首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The ribonucleoprotein Male Specific Lethal (MSL) complex is required for X chromosome dosage compensation in Drosophila melanogaster males. Beginning at 3 h of development the MSL complex binds transcribed X-linked genes and modifies chromatin. A subset of MSL complex proteins, including MSL1 and MSL3, is also necessary for full expression of autosomal heterochromatic genes in males, but not females. Loss of the non-coding roX RNAs, essential components of the MSL complex, lowers the expression of heterochromatic genes and suppresses position effect variegation (PEV) only in males, revealing a sex-limited disruption of heterochromatin. To explore the molecular basis of this observation we examined additional proteins that participate in compensation and found that MLE, but not Jil-1 kinase, contributes to heterochromatic gene expression. To determine if identical regions of roX RNA are required for dosage compensation and heterochromatic silencing, we tested a panel of roX1 transgenes and deletions and find that the X chromosome and heterochromatin functions are separable by some mutations. Chromatin immunoprecipitation of staged embryos revealed widespread autosomal binding of MSL3 before and after localization of the MSL complex to the X chromosome at 3 h AEL. Autosomal MSL3 binding was dependent on MSL1, supporting the idea that a subset of MSL proteins associates with chromatin throughout the genome during early development. The broad localization of these proteins early in embryogenesis supports the idea of direct action at autosomal sites. We postulate that this may contribute to the sex-specific differences in heterochromatin that we, and others, have noted.  相似文献   

5.
6.
7.
8.
9.
MSL complexes bind hundreds of sites along the single male X chromosome to achieve dosage compensation in Drosophila. Previously, we proposed that approximately 35 "high-affinity" or "chromatin entry" sites (CES) might nucleate spreading of MSL complexes in cis to paint the X chromosome. This was based on analysis of the first characterized sites roX1 and roX2. roX transgenes attract MSL complex to autosomal locations where it can spread long distances into flanking chromatin. roX1 and roX2 also produce noncoding RNA components of the complex. Here we identify a third site from the 18D10 region of the X chromosome. Like roX genes, 18D binds full and partial MSL complexes in vivo and encompasses a male-specific DNase I hypersensitive site (DHS). Unlike roX genes, the 510 bp 18D site is apparently not transcribed and shows high affinity for MSL complex and spreading only as a multimer. While mapping 18D, we discovered MSL binding to X cosmids that do not carry one of the approximately 35 high-affinity sites. Based on additional analyses of chromosomal transpositions, we conclude that spreading in cis from the roX genes or the approximately 35 originally proposed "entry sites" cannot be the sole mechanism for MSL targeting to the X chromosome.  相似文献   

10.
11.
12.
13.
14.
15.
16.
In Drosophila, dosage compensation is controlled by the male-specific lethal (MSL) complex consisting of MSL proteins and roX RNAs. The MSL complex is specifically localized on the male X chromosome to increase its expression approximately 2-fold. We recently proposed a model for the targeted assembly of the MSL complex, in which initial binding occurs at approximately 35 dispersed chromatin entry sites, followed by spreading in cis into flanking regions. Here, we analyze one of the chromatin entry sites, the roX1 gene, to determine which sequences are sufficient to recruit the MSL complex. We found association and spreading of the MSL complex from roX1 transgenes in the absence of detectable roX1 RNA synthesis from the transgene. We mapped the recruitment activity to a 217 bp roX1 fragment that shows male-specific DNase hypersensitivity and can be preferentially cross-linked in vivo to the MSL complex. When inserted on autosomes, this small roX1 segment is sufficient to produce an ectopic chromatin entry site that can nucleate binding and spreading of the MSL complex hundreds of kilobases into neighboring regions.  相似文献   

17.
18.
19.
20.
Dosage compensation in Drosophila melanogaster involves the selective targeting of the male X chromosome by the dosage compensation complex (DCC) and the coordinate, ∼2-fold activation of most genes. The principles that allow the DCC to distinguish the X chromosome from the autosomes are not understood. Targeting presumably involves DNA sequence elements whose combination or enrichment mark the X chromosome. DNA sequences that characterize ‘chromosomal entry sites’ or ‘high-affinity sites’ may serve such a function. However, to date no DNA binding domain that could interpret sequence information has been identified within the subunits of the DCC. Early genetic studies suggested that MSL1 and MSL2 serve to recognize high-affinity sites (HAS) in vivo, but a direct interaction of these DCC subunits with DNA has not been studied. We now show that recombinant MSL2, through its CXC domain, directly binds DNA with low nanomolar affinity. The DNA binding of MSL2 or of an MSL2–MSL1 complex does not discriminate between different sequences in vitro, but in a reporter gene assay in vivo, suggesting the existence of an unknown selectivity cofactor. Reporter gene assays and localization of GFP-fusion proteins confirm the important contribution of the CXC domain for DCC targeting in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号