首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1) has been synthesized in the rabbit reticulocyte lysate system directed by poly(A)+ mRNA isolated from rat brain. Identification of the in vitro synthesis product as hexokinase was based on its immunoprecipatation with anti-hexokinase serum as well as the generation of identical peptide maps after partial cleavage of the in vitro product and authentic hexokinase with Staphylococcus aureus V8 proteinase or chymotrypsin. The in vitro product and authentic hexokinase were indistinguishable in molecular weight (SDS-gel electrophoresis); thus, despite the fact that, in situ, much of the hexokinase in brain is found in association with mitochondria, it is not synthesized in the form of a higher molecular weight precursor as is characteristic of other mitochondrial proteins. This is in accord with the view that hexokinase is best considered as a classical ‘soluble’ enzyme which is capable of exhibiting reversible association with mitochondria. The in vitro product cochromatographs (during anion-exchange HPLC) with authentic hexokinase previously shown to have a blocked (presumably acetylated) N-terminus; this procedure is capable of resolving the N-terminally blocked form of the enzyme from a partially proteolyzed form having a free N-terminal amino group. Thus the in vitro product is apparently N-acetylated by an enzyme system previously shown to be present in reticulocyte lysates. A significant fraction of the in vitro synthesized hexokinase attained a conformation characteristic of the native enzyme as judged by the observations that (1) it could be immunoprecipitated by monoclonal antibodies recognizing the native enzyme but not by antibodies recognizing denatured hexokinase, and (2) limited tryptic cleavage of the in vitro product gave fragments identical to those seen with the native enzyme and thought to reflect the organization of structural domains in that enzyme. However, based on these same criteria, the majority of the hexokinase synthesized in vitro appears to exist in a folding state that is not identical to that of either the fully denatured or native enzyme.  相似文献   

2.
Antiserum prepared against the denatured form of mammalian malate dehydrogenase was found to immunoprecipitate the denatured but not the native form of the mature enzyme. In contrast, the antiserum immunoprecipitated the enzyme's precursor, synthesized in a rabbit reticulocyte lysate, either before or after denaturation. The mature form of the enzyme but not the precursor bound to an affinity column of 5'-AMP-Sepharose. These results indicate that the mature and precursor forms of malate dehydrogenase have different conformations.  相似文献   

3.
Antibodies to purified glycerol-3-phosphate dehydrogenase were raised in rabbits and purified from serum by affinity chromatography on enzyme-bound Sepharose columns. RNA from membrane-free polyribosomes, or poly(A)+ RNA (total cellular RNA) of rat liver, was translated in a rabbit reticulocyte protein-synthesizing system in the presence of [35S]methionine, and the glycerol-3-phosphate dehydrogenase synthesized was isolated by immunoprecipitation using the antibody. The in vitro product moved on sodium dodecyl sulfate-polyacrylamide gels as a polypeptide that was about 5,000 daltons larger than the subunit of the mature enzyme (74,000 daltons). Digestion of both the mature and the in vitro newly synthesized forms of the enzyme yielded respective sets of peptide fragments which had similar patterns upon sodium dodecyl sulfate-gel electrophoresis. When the presumptive precursor that had been synthesized in vitro was incubated with isolated intact rat liver mitochondria, it was converted to "mature" subunits that were no longer susceptible to externally added proteases. Import of the presumptive precursor is dependent upon an electrochemical potential across the inner mitochondrial membranes. The mature form of the protein is assembled in its native location (the outer surface of the inner mitochondrial membrane).  相似文献   

4.
High purity fatty acid synthetase mRNA has been prepared from rat liver. The translational purity of the mRNA preparation was at least 27% as judged by the percentage of the radioactivity incorporated into acid-insoluble material that was precipitated by anti-fatty acid synthetase antibody. The specific activity of the mRNA was 220-times greater than that reported previously from this laboratory [1]. The large increase in the specific activity was achieved by the repeated use of high resolution linear-log sucrose density gradient centrifugation and the removal of 28 S rRNA by Sepharose 4B chromatography, as well as by the optimization of the K+ concentration (160 mM) in the reticulocyte lysate translation system. The mRNA preparation showed a single major band on agarose gel electrophoresis under denaturing conditions, and the translational activity of the fatty acid synthetase mRNA on the gel was found to coincide with this band. The molecular weight of the fatty acid synthetase mRNA is 2.5·106 Da. The mRNA directed the synthesis of fatty acid synthetase with a molecular weight indistinguishable from that of the authentic enzyme subunit (Mr = 240 000). The copurification of the translation product and authentic enzyme revealed that the fatty acid synthetase polypeptides synthesized in the reticulocyte lysate system are assembled in vitro into dimers, the native form of the enzyme.  相似文献   

5.
Rat liver total RNA was translated in a reticulocyte lysate, and the precursor of rat liver mitochondrial malate dehydrogenase was identified by a monospecific antibody against the denatured mature enzyme. The precursor is about Mr = 1500 to 2000 larger than the monomeric form of the mature protein. The major spots of the two-dimensional peptide map of the two proteins were identical. The precursor was synthesized on free polysomes, but not membrane-bound polysomes. Upon fractionation by molecular sieve chromatography on Sephadex G-100, the size of the precursor was slightly larger than the dimeric form of the mature protein. Incubation of the precursor with isolated mitochondria from Chinese hamster ovary cells resulted in uptake and processing of the precursor to the mature size. The processed form was resistant to trypsin indicating that it was translocated into mitochondria. Processing was complete in 10 to 30 min at 30 degrees C. Rapid binding of the precursor to mitochondria was also observed at 0 or 30 degrees C. Processing but not binding was inhibited by an uncoupler.  相似文献   

6.
Hexokinase in mammalian brain is particulate and usually considered to be bound to the outer mitochondrial membrane. Investigation of rabbit brain mitochondria prepared either by differential centrifugation and discontinuous density gradient centrifugation has provided evidence that this particulate fraction also contains endoplasmic vesicles and synaptosomes. Solubilization of the bound hexokinase by different combinations of detergents and metabolites has proved the existence of different hexokinase binding sites. Electron microscopic examination of hexokinase location by immuno-gold labelling techniques confirmed, that hexokinase is indeed predominantly bound to mitochondria but that a significant proportion is also bound to non-mitochondrial membranes. Attempts to quantify this distribution were unsuccessful since different figures were obtained using anti-hexokinase IgG affinity purified on immobilized native or denatured hexokinase. Binding studies of the purified rabbit brain mitochondrial hexokinase to rabbit liver mitochondria and microsomes confirmed that in addition to a binding site on mitochondria there is another binding site on microsomes. The N-terminal sequence of hexokinase has been shown to be important for mitochondria binding and also for microsome binding. These results suggest that the intracellular localization of hexokinase in rabbit brain is not exclusively mitochondrial and that the metabolic role of this enzyme should be reconsidered by including a binding site on the endoplasmic reticulum.  相似文献   

7.
Summary The intracellular localization and isozyme distribution of hexokinase were studied during rabbit reticulocyte maturation and aging. In reticulocytes 50% of the enzyme was particulate while in the mature erythrocytes all the hexokinase activity was soluble. The bound enzyme co-sediments with mitochondria and by column chromatography it was found to be hexokinase Ia. The cytosol of reticulocytes contains hexokinase Ia (38%) and hexokinase Ib (62%) while the mature erythrocytes contain only hexokinase Ia. The amount of bound hexokinase decreases very quickly during cell maturation and aging as was shown by following in vivo reticulocyte maturation or by analysis of hexokinase compartmentation in cells of different ages, obtained by density gradient ultracentrifugations. A role for this intracellular distribution of hexokinase is suggested.  相似文献   

8.
9.
Hormonal regulation of cell growth and development, tissue morphology, metabolism and physiological function in animals and man is a well‐established knowledge domain in modern biological science. The present study was carried out to investigate the structural stability of hexokinase when exposed to diabetic levels of glucose and its binding efficiency. The fluorescence study indicated that 28‐homobrassinolide was able to protect or restore the native structure of hexokinase. Proteins are synthesized and fold into the native form to become active. The inability of a protein molecule to remain in its native form is called as protein misfolding and this is because of several factors. Protein aggregation and misfolding are known to play a critical role in several human diseases including diabetes. Homobrassinolide interaction with hexokinase was studied by UV–Vis spectrophotometer and fluorescence spectrophotometer. Results were suggested that the denatured hexokinase was renatured upon binding with homobrassinolide. In silico, docking study was performed to recognize the binding activity of homobrassinolide against a subunit of the glucokinase, and homobrassinolide was able to bind to the drug binding pocket of glucokinase. The glide energy is ?7.1 kcal/mol, suggesting the high binding affinity of homobrassinolide to glucokinase. Overall, these studies predict that the phytohormone 28‐homobrassinolide would function as an anti‐diabetic when present in human and animal diet by augmenting the hexokinase enzyme activity in the animal cell. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The mitochondrial ADP/ATP carrier is an integral transmembrane protein of the inner membrane. It is synthesized on cytoplasmic ribosomes. Kinetic data suggested that this protein is transferred into mitochondria in a posttranslational manner. The following results provide further evidence for such a mechanism and provide information on its details. 1. In homologous and heterologous translation systems th newly synthesized ADP/ATP carrier protein is present in the postribosomal supernatant. 2. Analysis by density gradient centrifugation and gel filtration shows, that the ADP/ATP carrier molecules in the postribosomal fraction are present as soluble complexes with apparent molecular weights of about 120 000 and 500 000 or larger. The carrier binds detergents such as Triton X-100 and deoxycholate forming mixed micelles with molecular weights of about 200 000-400 000. 3. Incubation of a postribosomal supernatant of a reticulocyte lysate containing newly synthesized ADP/ATP carrier with mitochondria isolated from Neurospora spheroplasts results in efficient transfer of the carrier into mitochondria. About 20-30% of the transferred carrier are resistant to proteinase in whole mitochondria. The authentic mature protein is also largley resistant to proteinase in whole mitochondria and sensitive after lysis of mitochondria with detergent. Integrity of mitochondria is a preprequisite for translocation into proteinase resistant position. 4. The transfer in vitro into a proteinase-resistant form is inhibited by the uncoupler carbonyl-cyanide m-chlorophenylhydrazone but not the proteinase-sensitive binding. These observations suggest that the posttranslational transfer of ADP/ATP carrier occurs via the cytosolic space through a soluble oligomeric precursor form. This precursor is taken up by intact mitochondria into an integral position in the membrane. These findings are considered to be of general importance for the intracellular transfer of insoluble membrane proteins. They support the view that such proteins can exist in a water-soluble form as precursors and upon integration into the membrane undergo a conformational change. Uptake into the membrane may involve the cleavage of an additional sequence in some proteins, but this appears not to be a prerequisite as demonstrated by the ADP/ATP carrier protein.  相似文献   

11.
The proportion of hexokinase that is bound to the outer mitochondrial membrane is tissue specific and metabolically regulated. This study examined the role of the N,N-dicyclohexylcarbodiimide-binding domain of mitochondrial porin in binding to hexokinase I. Selective proteolytic cleavage of porin protein was performed and peptides were assayed for their, effect on hexokinase I binding to isolated mitochondria. Specificity of DCCD-reactive domain binding to hexokinase I was demonstrated by competition of the peptides for porin binding sites on hexokinase as well as by blockage hexokinase binding by N,N-dicyclohexylcarbodiimide. One of the peptides, designated as 5 kDa (the smallest of the porin peptides, which contains a DCCD-reactive site), totally blocked binding of the enzyme to the mitochondrial membrane, and significantly enhanced the release of the mitochondrially bound enzyme. These experiments demonstrate that there exists a direct and specific interaction between the DCCD-reactive domain of VDAC and hexokinase I. The peptides were further characterized with respect to their effects on certain functional properties of hexokinase I. None had any detectable effect on catalytic properties, including inhibition by glucose 6-phosphate. To evaluate further the outer mitochondrial membranes role in the hexokinase binding, insertion of VDAC was examined using isolated rat mitochondria. Pre-incubation of mitochondria with purified porin strongly increases hexokinase I binding to rat liver mitochondria. Collectively, the results imply that the high hexokinase-binding capability of porin-enriched mitochondria was due to a quantitative difference in binding sites.  相似文献   

12.
Caspase-activated DNase (CAD) is the enzyme that causes DNA fragmentation during apoptosis. CAD forms aggregates when it is synthesized in the absence of an inhibitor of CAD (ICAD). Here, using renaturation systems of chemically denatured CAD, we report that ICAD-L, a long form of ICAD, has a chaperone-like activity specific for CAD. Murine CAD carries 14 cysteines, most of which were found to be in reduced form. Reducing agents enhanced the production of the functional CAD in an in vitro translation system. The denatured CAD could be efficiently renatured under highly reducing conditions only in the presence of ICAD-L. This process was ATP-independent. In contrast, reticulocyte lysates stimulated ICAD-L- and ATP-dependent renaturation of denatured CAD without requiring a high concentration of reducing agents. These results indicate that ICAD-L works not only as a specific inhibitor but also as a specific chaperone for CAD.  相似文献   

13.
Rat liver 3-ketoacyl-CoA thiolase, a mitochondrial matrix enzyme which catalyzes a step of fatty acid beta-oxidation, was synthesized in a rabbit reticulocyte lysate cell-free system. The in vitro product was apparently the same in molecular size and charge as the subunit of the mature enzyme. The enzyme synthesized in vitro was transported into isolated rat liver mitochondria in an energy-dependent manner. In pulse experiments with isolated rat hepatocytes at 37 degrees C, the radioactivity of the newly synthesized enzyme in the cytosolic fraction remained essentially unchanged during 5-20 min of incubation, whereas that of the enzyme in the particulate fraction increased with time during the incubation. The pulse-labeled enzyme disappeared with an apparent half-life of less than 3 min from the cytosolic fraction, in pulse-chase experiments. Purified 3-ketoacyl-CoA thiolase inhibited the mitochondrial uptake and processing of the precursors of the other matrix enzymes, ornithine carbamoyltransferase, medium-chain acyl-CoA dehydrogenase and acetoacetyl-CoA thiolase. These results indicate that 3-ketoacyl-CoA thiolase has an internal signal which is recognized by the mitochondria and suggest that this enzyme and the three others are transported into the mitochondria by a common pathway.  相似文献   

14.
ADP/ATP carrier protein was synthesized in heterologous cell-free systems programmed with Neurospora poly(A)-containing RNA and homologous cell-free systems from Neurospora. The apparent molecular weight of the product obtained in vitro was the same as that of the authentic mitochondrial protein. The primary translation product obtained in reticulocyte lysates starts with formylmethionine when formylated initiator methionyl-tRNA (fMet-tRNAfMet) was present. The product synthesized in vitro was released from the ribosomes into the postribosomal supernatant. The evidence presented indicates that the ADP/ATP carrier is synthesized as a polypeptide with the same molecular weight as the mature monomeric protein and does not carry an additional sequence.  相似文献   

15.
Biosynthesis of rat liver transhydrogenase in vivo and in vitro   总被引:1,自引:0,他引:1  
The biosynthesis of pyridine dinucleotide transhydrogenase, a homodimeric inner mitochondrial membrane redox-linked proton pump, has been studied in isolated rat hepatocytes. Newly synthesized transhydrogenase, having an apparent molecular weight identical to the enzyme of isolated liver mitochondria, was selectively immunoprecipitated from detergent extracts of isolated hepatocytes which were labeled with [35S]methionine. That the enzyme is a nuclear gene product is indicated since 1) synthesis was inhibited by cycloheximide, but not by chloramphenicol and 2) no synthesis could be demonstrated in hepatocyte ghosts which are competent only in mitochondrial translation. In addition to the mature form of the enzyme, a species about 2000 daltons larger was also immunoprecipitated from pulse-labeled cells. The half-life of the larger form during a subsequent chase at 37 degrees C was about 2 min, whereas the mature form was not degraded. The relationship between the two forms of the enzyme was established by in vitro studies. A protein approximately 2000 daltons larger than mature transhydrogenase was immunoisolated from a rabbit reticulocyte lysate system programmed with sucrose gradient fractionated rat liver mRNA. This protein was converted to a species having the same size as mature enzyme after incubation with either intact rat liver mitochondria or a soluble matrix fraction derived from mitoplasts. These studies indicate that transhydrogenase is synthesized in the cytoplasm as a higher molecular weight precursor which is post-translationally processed to the mature protein by a soluble matrix protease during or after membrane insertion.  相似文献   

16.
The regulation of functional mRNA coding for phenylalanine ammonia-lyase (PAL) from Rhodosporidium toruloides was investigated. Polyadenylic acid [poly(A)]-containing RNA was an efficient template for in vitro translation in rabbit reticulocyte lysate. Non-poly(A)-containing RNA did not stimulate in vitro protein synthesis. Several lines of experimental evidence indicate that mRNA from R. toruloides directs PAL synthesis in reticulocyte lysate: (i) the major radioactive product in immunoprecipitates when lysates, incubated with yeast poly(A)-containing RNA, were reacted with PAL-antiserum had the same molecular weight as native PAL (75,000); (ii) this major radioactive product competes with authentic PAL for binding to PAL-antiserum; and (iii) partial proteolytic peptide maps of the in vitro translation product were very similar to those of native PAL. The levels of functional mRNA coding for PAL, when R. toruloides was grown in different physiological conditions, were determined by quantitation of PAL synthesized in vitro when RNA was added to reticulocyte lysate. Functional PAL mRNA was six times higher in yeast grown on phenylalanine compared with glucose-phenylalanine minimal medium. No functional PAL mRNA was detected in yeast grown on glucose-ammonia minimal medium in the presence or absence of phenylalanine. These observed changes in functional PAL mRNA were similar to levels of PAL catalytic and antigenic activity. The kinetics of functional PAL mRNA synthesis and degradation were studied. Maximum levels of functional PAL mRNA were observed within 60 min of transfer to PAL-inducing growth conditions. Poly(A)-containing RNA and functional PAL mRNA were rapidly degraded when cells were transferred from phenylalanine to glucose-ammonia minimal medium, with half-lives of 25 and 10 min, respectively. Thus, it is suggested that the alterations in the amount of PAL in cells of R. toruloides grown in different physiological conditions primarily result from alteration in the amount of functional mRNA coding for the enzyme.  相似文献   

17.
The functional compartmentation of mitochondrial hexokinase   总被引:2,自引:0,他引:2  
These studies examined the functional relationship between rat hepatic mitochondria and associated hexokinase (ATP: d-hexose-6-phosphotransferase, 2.7.1.1) to determine whether the binding of hexokinase to mitochondria might provide a privileged interaction with sites of ATP production.Initial kinetic analysis followed the sequential flow of phosphate through ATP generated by the mitochondria into glucose-6-phosphate catalyzed by the bound hexokinase. Kinetics were compared with an identical bound hexokinase-mitochondrial system using externally supplied ATP. The hexokinase had lower apparent Km values for ATP generated in the mitochondria from supplied ADP than for ATP provided. Respiratory inhibitors blocked both the ADP- and ATP-mediated reactions. Tracer studies further documented that the mitochondrial hexokinase initially and preferentially utilized the internally generated nucleotide.These studies demonstrate that the active site of bound hexokinase is relatively inaccessible to extramitochondrial ATP. They provide evidence that bound hexokinase can sequentially accept mitochondrially generated ATP in a kinetically advantageous way. Finally, they support the assumption that mitochondrial binding of this acceptor enzyme may play a propitious role in cellular energy economy.  相似文献   

18.
Cytochrome c peroxidase, a cytoplasmically made enzyme located between the inner and outer membrane of yeast mitochondria, is synthesized as larger precursor in a reticulocyte cell-free lysate as well as in pulsed yeast spheroplasts. When the pulsed spheroplasts are chased, the precursor is converted to the mature apoprotein. When the in vitro synthesized precursor is incubated with isolated yeast mitochondria in the absence of protein synthesis, it is cleaved to the mature form; the mature form co-sediments with the mitochondria and is resistant to externally added proteases. These results, in conjunction with those reported earlier (Maccecchini, M.-L., Rudin, Y., Blobel, G., and Schatz, G. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 343-347) suggest that the mechanism of protein transport into the mitochondrial intermembrane space is quite similar to that of protein transport into the matrix or the inner membrane.  相似文献   

19.
Alcohol dehydrogenase isoenzyme III (ADH III) in Saccharomyces cerevisiae, the product of the ADH3 gene, is located in the mitochondrial matrix. The ADH III protein was synthesized as a larger precursor in vitro when the gene was transcribed with the SP6 promoter and translated with a reticulocyte lysate. A precursor of the same size was detected when radioactively pulse-labeled proteins were immunoprecipitated with anti-ADH antibody. This precursor was rapidly processed to the mature form in vivo with a half-time of less than 3 min. The processing was blocked if the mitochondria were uncoupled with carbonyl cyanide m-chlorophenylhydrazone. Mutant enzymes in which only the amino-terminal 14 or 16 amino acids of the presequence were retained were correctly targeted and imported into the matrix. A mutant enzyme that was missing the amino-terminal 17 amino acids of the presequence produced an active enzyme, but the majority of the enzyme activity remained in the cytoplasmic compartment on cellular fractionation. Random amino acid changes were produced in the wild-type presequence by bisulfite mutagenesis of the ADH3 gene. The resulting ADH III protein was targeted to the mitochondria and imported into the matrix in all of the mutants tested, as judged by enzyme activity. Mutants containing amino acid changes in the carboxyl-proximal half of the ADH3 presequence were imported and processed to the mature form at a slower rate than the wild type, as judged by pulse-chase studies in vivo. The unprocessed precursor appeared to be unstable in vivo. It was concluded that only a small portion of the presequence contains the necessary information for correct targeting and import. Furthermore, the information for correct proteolytic processing of the presequence appears to be distinct from the targeting information and may involve secondary structure information in the presequence.  相似文献   

20.
Isocitrate lyase was purified from Phycomyces blakesleeanus N.R.R.L. 1555(-). The native enzyme has an Mr of 240,000. The enzyme appeared to be a tetramer with apparently identical subunits of Mr 62,000. The enzyme requires Mg2+ for activity, and the data suggest that the Mg2(+)-isocitrate complex is the true substrate and that Mg2+ ions act as a non-essential activator. The kinetic mechanism of the enzyme was investigated by using product and dead-end inhibitors of the cleavage and condensation reactions. The data indicated an ordered Uni Bi mechanism and the kinetic constants of the model were calculated. The spectrophotometric titration of thiol groups in Phycomyces isocitrate lyase with 5.5'-dithiobis-(2-nitrobenzoic acid) gave two free thiol groups per subunit of enzyme in the native state and three in the denatured state. The isocitrate lyase was completely inactivated by iodoacetate, with non-linear kinetics. The inactivation data suggest that the enzyme has two classes of modifiable thiol groups. The results are also in accord with the formation of a non-covalent enzyme-inhibitor complex before irreversible modification of the enzyme. Both the equilibrium constants for formation of the complex and the first-order rate constants for the irreversible modification step were determined. The partial protective effect of isocitrate and Mg2+ against iodoacetate inactivation was investigated in a preliminary form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号