首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

In kinetic crystallography, the usually static method of X-ray diffraction is expanded to allow time-resolved analysis of conformational rearrangements in protein structures. To achieve this, reactions have to be triggered within the protein crystals of interest, and optical spectroscopy can be used to monitor the reaction state. For this approach, a modified form of H-Ras p21 was designed which allows reaction initiation and fluorescence readout of the initiated GTPase reaction within the crystalline state. Rearrangements within the crystallized protein due to the progressing reaction and associated heterogeneity in the protein conformations have to be considered in the subsequent refinement processes.  相似文献   

2.
H-Ras is a binary switch that is activated by multiple co-factors and triggers several key cellular pathways one of which is MAPK. The specificity and magnitude of downstream activation is achieved by the spatio-temporal organization of the active H-Ras in the plasma membrane. Upon activation, the GTP bound H-Ras binds to Galectin-1 (Gal-1) and becomes transiently immobilized in short-lived nanoclusters on the plasma membrane from which the signal is propagated to Raf. In the current study we show that stabilizing the H-Ras-Gal-1 interaction, using bimolecular fluorescence complementation (BiFC), leads to prolonged immobilization of H-Ras.GTP in the plasma membrane which was measured by fluorescence recovery after photobleaching (FRAP), and increased signal out-put to the MAPK module. EM measurements of Raf recruitment to the H-Ras.GTP nanoclusters demonstrated that the enhanced signaling observed in the BiFC stabilized H-Ras.GTP nanocluster was attributed to increased H-Ras immobilization rather than to an increase in Raf recruitment. Taken together these data demonstrate that the magnitude of the signal output from a GTP-bound H-Ras nanocluster is proportional to its stability.  相似文献   

3.
Streptavidin forms two-dimensional crystals when specifically bound to layers of biotinylated lipids at the air/water interface. The three-dimensional structure of streptavidin determined from the crystals by electron crystallography corresponds well with the structure determined by x-ray crystallography. Comparison of the electron and x-ray crystallographic structures reveals the occurrence of free biotin-binding sites on the surface of the two-dimensional crystals facing the aqueous solution. The free biotin-binding sites could be specifically labeled with biotinylated ferritin. The streptavidin/biotinylated lipid system may provide a general approach for the formation of two-dimensional crystals of biotinylated macromolecules.  相似文献   

4.
5.
H-Ras displays dynamic cycles of GTP binding and palmitate turnover. GTP binding is clearly coupled to activation, but whether the palmitoylated COOH terminus participates in signaling, especially when constrained by membrane tethering, is unknown. As a way to compare COOH termini of membrane-bound, lipid-modified H-Ras, palmitate removal rates were measured for various forms of H-Ras in NIH 3T3 cells. Depalmitoylation occurred slowly (t(1/2) approximately 2.4 h) in cellular (H-RasWT) or dominant negative (H-Ras17N) forms and more rapidly (t(1/2) approximately 1 h) in oncogenic H-Ras61L or H-RasR12,T59. Combining this data with GTP binding measurements, the palmitate half-life of H-Ras in the fully GTP-bound state was estimated to be less than 10 min. Slow palmitate removal from cellular H-Ras was not explained by sequestration in caveolae, as neither cellular nor oncogenic H-Ras showed alignment with caveolin by immunofluorescence. Conversely, although it had faster palmitate removal, oncogenic H-Ras was located in the same fractions as H-RasWT on four types of density gradients, and remained fully membrane-bound. Thus the different rates of deacylation occurred even though oncogenic and cellular H-Ras appeared to be in similar locations. Instead, these results suggest that acylprotein thioesterases access oncogenic H-Ras more easily because the conformation of its COOH terminus against the membrane is altered. This previously undetected difference could help produce distinctive effector interactions and signaling of oncogenic H-Ras.  相似文献   

6.
Large single crystals of two distinct globin chains from coelomic cells of the sea cucumber Molpadia arenicola have been prepared and examined by x-ray crystallography. These hemoglobins exhibit a variety of ligand-dependent association states with the met-hemoglobins existing as monomers and liganded hemoglobins as dimers at physiological concentrations. Monomeric methemoglobin C chain crystallizes in space group P21, with a = 46.0 A, b = 45.3 A, c = 40.9 A, beta = 104.5 degrees, and one monomer per asymmetric unit. These crystals exhibit unusual spectroscopic behavior when examined with a polarizer, turning colorless in certain orientations. This implies that all the heme rings are nearly parallel within the crystals. Dimeric cyanmethemoglobin D chain crystallizes in space group P41212 (P43212), with a = b = 77.0 A, c = 61.5 A, and one-half a dimer per asymmetric unit. These homodimers thus possess a molecular 2-fold which is aligned with the crystallographic dyad.  相似文献   

7.
H-Ras must adhere to the plasma membrane to be functional. This is accomplished by posttranslational modifications, including palmitoylation, a reversible process whereby H-Ras traffics between the plasma membrane and the Golgi complex. At the plasma membrane, H-Ras has been proposed to occupy distinct sublocations, depending on its activation status: lipid rafts/detergent-resistant membrane fractions when bound to GDP, diffusing to disordered membrane/soluble fractions in response to GTP loading. Herein, we demonstrate that H-Ras sublocalization is dictated by its degree of palmitoylation in a cell type-specific manner. Whereas H-Ras localizes to detergent-resistant membrane fractions in cells with low palmitoylation activity, it locates to soluble membrane fractions in lineages where it is highly palmitoylated. Interestingly, in both cases GTP loading results in H-Ras diffusing away from its original sublocalization. Moreover, tilting the equilibrium between palmitoylation and depalmitoylation processes can substantially alter H-Ras segregation and, subsequently, its biochemical and biological functions. Thus, the palmitoylation/depalmitoylation balance not only regulates H-Ras cycling between endomembranes and the plasma membrane but also serves as a key orchestrator of H-Ras lateral diffusion between different types of plasma membrane and thereby of H-Ras signaling.  相似文献   

8.
The catalytic domain (amino acid residues 1 to 166) of the human ras-oncogene product p21 complexed with the GTP analogues beta,gamma-imido-GTP (GMPPNP), beta,gamma-methylene-GTP (GMPPCP), and guanosine-5'-(gamma-thiotriphosphate) (GTP gamma S) have been been crystallized. Crystals of the GMPPNP and GMPPCP complexes are well suited for high resolution X-ray crystallography. They belong to space group P3(1)21 (or its enantiomorph P3(2)21) with unit cell axes a=b=40.3 A and c = 162.2 A.  相似文献   

9.
BACKGROUND: The means by which the protein GAP accelerates GTP hydrolysis, and thereby downregulates growth signaling by p21Ras, is of considerable interest, particularly inasmuch as p21 mutants are implicated in a number of human cancers. A GAP "arginine finger," identified by X-ray crystallography, has been suggested as playing the principal role in the GTP hydrolysis. Mutagenesis studies, however, have shown that the arginine can only partially account for the 10(5)-fold increase in the GAP-accelerated GTPase rate of p21. RESULTS: We report electron spin-echo envelope modulation (ESEEM) studies of GAP-334 complexed with GMPPNP bound p21 in frozen solution, together with molecular-dynamics simulations. Our results indicate that, in solution, the association of GAP-334 with GTP bound p21 induces a conformational change near the metal ion active site of p21. This change significantly reduces the distances from the amide groups of p21 glycine residues 60 and 13 to the divalent metal ion. CONCLUSIONS: The movement of glycine residues 60 and 13 upon the binding of GAP-334 in solution provides a physical basis to interpret prior mutagenesis studies, which indicated that Gly-60 and Gly-13 of p21 play important roles in the GAP-dependent GTPase reaction. Gly-60 and Gly-13 may play direct catalytic roles and stabilize the attacking water molecule and beta,gamma-bridging oxygen, respectively, in p21. The amide proton of Gly-60 could also play an indirect role in catalysis by supplying a crucial hydrogen bonding interaction that stabilizes loop L4 and therefore the position of other important catalytic residues.  相似文献   

10.
The energy transfer protein, green fluorescent protein, from the hydromedusan jellyfish Aequorea victoria has been crystallized in two morphologies suitable for x-ray diffraction analysis. Hexagonal plates have been obtained in the P6122 or P6522 space group with a = b = 77.5, c = 370 A, and no more than three molecules per asymmetric unit. Monoclinic parallel-epipeds have been obtained in the C2 space group with a = 93.3, b = 66.5, c = 45.5 A, beta = 108 degrees, and one molecule per asymmetric unit. The monoclinic form is better suited for use in a structure determination, and a data set was collected from the native crystal. Time-resolved fluorescence measurements of large single crystals are possible due to the unique, covalently bound chromophore present in this molecule. Fluorescence emission spectra of Aequorea green fluorescent protein in solution and from either the hexagonal or monoclinic single crystal show similar profiles suggesting that the conformations of protein in solution and in the crystal are similar. Multifrequency phase fluorimetric data obtained from a single crystal were best fit by a single fluorescence lifetime very close to that exhibited by the protein in solution. The complementary structural data obtained from fluorescence spectroscopy and x-ray diffraction crystallography will aid in the elucidation of this novel protein's structure-function relationship.  相似文献   

11.
A slow fluorescence change of the complex between ras p21 and the fluorescent GTP analogue 2'(3')-O-(N-methylanthraniloyl)guanosine 5'-triphosphate (mGTP) has been postulated to be a signal arising from a step which is rate limiting and precedes the actual GTP hydrolysis reaction [Neal, S. E., Eccleston, J. F., & Webb, M. R. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 3562-3565]. We have now shown that the rate of the fluorescence change is accelerated by GTPase-activating protein (GAP) in the same manner as that of the GTP cleavage reaction. In contrast, a faster fluorescence change of smaller amplitude seen in the complex between p21 and the uncleavable 2'(3')-O-(N-methylanthraniloyl)guanosine 5'-O-(beta,gamma-imidotriphosphate) (mGppNHp) is not affected by GAP. The corresponding fluorescent derivative of guanosine 5'-O-(gamma-thiotriphosphate) (mGTP gamma S) shows a very slow fluorescence change after binding to p21, and this rate is also accelerated significantly by GAP. Hydrolysis of GTP gamma S is similarly slow, and it is accelerated by GAP in a similar manner to the fluorescence change. The results are interpreted to indicate that the fluorescence change occurs either at the hydrolysis step or on release of inorganic phosphate or thiophosphate but does not occur in a rate-limiting step preceding hydrolysis.  相似文献   

12.
RasGRF family guanine nucleotide exchange factors (GEFs) promote guanosine diphosphate (GDP)/guanosine triphosphate (GTP) exchange on several Ras GTPases, including H-Ras and TC21. Although the mechanisms controlling RasGRF function as an H-Ras exchange factor are relatively well characterized, little is known about how TC21 activation is regulated. Here, we have studied the structural and spatial requirements involved in RasGRF 1/2 exchange activity on TC21. We show that RasGRF GEFs can activate TC21 in all of its sublocalizations except at the Golgi complex. We also demonstrate that TC21 susceptibility to activation by RasGRF GEFs depends on its posttranslational modifications: farnesylated TC21 can be activated by both RasGRF1 and RasGRF2, whereas geranylgeranylated TC21 is unresponsive to RasGRF2. Importantly, we show that RasGRF GEFs ability to catalyze exchange on farnesylated TC21 resides in its pleckstrin homology 1 domain, by a mechanism independent of localization and of its ability to associate to membranes. Finally, our data indicate that Cdc42-GDP can inhibit TC21 activation by RasGRF GEFs, demonstrating that Cdc42 negatively affects the functions of RasGRF GEFs irrespective of the GTPase being targeted.  相似文献   

13.
Transformation by oncogenic Ras requires signaling through Rho family proteins including RhoA, but the mechanism(s) whereby oncogenic Ras regulates the activity of RhoA is (are) unknown. We examined the effect of Ras on RhoA activity in NIH 3T3 cells either stably transfected with H-Ras(V12) under control of an inducible promoter or transiently expressing the activated H-Ras. Using a novel method to quantitate enzymatically the GTP bound to Rho, we found that expression of the oncogenic Ras increased Rho activity approximately 2-fold. Increased Rho activity was associated with increased plasma membrane binding of RhoA and decreased activity of the Rho/Ras-regulated p21(WAF1/CIP1) promoter. RhoA activation by oncogenic Ras could be explained by a decrease in cytosolic p190 Rho-GAP activity and translocation of p190 Rho-GAP from the cytosol to a detergent-insoluble cytoskeletal fraction. Pharmacologic inhibition of the Ras/Raf/MEK/ERK pathway prevented Ras-induced activation of RhoA and translocation of p190 Rho-GAP; expression of constitutively active Raf-1 kinase or MEK was sufficient to induce p190 Rho-GAP translocation. We conclude that in NIH 3T3 cells oncogenic Ras activates RhoA through the Raf/MEK/ERK pathway by decreasing the cytosolic activity and changing the subcellular localization of p190 Rho-GAP.  相似文献   

14.
Cholera toxin binds to its ganglioside GM1 receptor via its B-subunit, a pentameric assembly of identical subunits (Mr = 11,600). Diffraction quality crystals of cholera toxin B-subunit have been obtained at room temperature by vapor diffusion with polyethylene glycol in the presence of the nonionic detergent beta-octyl glucoside. The crystals have been characterized with x-radiation as monoclinic, space group P21, with unit cell dimensions a = 39.0 A, b = 94.3 A, c = 67.5 A, beta = 96.0 degrees. There are two molecules per unit cell, with one molecule (Mr = 58,000) in each asymmetric unit. Precession photographs (micron = 13 degrees) show that crystals diffract beyond 3.3-A resolution and are stable in the x-ray beam at room temperature for at least 40 h; thus, they can be used to collect three-dimensional crystallographic data.  相似文献   

15.
Evidence is accumulating that rho p21, a ras p21-related small GTP-binding protein (G protein), regulates the actomyosin system. The actomyosin system is known to be essential for cell motility. In the present study, we examined the action of rho p21, its inhibitory GDP/GTP exchange protein (named rho GDI), its stimulatory GDP/GTP exchange protein (named smg GDS), and Clostridium botulinum ADP-ribosyltransferase C3, known to selectively ADP-ribosylate rho p21 and to impair its function, in cell motility (chemokinesis) of Swiss 3T3 cells. We quantitated the capacity of cell motility by measuring cell tracks by phagokinesis. Microinjection of the GTP gamma S-bound active form of rhoA p21 or smg GDS into Swiss 3T3 cells did not affect cell motility, but microinjection of rho GDI into the cells did inhibit cell motility. This rho GDI action was prevented by comicroinjection of rho GDI with the GTP gamma S-bound form of rhoA p21 but not with the same form of rhoA p21 lacking the C-terminal three amino acids which was not posttranslationally modified with lipids. The rho GDI action was not prevented by Ki-rasVal-12 p21 or any of the GTP gamma S-bound form of other small GTP-binding proteins including rac1 p21, G25K, and smg p21B. Among these small G proteins, rhoA p21, rac1 p21, and G25K are known to be substrates for rho GDI. The rho GDI action was not prevented by comicroinjection of rho GDI with smg GDS. Microinjection of C3 into Swiss 3T3 cells also inhibited cell motility. These results indicate that the rho GDI-rho p21 system regulates cell motility, presumably through the actomyosin system.  相似文献   

16.
The scattering cross-section of atoms in biological macromolecules for both elastically and inelastically scattered electrons is approximately 100,000 times larger than that for x-ray. Therefore, much smaller (<1 microm) and thinner (<0.01 microm) protein crystals than those used for x-ray crystallography can be used to analyze the molecular structures by electron crystallography. But, inelastic scattering is a serious problem. We examined electron diffraction data from thin three-dimensional (3-D) crystals (600-750 A thick) and two-dimensional (2-D) crystals (approximately 60 A thick), both at 93 K, with an energy filtering electron microscope operated at an accelerating voltage of 200 kV. Removal of inelastically scattered electrons significantly improved intensity data statistics and R(Friedel) factor in every resolution range up to 3-A resolution. The effect of energy filtering was more prominent for thicker crystals but was significant even for thin crystals. These filtered data sets showed better intensity statistics even in comparison with data sets collected at 4 K and an accelerating voltage of 300 kV without energy filtering. Thus, the energy filter will be an effective and important tool in the structure analysis of thin 3-D and 2-D crystals, particularly when data are collected at high tilt angle.  相似文献   

17.
Ras GTPases were long thought to function exclusively from the plasma membrane (PM). However, a current model suggests that Ras proteins can compartmentalize to regulate different functions, and an oncogenic H-Ras mutant that is restricted to the endomembrane can still transform cells. In this study, we demonstrated that cells transformed by endomembrane-restricted oncogenic H-Ras formed tumors in nude mice. To define downstream targets of endomembrane Ras pathways, we analyzed Cdc42, which concentrates in the endomembrane and has been shown to act downstream of Ras in Schizosaccharomyces pombe. Our data show that cell transformation induced by endomembrane-restricted oncogenic H-Ras was blocked when Cdc42 activity was inhibited. Moreover, H-Ras formed a complex with Cdc42 on the endomembrane, and this interaction was enhanced when H-Ras was GTP bound or when cells were stimulated by growth factors. H-Ras binding evidently induced Cdc42 activation by recruiting and/or activating Cdc42 exchange factors. In contrast, when constitutively active H-Ras was restricted to the PM by fusing to a PM localization signal from the Rit GTPase, the resulting protein did not detectably activate Cdc42 although it activated Raf-1 and efficiently induced hallmarks of Ras-induced senescence in human BJ foreskin fibroblasts. Surprisingly, PM-restricted oncogenic Ras when expressed alone could only weakly transform NIH 3T3 cells; however, when constitutively active Cdc42 was coexpressed, together they transformed cells much more efficiently than either one alone. These data suggest that efficient cell transformation requires Ras proteins to interact with Cdc42 on the endomembrane and that in order for a given Ras protein to fully transform cells, multiple compartment-specific Ras pathways need to work cooperatively.  相似文献   

18.
The overexpression of some human proteins can cause interference with the Ras signal transduction pathway in the yeast Saccharomyces cerevisiae. The functional block is located at the level of the effector itself, since these proteins do not suppress activating mutations further downstream in the same pathway. We now demonstrate, with in vivo and in vitro experiments, that the protein encoded by one human cDNA (clone 99) can interact directly with yeast Ras2p and with human H-Ras protein, and we have named this gene rin1 (Ras interaction/interference). The interaction between Ras and Rin1 is enhanced when Ras is bound to GTP. Rin1 is not able to interact with either an effector mutant or a dominant negative mutant of H-Ras. Thus, Rin1 displays a human H-Ras interaction profile that is the same as that seen for Raf1 and yeast adenylyl cyclase, two known effectors of Ras. Moreover, Raf1 directly competes with Rin1 for binding to H-Ras in vitro. Unlike Raf1, however, the Rin1 protein resides primarily at the plasma membrane, where H-Ras is localized. These data are consistent with Rin1 functioning in mammalian cells as an effector or regulator of H-Ras.  相似文献   

19.
A system has been developed for subjecting protein crystals to hyperbaric pressures of oxygen gas in order to promote enzymatic reaction. Crystals of an oxygenase or oxidase enzyme are grown anaerobically by hanging drop vapor diffusion, under crystallization conditions modified to eliminate combustible materials such as plastic coverslips and grease. The crystalline enzyme:substrate complex can then be exposed to oxygen gas at pressures up to 60 bar using a custom-built device or "bomb." In this way, reaction is initiated synchronously throughout the crystal and subsequent flash freezing allows the trapping of enzyme:product complexes in high occupancy. These complexes can then be structurally characterized by conventional monochromatic X-ray crystallography. The bomb is furnished from naval brass and lubricated with Fomblin RT15 perfluorinated polyether grease in order to ensure compatibility with the highly oxidizing environment.  相似文献   

20.
Crystals of apo- and holo-D-glyceraldehyde-3-phosphate dehydrogenase from the tail muscle of the Mediterranean lobster Palinurus vulgaris, previously found to be suitable for single crystal microspectrophotometric studies of catalytic activity in the crystalline state, have been examined by x-ray crystallography. The two forms are isomorphous, space group C 2 with cell dimensions a=128.4 A, b=99.9 A, c=80.3 A,beta=113.4 degrees. These data are consistent with a molecular weight of 73,000 in the crystallographic asymmetric unit, indicating that the tetrameric molecule possesses an exact 2-fold axis both in the presence and in the absence of NAD+. Analysis of the intensity distribution of conventional x-ray precession photographs shows that two further noncrystallographic diads are present and that the molecule has the 2 pseudo 22 symmetry found in other D-glyceraldehyde-3-phosphate dehydrogenases. Binding of NAD+ to apoenzyme in solution, at 25 degrees C, is anticooperative and it can be satisfactorily described by assuming two classes of coenzyme binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号