of residues 35-120 in microsomal P450s two adjacent beta alpha beta-units (the Rossmann domain), were recognized and may be available to interact with the NADPH-cytochrome P450 reductase. Using the procedure for identification of hydrophobic and membrane-associated alpha-helical segments, only one N-terminal transmembrane anchor was predicted. Also the heme-binding site may include the surface-bound helix. A model for vertebrate microsomal P450s having an amphipathic membrane protein located on the cytoplasmic side of the endoplasmic reticulum membrane, with their active center lying outside or on the bilayer border, is proposed.  相似文献   

5.
The oxidation of alkanes to alkanols by Pseudomonas oleovorans involves a three-component enzyme system: alkane hydroxylase, rubredoxin and rubredoxin reductase. Alkane hydroxylase and rubredoxin are encoded by the alkBFGHJKL operon, while previous studies indicated that rubredoxin reductase is most likely encoded on the second alk cluster: the alkST operon. In this study we show that alkT encodes the 41 x 10(3) Mr rubredoxin reductase, on the basis of a comparison of the expected amino acid composition of AlkT and the previously established amino acid composition of the purified rubredoxin reductase. The alkT sequence revealed significant similarities between AlkT and several NAD(P)H and FAD-containing reductases and dehydrogenases. All of these enzymes contain two ADP binding sites, which can be recognized by a common beta alpha beta-fold or fingerprint, derived from known structures of cofactor binding enzymes. By means of this amino acid fingerprint we were able to determine that one ADP binding site in rubredoxin reductase (AlkT) is located at the N terminus and is involved in FAD binding, while the second site is located in the middle of the sequence and is involved in the binding of NAD or NADP. In addition, we derived from the sequences of FAD binding reductases a second amino acid fingerprint for FAD binding, and we used this fingerprint to identify a third amino acid sequence in AlkT near the carboxy terminus for binding of the flavin moiety of FAD. On the basis of the known architecture and relative spatial orientations of the NAD and FAD binding sites in related dehydrogenases, a model for part of the tertiary structure of AlkT was developed.  相似文献   

6.
Seven P450/reductase fused enzymes were produced in Saccharomyces cerevisiae by expressing fused cDNAs consisting of bovine cytochrome P450c17 (P450c17) and yeast NADPH-cytochrome P450 reductase (reductase). These fused enzymes differed in the length and amino acid sequence of the hinge region between the P450 and reductase moieties. Expression of the fused constructs under the control of the yeast alcohol dehydrogenase I promoter and terminator of expression vector pAAH5 in S. cerevisiae AH22 cells resulted in the production of about 2-8 X 10(4) molecules per cell of the seven corresponding fused enzymes. Six of the fused enzymes incorporated a protoheme, as confirmed by reduced CO-difference spectra. Recombinant yeast strains producing each of the fused hemoproteins showed P450c17-dependent 17 alpha-hydroxylase activity toward progesterone. The most active fused enzyme, delta N23FE, which lacked the amino-terminal 23 amino acids of the reductase, showed about 10 times higher 17 alpha-hydroxylase activity than bovine P450c17, although the fused enzyme (delta N23FE)' with an amino acid sequence in the hinge region different from delta N23FE was less active than delta N23FE. The fused enzyme delta N0FE, consisting of P450c17 and whole reductase, showed about 1.8 times higher activity than bovine P450c17. No activity was found with delta N84FE lacking the amino-terminal 84 amino acids of the reductase moiety. P450c17-dependent C17,(20)-lyase activity toward 17 alpha-hydroxyprogesterone was detected to lesser extents in the recombinant yeast. Fused bovine P450c17/yeast reductase enzymes show enhanced 17 alpha-hydroxylase activity, and the length and amino acid sequence in the hinge region between the P450c17 and yeast reductase moieties can be important for efficient intramolecular electron transfer in the fused enzymes.  相似文献   

7.
8.
Nucleotide sequences were determined for cDNA clones for squash NADH:nitrate oxidoreductase (EC 1.6.6.1), which is one of the most completely characterized forms of this higher plant enzyme. An open reading frame of 2754 nucleotides began at the first ATG. The deduced amino acid sequence contains 918 residues, with a predicted Mr = 103,376. The amino acid sequence is very similar to sequences deduced for other higher plant nitrate reductases. The squash sequence has significant similarity to the amino acid sequences of sulfite oxidase, cytochrome b5, and NADH:cytochrome b5 reductase. Alignment of these sequences with that of squash defines domains of nitrate reductase that appear to bind its 3 prosthetic groups (molybdopterin, heme-iron, and FAD). The amino acid sequence of the FAD domain of squash nitrate reductase was aligned with FAD domain sequences of other NADH:nitrate reductases, NADH:cytochrome b5 reductases, NADPH:nitrate reductases, ferredoxin:NADP+ reductases, NADPH:cytochrome P-450 reductases, NADPH:sulfite reductase flavoproteins, and Bacillus megaterium cytochrome P-450BM-3. In this multiple alignment, 14 amino acid residues are invariant, which suggests these proteins are members of a family of flavoenzymes. Secondary structure elements of the structural model of spinach ferredoxin:NADP+ reductase were used to predict the secondary structure of squash nitrate reductase and the other related flavoenzymes in this family. We suggest that this family of flavoenzymes, nearly all of which reduce a hemoprotein, be called "flavoprotein pyridine nucleotide cytochrome reductases."  相似文献   

9.
10.
We purified to homogeneity an enzyme from Citrobacter sp. strain KCTC 18061P capable of decolorizing triphenylmethane dyes. The native form of the enzyme was identified as a homodimer with a subunit molecular mass of about 31 kDa. It catalyzes the NADH-dependent reduction of triphenylmethane dyes, with remarkable substrate specificity related to dye structure. Maximal enzyme activity occurred at pH 9.0 and 60 degrees C. The enzymatic reaction product of the triphenylmethane dye crystal violet was identified as its leuco form by UV-visible spectral changes and thin-layer chromatography. A gene encoding this enzyme was isolated based on its N-terminal and internal amino acid sequences. The nucleotide sequence of the gene has a single open reading frame encoding 287 amino acids with a predicted molecular mass of 30,954 Da. Although the deduced amino acid sequence displays 99% identity to the hypothetical protein from Listeria monocytogenes strain 4b H7858, it shows no overall functional similarity to any known protein in the public databases. At the N terminus, the amino acid sequence has high homology to sequences of NAD(P)H-dependent enzymes containing the dinucleotide-binding motif GXXGXXG. The enzyme was heterologously expressed in Escherichia coli, and the purified recombinant enzyme showed characteristics similar to those of the native enzyme. This is the first report of a triphenylmethane reductase characterized from any organism.  相似文献   

11.
Oxidative biodegradation of aromatic compounds by bacteria usually begins with hydroxylation of the aromatic ring by multi-component dioxygenases like benzene dioxygenase, biphenyl dioxygenase, and others. These enzymes are composed of ferredoxin reductase, ferredoxin, and terminal oxygenase. Reducing equivalents that originate from NADH are transferred from ferredoxin reductase to ferredoxin and, in turn, to the terminal oxygenase, thus resulting in the activation of a dioxygen. BphA4 is the ferredoxin reductase component of biphenyl dioxygenase from Pseudomonas sp. strain KKS102. The amino acid sequence of BphA4 exhibits significant homology with the putidaredoxin reductase of the cytochrome P450cam system in Pseudomonas putida, as well as with various other oxygenase-coupled NADH-dependent ferredoxin reductases (ONFRs) of bacteria. To date, no structural information has been provided for the ferredoxin reductase component of the dioxygenase systems. In order to provide a structural basis for discussing the mechanism of electron transport between ferredoxin reductase and ferredoxin, crystal structures of BphA4 and its NADH complex were solved. The three-dimensional structure of BphA4 is different from those of ferredoxin reductases whose structures have already been determined, but adopts essentially the same fold as the enzymes of the glutathione reductase (GR) family. Also the three-dimensional structure of the first two domains of BphA4 adopts a fold similar to that of adrenodoxin reductase (AdR) in the mitochondrial cytochrome P450 system. Comparing the amino acid sequence with what is known of the three-dimensional structure of BphA4 strongly suggests that the other ONFRs have secondary structural features that are similar to that of BphA4. This analysis of the crystal structures of BphA4 suggests that Lys53 and Glu159 seem to be involved in the hydride transfer from NADH to FAD. Since the amino acid residues around the active site, some of which seem to be important to electron transport, are highly conserved among ONFRs, it is likely that the mechanism of electron transport of BphA4 is quite applicable to other ONFRs.  相似文献   

12.
K Inatomi 《DNA research》1998,5(6):365-371
The structural gene, nosZ, for the monomeric N2O reductase has been cloned and sequenced from the denitrifying bacterium Achromobacter cycloclastes. The nosZ gene encodes a protein of 642 amino acid residues and the deduced amino acid sequence showed homology to the previously derived sequences for the dimeric N2O reductases. The relevant DNA region of about 3.6 kbp was also sequenced and found to consist of four genes, nosDFYL based on the similarity with the N2O reduction genes of Pseudomonas stutzeri. The gene product of A. cycloclastes nosF (299 amino acid residues) has a consensus ATP-binding sequence, and the nos Y gene encodes a hydrophobic protein (273 residues) with five transmembrane segments, suggesting the similarity with an ATP-binding cassette (ABC) transporter which has two distinct domains of a highly hydrophobic region and ATP-binding sites. The nosL gene encodes a protein of 193 amino acid residues and the derived sequence showed a consensus sequence of lipoprotein modification/processing site. The expression of nosZ gene in Escherichia coli cells and the comparison of the translated sequences of the nosDFYL genes with those of bacterial transport genes for inorganic ions are discussed.  相似文献   

13.
The secondary structure prediction of 19 microsomal cytochrome P-450s from two different families was made based on their amino acid sequences. It was shown that there is a structural similarity between the heme-binding sites of these enzymes and the bacterial P-450cam. An average predicted secondary structure of cytochrome P-450 proteins with 70% accuracy contains about 46% alpha-helices, 12% beta-strands, 9% beta-turns and 33% random coil. In the region of the 35-120 residues in microsomal P-450s two adjacent beta alpha beta-units (the Rossmann domain) were recognized, which may interact with the NADPH-cytochrome P-450 reductase. Using the procedure of identification of hydrophobic and membrane-associated alpha-helical segments of 23 cytochromes, only one N-terminal transmembrane anchor was predicted. Also the heme-binding site perhaps includes surface-bound helix. A model of vertebrate microsomal P-450s is proposed. That is an amphypathic membrane protein located on the cytoplasmic face of the endoplasmic reticulum, their active center lies out/on the bilayer border.  相似文献   

14.
The Rice dwarf virus (RDV) P7 structural protein is the key protein in the RDV particle assembly. The P7 protein was digested partially or completely by Staphylococcus aureus V8 protease and/or Pseudomonasfragi Asp-N protease. The molecular mass and the N-terminal amino acid sequence of the polypeptide fragments of the P7 protein were determined by SDS-PAGE and the Edman degradation method, respectively. Then the polypeptides were located in the deduced amino acid sequence of the RDV P7 protein based on the nucleotide sequence information, with the knowledge of the specific cleavage sites of the Staphylococcus aureus V8 and Pseudomonasfragi Asp-N protease, and the two RNA-binding domains in the P7 protein were identified. Domain 1 was located in the residue 128-249 containing 122 amino acids and domain 2 was located in the residue 325-355 containing 31 amino acids. Thus, these two domains may play an important role in the virus particle assembly by contributing to the packaging of viral dsRNAs inside the particles. The two domains may be novel RNA-binding domains, because no amino acid sequences highly similar to the conservative sequences of known dsRNA-binding domains reported so far. The similarity between the motif of domain 1 and the motif of the DNA-binding protein suggests that the DNA-binding activity of the RDV P7 protein may be due to this sequence. The similarity between the motif of domain 1 and the motif of the RNA polymerase domain suggests that the P7 protein may also play a role in RNA synthesis, besides its function in the assembly and subsequent packaging of viral dsRNA into core particles.  相似文献   

15.
Amino acid sequence of ovine 6-phosphogluconate dehydrogenase   总被引:3,自引:0,他引:3  
The amino acid sequence of the NADP+-dependent enzyme ovine 6-phosphogluconate dehydrogenase has been determined by conventional direct protein sequence analysis of peptides resulting from digestion of the protein with trypsin and chemical cleavages with cyanogen bromide, hydroxylamine, and iodosobenzoic acid. The polypeptide contains 466 amino acids and its NH2 terminus is acetylated. The Candida utilis enzyme is inactivated by reaction of pyridoxal phosphate with two lysine residues (Minchiotti, L., Ronchi, S., and Rippa, M. (1981) Biochim. Biophys. Acta 657, 232-242). These residues are conserved in the ovine enzyme. In contrast to NAD+ dehydrogenases which have weakly related sequences and spatially related folds in their nucleotide-binding sites, no significant sequence homologies were detected between 6-phosphogluconate dehydrogenase and any of three other NADP+-requiring enzymes, glutamate dehydrogenase, p-hydroxybenzoate hydroxylase, and dihydrofolate reductase. This is in accord with structural data that show no spatial relationship between NADP+-binding sites in these enzymes.  相似文献   

16.
We purified to homogeneity an enzyme from Citrobacter sp. strain KCTC 18061P capable of decolorizing triphenylmethane dyes. The native form of the enzyme was identified as a homodimer with a subunit molecular mass of about 31 kDa. It catalyzes the NADH-dependent reduction of triphenylmethane dyes, with remarkable substrate specificity related to dye structure. Maximal enzyme activity occurred at pH 9.0 and 60°C. The enzymatic reaction product of the triphenylmethane dye crystal violet was identified as its leuco form by UV-visible spectral changes and thin-layer chromatography. A gene encoding this enzyme was isolated based on its N-terminal and internal amino acid sequences. The nucleotide sequence of the gene has a single open reading frame encoding 287 amino acids with a predicted molecular mass of 30,954 Da. Although the deduced amino acid sequence displays 99% identity to the hypothetical protein from Listeria monocytogenes strain 4b H7858, it shows no overall functional similarity to any known protein in the public databases. At the N terminus, the amino acid sequence has high homology to sequences of NAD(P)H-dependent enzymes containing the dinucleotide-binding motif GXXGXXG. The enzyme was heterologously expressed in Escherichia coli, and the purified recombinant enzyme showed characteristics similar to those of the native enzyme. This is the first report of a triphenylmethane reductase characterized from any organism.  相似文献   

17.
The lysA gene encodes meso-diaminopimelate (DAP) decarboxylase (E.C.4.1.1.20), the last enzyme of the lysine biosynthetic pathway in bacteria. We have determined the nucleotide sequence of the lysA gene from Pseudomonas aeruginosa. Comparison of the deduced amino acid sequence of the lysA gene product revealed extensive similarity with the sequences of the functionally equivalent enzymes from Escherichia coli and Corynebacterium glutamicum. Even though both P. aeruginosa and E. coli are Gram-negative bacteria, sequence comparisons indicate a greater similarity between enzymes of P. aeruginosa and the Gram- positive bacterium C. glutamicum than between those of P. aeruginosa and E. coli enzymes. Comparison of DAP decarboxylase with protein sequences present in data bases revealed that bacterial DAP decarboxylases are homologous to mouse (Mus musculus) ornithine decarboxylase (E.C.4.1.1.17), the key enzyme in polyamine biosynthesis in mammals. On the other hand, no similarity was detected between DAP decarboxylases and other bacterial amino acid decarboxylases.   相似文献   

18.
Pseudomonas KB 740 degrades 2-aminobenzoate aerobically via a chimeric pathway which combines characteristics of anaerobic and aerobic aromatic metabolism. Atypically, 2-aminobenzoyl-CoA is an intermediate, and the activated aromatic acid is not only hydroxylated but also reduced to an alicyclic compound in a single step. The bacterial strain possesses a small plasmid, pKB 740, which carries all essential information of this new pathway. Its total nucleotide sequence was determined. It consists of 8280 bp and contains the genes for the two initial enzymes of the pathway; 2-aminobenzoate-CoA ligase catalyzes the activation of the aromatic acid, and the flavoenzyme 2-aminobenzoyl-CoA monooxygenase/reductase catalyzes the hydroxylation (monooxygenase activity) and subsequent reduction (reductase activity) of the aromatic ring of 2-aminobenzoyl-CoA. Furthermore, five open reading frames (ORF) possibly coding for polypeptides are on the plasmid. Putative promoter sequences were found for two of the ORF. A nucleotide sequence able to form a possible termination loop was located downstream of the gene for 2-aminobenzoyl-CoA monooxygenase/reductase. This gene consists of 2190 bases. The deduced amino acid sequence of the protein (730 residues; calculated molecular mass of the native 729-residue protein, 83,559 Da) contains a consensus sequence for an FAD-binding site at the N-terminus and a possible NAD(P)H-binding site approximately 150 amino acid residues apart from the N-terminus. The monooxygenase/reductase shows low sequence similarity to the flavoprotein salicylate hydroxylase. Functional and evolutionary aspects of this work are discussed.  相似文献   

19.
Structure and sequence of the human homeobox gene HOX7.   总被引:13,自引:0,他引:13  
A cosmid containing the human sequence HOX7, homologous to the murine Hox-7 gene, was isolated from a genomic library, and the positions of the coding sequences were determined by hybridization. DNA sequence analysis demonstrated two exons that code for a homeodomain-containing protein of 297 amino acids. The open reading frame is interrupted by a single intron of approximately 1.6 kb, the splice donor and acceptor sites of which conform to known consensus sequences. The human HOX7 coding sequence has a very high degree of identity with the murine Hox-7 cDNA. Within the homeobox, the two sequences share 94% identity at the DNA level, all substitutions being silent. This high level of sequence similarity is not confined to the homeodomain; overall the human and murine HOX7 gene products show 80% identity at the amino acid level. Both the 5' and 3' untranslated regions also show significant similarity to the murine gene, with 79 and 70% sequence identity, respectively. The sequence upstream of the coding sequence of exon 1 contains a GC-rich putative promoter region. There is no TATA box, but a CCAAT and numerous GC boxes are present. The region encompassing the promoter region, exon 1, and the 5' region of exon 2 have a higher than expected frequency of CpG dinucleotides; numerous sites for rare-cutter restriction enzymes are present, a characteristic of HTF islands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号