首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rat CNS contains high levels of tyrosine-specific protein kinases that specifically phosphorylate the tyrosine-containing synthetic peptide poly(Glu80,Tyr20). The phosphorylation of this peptide is rapid and occurs with normal Michaelis-Menten kinetics. Using this peptide to assay for enzyme activity, we have measured the protein tyrosine kinase activity in homogenates from various regions of rat CNS. A marked regional distribution pattern was observed, with high activity present in cerebellum, hippocampus, olfactory bulb, and pyriform cortex, and low activity in the pons/medulla and spinal cord. The distribution of protein tyrosine kinase activity was examined in various subcellular fractions of rat forebrain. The majority of the activity was associated with the particulate fractions, with enrichment in the crude microsomal (P3) and crude synaptic vesicle (LP2) fractions. Moreover, the subcellular distribution of pp60csrc, a well-characterized protein tyrosine kinase, was examined by immunoblot analysis using an affinity-purified antibody specific for pp60csrc. The subcellular distribution of pp60csrc paralleled the overall protein tyrosine kinase activity. In addition, using an antibody specific for phosphotyrosine, endogenous substrates for protein tyrosine kinases were demonstrated on immunoblots of homogenates from the various regions and the subcellular fractions. The immunoblots revealed numerous phosphotyrosine-containing proteins that were present in many of the CNS regions examined and were associated with specific subcellular fractions. The differences in tyrosine-specific protein kinase activity, and in phosphotyrosine-containing proteins, observed in various regional areas and subcellular fractions may reflect specific functional roles for protein tyrosine kinase activity in mammalian brain.  相似文献   

2.
The ontogeny of protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) and cyclic AMP-binding activity in subcellular fractions of liver was examined during prenatal and postnatal development of the male rat. 1. Protein kinase activity and cyclic AMP-binding activity were found in the nuclear, microsomal, lysosomal-mitochondrial, and soluble liver fractions. 2. The protein kinase activity of the soluble (105 000 X g supernatant) fraction measured with histone F1 as substrate was stimulated by cyclic AMP. Cyclic AMP did not stimulate the protein kinase activity of the particulate fractions. 3. The protein kinase activity of all subcellular fractions increased rapidly from the activity observed in prenatal liver (3-4 days before birth) to reach maximal activity in 2-day-old rats. Thereafter, the protein kinase activity declined more slowly and regained the prenatal levels at 10 days after birth. 4. Considerable latent protein kinase activity was associated with liver microsomal fractions which could be activated by treatment of microsomes with Triton X-100. The latent microsomal protein kinase activity was highest in prenatal liver, at the time of birth, and 2 days after birth. During the subsequent postnatal development the latent microsomal protein kinase activity gradually declined to insignificantly low levels. 5. During the developmental period examined (4 days before birth to age 60-90 days) marked alterations of the cyclic AMP-binding activity were determined in all subcellular fractions of rat liver. In general, cytosol, microsomal, and lysosomal-mitochondrial cyclic AMP-binding activity was highest in 10-11 day-old rats. Nuclear cyclic AMP-binding activity was highest 3-4 days before birth and declined at birth and during the postnatal period. There was no correlation between the developmental alteration of cyclic AMP-binding activity and cyclic AMP dependency of the protein kinase activity in any of the subcellular fractions. This suggests that the measured cyclic AMP-binding activity does not reflect developmental alterations of the cyclic AMP-binding regulatory subunit of cyclic AMP-dependent protein kinase.  相似文献   

3.
The Leydig I-10 tumor cell line was synchronized by the double thymidine block method using 1.0 mM thymidine. Protein phosphokinase activity of subcellular fractions was determined at various times throughout the cell cycle. Microsomal cAMP-independent kinase activity increased in G2 and decreased during the S and G1 phases. Except for relatively small increases during the G1 and late S phases, microsomal cAMP-dependent kinase activity remained unchanged throughout most of the cycle. In the lysosomal-mitochondrial fraction, cAMP-dependent and cAMP-independent protein kinase activity increased during the S phase. Independent kinase activity peaked again during G1, while the dependent kinase became depressed. Phosphokinase activity increased in the nuclear fraction in late G2 and during mitosis, and was due to increases in both cAMP-independent and cAMP-dependent kinase activity. Cytosol cAMP-dependent kinase activity increased in G2 and during mitosis; cAMP-independent kinase activity showed some increased activity during late G2 and mitosis. These temporal variations in the subcellular kinase activities throughout the cell cycle may act to phosphorylate subcellular protein substrates in a cell cycle-specific fashion.  相似文献   

4.
We have examined endogenous cyclic AMP-stimulated phosphorylation of subcellular fractions of rat brain enriched in synaptic plasma membranes (SPM), purified synaptic junctions (SJ), and postsynaptic densities (PSD). The analyses of these fractions are essential to provide direct evidence for cyclic AMP-dependent endogenous phosphorylation at discrete synaptic junctional loci. Protein kinase activity was measured in subcellular fractions using both endogenous and exogenous (histones) proteins as substrates. The SJ fraction possessed the highest kinase activity toward endogenous protein substrates, 5-fold greater than SPM and approximately 120-fold greater than PSD fractions. Although the kinase activity as measured with histones as substrates was only slightly higher in SJ than SPM fractions, there was a marked preference of kinase activity toward endogenous compared to exogenous substrates in SJ fractions but in SPM fractions. Although overall phosphorylation in SJ fractions was increased only 36% by 5 micron cyclic AMP, there were discrete proteins of Mr = 85,000, 82,000, 78,000, and 55,000 which incorporated 2- to 3-fold more radioactive phosphate in the presence of cyclic AMP. Most, if not all, of the cyclic AMP-independent kinase activity is probably catalyzed by catalytic subunit derived from cyclic AMP-dependent kinase, since the phosphorylation of both exogenous and endogenous proteins was greatly decreased in the presence of a heat-stable inhibitor protein prepared from the soluble fraction of rat brain. The specific retention of SJ protein kinase(s) activity during purification and their resistance to detergent solubilization was achieved by chemical treatments which produce interprotein cross-linking via disulfide bridges. Two SJ polypeptides of Mr = 55,000 and 49,000 were photoaffinity-labeled with [32P]8-N3-cyclic AMP and probably represent the regulatory subunits of the type I and II cyclic AMP-dependent protein kinases. The protein of Mr = 55,000 was phosphorylated in a cyclic AMP-stimulated manner suggesting autophosphorylation as previously observed in other systems.  相似文献   

5.
Ontogenic relationships between levels of cyclic AMP-binding activity and protein kinase activity were examined in subcellular fractions of the cerebellum during the first 3 weeks of neonatal life. A progressive increase in cyclic AMP levels was paralleled by an increase in cyclic AMP bindign by the nuclear and cytosol fractions, but not by the mitochondrial or microsomal fractions. Utilization of heat-stable protein kinase inhibitor permtited distinction of the cyclic AMP-dependent from the cyclic AMP-independent form of the protein kinase population. Cyclic AMP-dependent protein kinase increased between days 4 and 20 to represent a progressively greater proportion of the protein kinase population. In all subcellular fractions alterations of cyclic AMP-dependent protein kinase during neonatal development paralleled changes in binding of cyclic AMP to protein in these fractions. In both the nuclear and cytosol fractions cyclic AMP-dependent protein kinase activity increased progressively between days 4 and 20, i.e. 64 ± 6 to 176 ± 16 and 79 ± 12 to 340 ± 12 pmol/min per mg protein, respectively. Cyclic AMP-dependent protein kinase activity in the mitochondrial fraction declined during the postnatal period studied, and in the microsomal fraction it rose to a non-sustained peak at 14 days and fell thereafter. Unlike the cyclic AMP-dependent form, cyclic AMP-independent protein kinase activity did not follow the ontogenetic pattern of cyclic AMP-binding activity. The specific activity of nuclear cyclic AMP-independent protein kinase did not change during days 4–20, and a non-sustained rise of cyclic AMP-independent protein kinase activity in both cytosol and microsomal fractions during the 7th–12th day tended to parallel more closely known patterns of postnatal proliferative growth. The findings reported herein indicate that the ontogenic pattern of cyclic AMP-dependent protein kinase varies between different subcellular fractions of the neonatal cerebellum, that these patterns parallel the changes in cyclic AMP-bidign activity, and suggest that the component parts of the cyclic AMP system may develop as a functional unit.  相似文献   

6.
7.
Adenylate kinases supply energy routes in cellular energetic homeostasis. In this work, we identified and characterized the adenylate kinase activity in extracts from the flagellated parasite Trypanosoma cruzi, the causative agent of Chagas' disease. Adenylate kinase activity was detected in different subcellular fractions and the cytosolic isoform was biochemically characterized. Cytosolic adenylate kinase specific activity increases continuously during the epimastigote growth and is down-regulated when other soluble phosphotransferase, arginine kinase, is overexpressed. Six different genes of adenylate kinase isoforms were identified and the mRNA expression was confirmed by RT-PCR and Northern Blot. Three open reading frames coding for different enzyme isoforms named TzADK1, TzADK2 and TzADK5 were cloned and functionally expressed in E. coli. This work reports an unusually large number of genes of adenylate kinases and suggests a coordinated regulation of phosphotransferase-mediated ATP regenerating pathways in the unicellular parasite Trypanosoma cruzi.  相似文献   

8.
In these studies the incorporation of 32P into proteins within subcellular fractions, obtained from rat white adipose tissue upon incubation in the presence of [gamma-32P]ATP, was investigated. A stable increase in the activity of protein serine(threonine) kinase in high-speed supernatant fractions was observed following treatment of intact tissue with insulin. Protein kinase activity associated with the plasma membrane fraction of cells was diminished in response to insulin, but the decrease was apparently insufficient to account for increases observed in corresponding supernatant fractions. A range of assay conditions was employed to characterize the insulin-stimulated protein serine(threonine) kinase in in supernatant fractions. The insulin-stimulated protein serine(threonine) kinase displays properties that indicate it is distinct from a number of well-characterized protein kinases, including those regulated by cAMP, calcium ions (in the presence or absence of calmodulin or mixtures of phosphatidylserine-diacylglycerol), polyamines, or heparin. There were no apparent effects of insulin on incorporation of 32P into added casein or histones II-S or III-S. The protein serine(threonine) kinase activity (or activities) described here displays properties that also appear to differ from the properties of previously described insulin-stimulated activities able to catalyze the phosphorylation of the ribosomal protein S6. The differences in properties may, in part, be explained by the use of different cell types, but may also indicate that treatment of cells with insulin leads to activation of more than one protein serine(threonine) kinase.  相似文献   

9.
To ascertain the activity and substrate specificity of nuclear protein kinases during various stages of the cell cycle of HeLa S3 cells, a nuclear phospho-protein-enriched sample was extracted from synchronised cells and assayed in vitro in the presence of homologous substrates. The nuclear protein kinases increased in activity during S and G2 phase to a level that was twice that of kinases from early S phase cells. The activity was reduced during mitosis but increased again in G1 phase. When the phosphoproteins were separated into five fractions by cellulose-phosphate chromatography each fraction, though not homogenous, exhibited differences in activity. Variations in the activity of the protein kinase fractions were observed during the cell cycle, similar to those observed for the unfractionated kinases. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the proteins phosphorylated by each of the five kinase fractions demonstrated a substrate specificity. The fractions also exhibited some cell cycle stage-specific preference for substrates; kinases from G1 cells phosphorylated mainly high molecular weight polypeptides, whereas lower molecular weight species were phosphorylated by kinases from the S, G2 and mitotic stages of the cell cycle. Inhibition of DNA and histone synthesis by cytosine arabinoside had no effect on the activity or substrate specificity of S phase kinases. Some kinase fractions phosphorylated histones as well as non-histone chromosomal proteins and this phosphorylation was also cell cycle stage dependent. The presence of histones in the in vitro assay influenced the ability of some fractions to phosphorylate particular non-histone polypeptides; non-histone proteins also appeared to affect the in vitro phosphorylation of histones.  相似文献   

10.
Intracellular kinases play important roles in signal transduction and are involved in the surface receptor-mediated regulation of cellular functions, including mitogenesis. In the present study, we examined the possible involvement of various protein kinases in the passage of a mitogenic signal from the cell surface to the nucleus of Nb2 cells, a rat nodal lymphoma cell line in which prolactin is a mitogen. Following a prolactin challenge, various kinase activities were monitored at short intervals in different cellular fractions over a 60 min period. Protein kinase C (PKC) activity in the cytosolic fraction rapidly declined to 50% of its original activity within the first 30 min, while PKC activity in the nuclear fractions increased sharply, reaching its highest level by 30 min following a prolactin challenge. There were also increases in both casein kinase and protein tyrosine kinase (PTK) activities in the nuclear fractions during the first 30 min following a prolactin challenge that paralleled PKC activity. The activities of all three kinases declined thereafter, reaching levels close to their respective basal values by 60 min following initiation of prolactin treatment. These observations suggest the possibility that multiple protein kinases may be involved in mitogenic signal transduction for prolactin in Nb2 cells. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Protein kinase activity was determined in subcellular fractions of rat testis interstitial tissue after incubation of the intact tissue with LH (luteinizing hormone) in vitro. Various factors that might have changed the activity of this enzyme during preparation of the fractions before assay were also investigated. The following results were obtained. 1. LH and 3-isobutyl-1-methylxanthine (a phosphodiesterase inhibitor) added together during incubation of the interstitial tissue caused a twofold increase in the protein kinase activity in the total tissue homogenate and subcellular fractions (12000g X 5 min pellet and 105000g X 60 min supernatant and pellet). 2. A decrease of approx. 40% in the total amount of protein kinase recovered in the soluble fraction (105000g supernatant) occurred in tissue incubated with LH and 3-isobutyl-1-methylxanthine when compared with the controls. No change in total activity was found in the other fractions. 3. LH and 3-isobutyl-1-methylxanthine caused an increase in cyclic AMP concentration in the soluble fraction (from 30 +/- 6 to 450 +/- 40 pmol/mg of protein, means +/- S.E.M., n = 4), but there was little or no increase in the particulate fractions [from 9 +/- 1 to 13 +/- 3 pmol/mg of protein (n = 3) and from 6 +/- 2 to 23 +/- 11 pmol/mg of protein (n = 3) in the 12000g and 105000g pellets respectively]. 4 Addition of 3-isobutyl-1-methylxanthine alone had little effect on protein kinase activity or cyclic AMP concentrations. 5. Little or no protein kinase activity could be demonstrated in subcellular particulate fractions unless Triton X-100 was added; the effect of this detergent was shown to be at least partly due to the inhibition of adenosine triphosphatase activity. 6. In the presence of Triton X-100 approx. 57% of the total protein kinase activity in the homogenate was found in the 105000g supernatant compared with 11% in the 105000g pellet and 32% in the 12000g pellet. 7. In contrast with adipose-tissue protein kinase [Corbin et al. (1973) J. Biol. Chem. 248, 1813-1821] the relative amounts of cyclic AMP-dependent and -dependent enzyme were not affected by dilution of the interstitial-tissue fractions. NaCl (0.5 M) decreased the estimated total amount of protein kinase activity.  相似文献   

12.
Adenylate kinases supply energy routes in cellular energetic homeostasis. In this work, we identified and characterized the adenylate kinase activity in extracts from the flagellated parasite Trypanosoma cruzi, the causative agent of Chagas' disease. Adenylate kinase activity was detected in different subcellular fractions and the cytosolic isoform was biochemically characterized. Cytosolic adenylate kinase specific activity increases continuously during the epimastigote growth and is down-regulated when other soluble phosphotransferase, arginine kinase, is overexpressed. Six different genes of adenylate kinase isoforms were identified and the mRNA expression was confirmed by RT-PCR and Northern Blot. Three open reading frames coding for different enzyme isoforms named TzADK1, TzADK2 and TzADK5 were cloned and functionally expressed in E. coli. This work reports an unusually large number of genes of adenylate kinases and suggests a coordinated regulation of phosphotransferase-mediated ATP regenerating pathways in the unicellular parasite Trypanosoma cruzi.  相似文献   

13.
The subcellular distribution, kinetic properties, and endogenous substrates of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) were examined in mouse kidney cortex. Protein kinase C associated with the particulate, mitochondrial, and brush border membrane fractions was assayed after solubilization in 0.2% Triton X-100 under conditions shown to be noninhibitory to catalytic activity. Of recovered activity, 52% was associated with the cytosolic fraction; mitochondrial and brush border membrane associated protein kinase C constituted 12 and 3%, respectively, of the activity recovered in the particulate fraction. Protein kinase C associated with brush border membranes exhibited a high affinity for ATP (apparent Km = 62 +/- 10 microM) and the highest apparent maximal velocity (1146 +/- 116 pmol P/(mg protein.min] of the renal fractions examined. Maximal stimulation of protein kinase C by diacylglycerol (in the presence of phosphatidylserine) was achieved at both 25 and 300 microM calcium in all renal fractions. These results are consistent with previous reports demonstrating that diacylglycerol increases the apparent affinity of protein kinase C for calcium. Phorbol 12-myristate 13-acetate, but not 4 alpha-phorbol, was able to substitute for diacylglycerol and stimulate cytosolic and particulate renal protein kinase C. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride, a specific inhibitor of protein kinase C, led to significant inhibition of catalytic activity in all renal subcellular fractions. Endogenous substrates for protein kinase C were demonstrated in renal cytosolic (26, 45, 63, and 105 kilodaltons (kDa], particulate (26, 33, 68, and 105 kDa), mitochondrial (43 kDa), and brush border membrane (26, 41, 52, 88, and 105 kDa) fractions. The possible physiological significance of protein kinase C in mammalian kidney is discussed.  相似文献   

14.
Subcellular fractions isolated and purified from rat brain cerebral cortices were assayed for phosphatidylinositol (PI-), phosphatidylinositol-4-phosphate (PIP-), and diacylglycerol (DG-) kinase activities in the presence of endogenous or exogenously added lipid substrates and [γ-32P]ATP. Measurable amounts of all three kinase activities were observed in each subcellular fraction, including the cytosol. However, their subcellular profiles were uniquely distinct. In the absence of exogenous lipid substrates, PI-kinase specific activity was greatest in the microsomal and non-synaptic plasma membrane fractions (150–200 pmol/min per mg protein), whereas PIP-kinase was predominantly active in the synaptosomal fraction (136 pmol/min per mg protein). Based on percentage of total protein, total recovered PI-kinase activity was most abundant in the cytosolic, synaptosomal, microsomal and mitochondrial fractions (4–11 nmol/min). With the exception of the microsomal fraction, a similar profile was observed for PIP-kinase activity when assayed in the presence of exogenous PIP (4 nmol/20 mg protein in a final assay volume of 0.1 ml). Exogenous PIP (4 nmol/20 mg protein) inhibited PI-kinase activity in most fractions by 40–70%, while enhancing PIP-kinase activity. PI- and PIP-kinase activities were observed in the cytosolic fraction when assayed in the presence of exogenously added PI or PIP, respectively, but not in heat-inactivated membranes containing these substrates. When subcellular fractions were assayed for DG-kinase activity using heat-inactivated DG-enriched membranes as substrate, DG-kinase specific activity was predominantly present in the cytosol. However, incubation of subcellular fractions in the presence of deoxycholate resulted in a striking enhancement of DG-kinase activities in all membrane fractions. These findings demonstrate a bimodal distribution between particulate and soluble fractions of all three lipid kinases, with each exhibiting its own unique subcellular topography. The preferential expression of PIP-kinase specific activity in the synaptic membranes is suggestive of the involvement of PIP2 in synaptic function, while the expression of PI-kinase specific activity in the microsomal fraction suggests additional, yet unknown, functions for PIP in these membranes.  相似文献   

15.
The subcellular location of calmodulin- and cyclic AMP stimulated protein kinases was assessed in synaptosomes which were prepared on Percoll density gradients. The distribution of the protein kinases between the outside and the inside and between the soluble and membrane fractions was determined by incubating intact and lysed synaptosomes, as well as supernatant and pellet fractions obtained from lysed synaptosomes, in the presence of [gamma-32P]ATP. Protein kinase activity was assessed by the labelling of endogenous proteins, or exogenous peptide substrates, under conditions optimized for either calmodulin- or cyclic AMP-stimulated protein phosphorylation. When assessed by calmodulin-stimulated autophosphorylation of the alpha subunit of calmodulin kinase II, 44% of this enzyme was on the outside of synaptosomes, and 41% was in the 100,000 g supernatant. Using an exogenous peptide substrate, the distribution of total calmodulin-stimulated kinase activity was 27% on the outside and 34% in the supernatant. The high proportion of calmodulin kinase II on the outside of synaptosomes is consistent with its known localization at postsynaptic densities. The proportion of calmodulin kinase II which was soluble depended on the ionic strength conditions used to prepare the supernatant, but the results suggest that a major proportion of this enzyme which is inside synaptosomes is soluble. When assessed by cyclic AMP-stimulated phosphorylation of endogenous substrates, no cyclic AMP-stimulated kinase activity was observed on the outside of synaptosomes, whereas 21% was found with an exogenous peptide substrate. This suggests that if endogenous substrates are present on the outside of synaptosomes, then the enzyme does not have access to them. The cyclic AMP-stimulated protein kinase present inside synaptosomes was largely bound to membranes and/or the cytoskeleton, with only 10% found in the supernatant when assessed by endogenous protein phosphorylation and 25% with an exogenous substrate. The markedly different distribution of the calmodulin- and cyclic AMP-stimulated protein kinases presumably reflects differences in the functions of these enzymes at synapses.  相似文献   

16.
The involvement of kinases in heat stress signaling in tomato cells was studied by in gel kinase assays using myelin basic protein as substrate, and by in vitro phosphorylation assays in Mono Q fractions of tomato cell lysates. A kinase with an apparent molecular mass of approximately 50 kDa is rapidly deactivated upon heat stress as judged from in gel kinase assays. Cycloheximide treatment increases kinase activity, but concomitant heat treatment abolishes cycloheximide-induced activation. Kinase activity from untreated cells was recovered at about 130 and 250 mM NaCl from Mono Q columns.  相似文献   

17.
The activity of protein tyrosine kinase was determined in extracts from Alzheimer's disease brains and age- and postmortem time-matched control brains at autopsy using the synthetic peptide substrate poly(Glu4Tyr1). The specific activity of protein tyrosine kinases in the particulate fraction decreased roughly twofold (p less than 0.02) in Alzheimer's disease frontal cortex relative to unaffected control cortex. Cytosolic protein tyrosine kinase activity in Alzheimer's disease tissue was not significantly different from that in control tissue. In contrast to reduced particulate protein tyrosine kinase activity, analysis of Western blots of cytosolic and particulate fractions revealed increases in cytosolic antiphosphotyrosine immunoreactive polypeptides with molecular masses of 55 and 60 kDa. Quantitative immunohistochemistry and morphometry of frontal cortex sections with the antiphosphotyrosine antibody indicated increased antiphosphotyrosine staining in the neurons, although the number of antiphosphotyrosine-positive neurons per square millimeter decreased. Also, increased antiphosphotyrosine staining was observed in the hippocampal neurons. These results suggest that altered protein tyrosine kinases and protein tyrosine phosphorylation are involved in the pathology of Alzheimer's disease.  相似文献   

18.
The distribution of cyclic AMP-dependent protein kinase activity in porcine thyroid glands has been studied. Enzyme activity catalyzing phosphorylation of exogenous substrate (protamine) from ATP, and cyclic AMP binding were determined in parallel in subcellular fractions purified by differential centrifugation and flotation on sucrose density layers. Both activities were found in all the studied fractions; they were quantitatively the highest in the cytosol but particles showed the highest specific activities.Latent protein-kinase activity was unmasked by action of detergents on microsomes (× 5–10 fold) and solubilized (85 to 99 p. cent of the initial total activity). Cyclic AMP binding capacity was also recovered in detergent-treated microsomal extracts in spite of reduced cyclic AMP binding in the presence of detergent.Protein kinase activity and cyclic AMP-binding proteins were less represented in purified nuclei than in microsomes. Again both activities were unmasked by detergent.Preparations highly enriched in Golgi membranes were compared to rough microsomal preparations. Higher protein kinase activity was detected in rough microsomes as compared to Golgi membranes, whereas the reverse was true for cyclic AMP binding. Both activities were equalized after detergent treatment. Since unmasking of protein kinase activity was the highest in Golgi membranes, this fraction contains more enzyme activity and cyclic AMP binding capacity than rough microsomes.The localization of endogeneous protein substrates of cyclic AMP-dependent protein kinases was investigated using purified soluble protein kinase subcellular fractions. The better endogeneous substrates seemed to be localized in the rough microsomal and in the nuclear fractions.  相似文献   

19.
Cytoplasmic and membrane fractions prepared from human peripheral-blood lymphocytes both contained cyclic AMP-dependent protein kinase activity and endogenous protein kinase substrates. Protein kinase activity in the particulate fractions was not eluted with 0.25 M-NaCl, suggesting that it was not derived from non-specifically absorbed soluble cytoplasmic protein kinase. Nor was the particulate protein kinase activity eluted by treatment with cyclic AMP, suggesting that the catalytic subunit is membrane-bound and arguing against cyclic AMP-induced translocation of particulate activity. Cyclic AMP-dependent protein-phosphorylating activity in the cytoplasmic fraction was highly sensitive to inhibition by Mn2+, and was co-eluted from DEAE-cellulose primarily with type-I rabbit skeletal-muscle kinase. Cyclic AMP-dependent phosphorylating activity in the plasma-membrane fractions was stimulated at low [Mn2+] and inhibited only at high [Mn2+]. When solubilized with Nonidet P-40, plasma-membrane protein kinase was co-eluted from DEAE-cellulose with type-II rabbit muscle kinase. These differences, together with the strong association of the particulate kinases with the particulate fraction, suggest the possibility of compartmentalized protein phosphorylation in intact lymphocytes.  相似文献   

20.
Using an N-bromosuccinimide cleavage fragment of histone H1 as a relatively specific substrate for protein kinase C, we evaluated the partitioning of this kinase activity between soluble and particulate cellular fractions in 3T3-L1 fibroblasts. In confluent, serum-deprived cells, protein kinase C activity was approximately equally divided between soluble and detergent-extractable particulate fractions; both rapidly growing and transformed cells appeared to contain higher levels of particulate enzyme activity. Soluble protein kinase C activity and immunoreactivity decreased to virtually undetectable levels after exposure of the cells to phorbol 12-myristate 13-acetate (PMA), associated with a commensurate increase in particulate kinase activity and immunoreactivity. In intact cells, PMA appeared to cause a shift of immunoreactive protein kinase C from the cytosol to the perinuclear region, as assessed by immunofluorescent microscopy; however; subcellular fractionation revealed that PMA caused increases in the protein kinase C activity associated primarily with non-nuclear membranes. Exposure of the cells to sn-1,2-dioctanoylglycerol resulted in a modest and transient membrane association of protein kinase C, whereas platelet-derived growth factor, fibroblast growth factor, and bombesin caused no detectable increases in the membrane association of the kinase. Activation of protein kinase C by growth factors in fibroblasts may occur without the gross disturbances in intracellular kinase location which occur in response to phorbol esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号