首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of anesthetic agents on systemic critical O2 delivery   总被引:1,自引:0,他引:1  
The present study tested the hypothesis that anesthetic agents can alter tissue O2 extraction capabilities in a dog model of progressive hemorrhage. After administration of pentobarbital sodium (25 mg/kg iv) and endotracheal intubation, the dogs were paralyzed with pancuronium bromide, ventilated with room air, and splenectomized. A total of 60 dogs were randomized in 10 groups of 6 dogs each. The first group served as control (C). A second group (P) received a continuous infusion of pentobarbital (4 mg.kg-2.h-2), which was started immediately after the bolus dose. Three groups received enflurane (E), halothane (HL), or isoflurane (I) at the end-tidal concentration of 0.7 minimum alveolar concentration (MAC). The sixth group received halothane at the end-tidal concentration of 1 MAC (HH). Two groups received intravenous alfentanil at relatively low dose (AL) or high dose (AH). The last two groups received intravenous ketamine at either relatively low dose (KL) or high dose (KH). In each group, O2 delivery (Do2) was progressively reduced by hemorrhage. At each step, systemic Do2 and O2 consumption (VO2) were measured separately and the critical point was determined from a plot of Vo2 vs. Do2. The critical O2 extraction ratio (OER) in the control group was 65.0 +/- 7.8%. OER was lower in all anesthetized groups (P, 44.3 +/- 11.8%; E, 47.0 +/- 7.7%; HL, 45.7 +/- 11.2%; I, 44.3 +/- 7.1%; HH, 33.7 +/- 6.0%; AL, 56.5 +/- 9.6%; AH, 43.5 +/- 5.9%; KH, 57.7 +/- 7.1%), except in the KL group (78.3 +/- 10.0%). The effects of halothane and alfentanil on critical OER were dose dependent (P less than 0.05), whereas critical OER was significantly lower in the KH than in the KL group. Moreover, the effects of anesthetic agents on critical Do2 appeared related to their effects on systemic vascular resistance. Anesthetic agents therefore alter O2 extraction by their peripheral vascular effects. However, ketamine, with its unique sympathetic stimulant properties, had a lesser effect on OER than the other anesthetic agents. It could therefore be the anesthetic agent of choice in clinical situations when O2 availability is reduced.  相似文献   

2.
The halogenated anesthetics halothane, enflurane and isoflurane inhibit the calcium efflux induced by Ruthenium Red in isolated rat liver mitochondria. The extent of the inhibition is higher for enflurane (approximately 50%) than for either isoflurane (approximately 35%) or halothane (approximately 15%), and does not increase significantly between 0.1 and 0.6-1.0 mM anesthetic. Both the mitochondrial respiratory rate and transmembrane electrical potential are unaffected by the halogenated anesthetics concentrations capable to inhibit the efflux of calcium.  相似文献   

3.
4.
The effect of three volatile anesthetics (halothane, enflurane, and isoflurane) on coronary flow and metabolic state of isolated rat hearts was studied. These anesthetics are coronary dilators and their effects are dose dependent. At 2 MAC (minimum alveolar concentration), isoflurane, enflurane, and halothane increase coronary flow by 114 +/- 5.9, 93 +/- 6.1, and 77 +/- 6.4%, respectively (p less than 0.001). At these concentrations, they also have a modest but significant metabolic effect causing a 30% reduction in myocardial ATP and phosphocreatine levels, with no significant modification in ADP and AMP concentrations. Energy charge and lactate/pyruvate ratio were also unaffected by these anesthetics. The vascular and metabolic effects were reversible within 2 and 30 min, respectively. Perfusion of the hearts with a Krebs-Henseleit solution without Pi did not interfere with the vascular and the metabolic effect of the anesthetics; however, in this case, ATP and phosphocreatine concentration did not return to control levels after their discontinuation despite full recovery of the vascular effect. These data suggest that the volatile anesthetics have direct coronary vascular and myocardial metabolic effects and that these effects occur independently.  相似文献   

5.
Potency of isoflurane and nitrous oxide in conventional swine   总被引:1,自引:0,他引:1  
The minimum alveolar concentration (MAC) of isoflurane in oxygen (O2) was determined to be 1.55 +/- 0.08 (SEM) volumes % in twelve pigs (Sus scrofa). Values for isoflurane MAC in the presence of 50% (I-50%N2O) and 66% (I-66%N2O) nitrous oxide were determined in nine and six of these same animals, respectively, and equalled 1.03 +/- 0.05 vol % for I-50%N2O and 0.95 +/- 0.07 vol % for I-66%N2O. Animals respired spontaneously and arterial blood pressure (AP), heart rate (HR), rectal body temperature, and arterial blood gases (PO2, PCO2, and pH) were recorded throughout the study period. These parameters were within normal limits near MAC for all three gas combinations. The MAC for isoflurane in swine was similar to that for other animals and, man and the use of this agent was associated with rapid and uneventful anesthetic induction and recovery. The addition of 50% and 66% nitrous oxide (N2O) reduced the isoflurane MAC by 30% and 42%, respectively.  相似文献   

6.
Sawas AH  Pentyala SN  Rebecchi MJ 《Biochemistry》2004,43(39):12675-12685
This study directly examines the enthalpic contributions to binding in aqueous solution of closely related anesthetic haloethers (desflurane, isoflurane, enflurane, and sevoflurane), a haloalkane (halothane), and an intravenous anesthetic (propofol) to bovine and human serum albumin (BSA and HSA) using isothermal titration calorimetry. Binding to serum albumin is exothermic, yielding enthalpies (DeltaH(obs)) of -3 to -6 kcal/mol for BSA with a rank order of apparent equilibrium association constants (K(a) values): desflurane > isoflurane approximately enflurane > halothane >or= sevoflurane, with the differences being largely ascribed to entropic contributions. Competition experiments indicate that volatile anesthetics, at low concentrations, share the same sites in albumin previously identified in crystallographic and photo-cross-linking studies. The magnitude of the observed DeltaH increased linearly with increased reaction temperature, reflecting negative changes in heat capacities (DeltaC(p)). These -DeltaC(p) values significantly exceed those calculated for burial of each anesthetic in a hydrophobic pocket. The enhanced stabilities of the albumin/anesthetic complexes and -DeltaC(p) are consistent with favorable solvent rearrangements that promote binding. This idea is supported by substitution of D(2)O for H(2)O that significantly reduces the favorable binding enthalpy observed for desflurane and isoflurane, with an opposing increase of DeltaS(obs). From these results, we infer that solvent restructuring, resulting from release of water weakly bound to anesthetic and anesthetic-binding sites, is a dominant and favorable contributor to the enthalpy and entropy of binding to proteins.  相似文献   

7.
Exposure of rats to the volatile anesthetics, halothane, enflurane and isoflurane and low FIO2 (0.8%) for two hours results in a transient induction of ODC appearing maximally four hours after exposure. Without the low oxygen accompanying the anesthetic or the low oxygen alone, no significant induction of ODC occurred. The concentration of anesthetic used to produce the ODC induction were 0.5% halothane, 1.5% enflurane and 1.4% isoflurane. Except for halothane, reducing the anesthetic concentration only slightly reduced the effect on ODC levels to control values. Reduction of halothane concentrations to 0.1% was required to reduce the values to control levels. Pretreatment of the animals with either cycloheximide or actinomycin D delayed the onset of ODC induction. The data support the fact that liver damage can occur in the absence of metabolism of the drug.  相似文献   

8.
The study reported here was done to determine the relationship between bispectral index (BIS) values and minimum alveolar concentration (MAC) multiples of isoflurane in cats. Isoflurane MAC was determined using the tail-clamp method in eight domestic cats. Ten days later, the cats were anesthetized a second time with isoflurane at each of five MAC multiples administered in random order. Ventilation was controlled and, after a 20-min equilibration period at each MAC multiple of isoflurane, BIS data were collected for 5 min and the median BIS value calculated. Data from each isoflurane MAC multiple were compared using analysis of variance for repeated measures, and statistical significance was set at P < 0.05. The MAC of isoflurane (mean +/- 1 standard deviation) was 1.8% +/- 0.2%. BIS values at 0.5 MAC could not be recorded due to spontaneous movement in all eight cats. BIS values at 2.0 MAC were confounded by burst suppression in seven of the eight cats. Over the range of 0.8 to 1.5 MAC, BIS values decreased significantly with increasing end-tidal isoflurane concentrations. Mean (+/- 1 standard deviation) BIS measurements were 32 +/- 3 at 0.8 MAC, 20 +/- 4 at 1.0 MAC, and 5 +/- 3 at 1.5 MAC. Therefore, BIS values are inversely and linearly related to end-tidal isoflurane concentrations in anesthetized cats. However, the consistently low BIS values recorded in this study suggest that clinical BIS endpoints used to titrate anesthetic agents in humans may not be applicable to cats.  相似文献   

9.
The aim of this study was to determine the changes in minimal alveolar concentration (MAC) of isoflurane after treatment with medetomidine and tiletamine/zolazepam (MTZ), epidural morphine or systemic buprenorphine in 11 healthy crossbred pigs. The first part of this study was to measure the baseline values in pigs induced with isoflurane (5%) by face mask and maintained with isoflurane in air and oxygen for 2 h (ISO). Baseline isoflurane MAC was determined using mechanical stimulation. Thereafter, each pig was randomly chosen for a crossover test in which the same animal received three different treatments with at least one week in between treatments. The three treatments were as follows: induction of anaesthesia with medetomidine (0.05 mg kg(-1)) and tiletamine/zolazepam (2.5 mg kg(-1) each) given intramuscularly (MTZ); MTZ followed by epidural morphine (0.1 mg kg(-1); MTZ/M); and MTZ followed by intramuscular buprenorphine (0.1 mg kg(-1); MTZ/B). All pigs were maintained with isoflurane in oxygen and air for 2 h and their lungs were mechanically ventilated. The end-tidal isoflurane concentration, respiratory rate, inspiratory and expiratory O2 and CO2 concentrations, heart rate (HR) and arterial blood pressure were recorded every 10 min. Arterial blood gases were analysed every 20 min. Among the treatment groups, differences in isoflurane MAC were tested using GLM and Tukey's method for further comparison; P < 0.05 was adopted as significant. Isoflurane MAC was 1.9 +/- 0.3%. MTZ reduced isoflurane MAC to 0.6 +/- 0.1%. Additional morphine or buprenorphine reduced the MTZ isoflurane MAC further to 0.4 +/- 0.2 and 0.3 +/- 0.1%, respectively. During MTZ, MTZ/M and MTZ/B mean arterial blood pressure was higher and the alveolar-arterial oxygen tension difference was lower compared with ISO. In conclusion, induction of anaesthesia with MTZ reduced the isoflurane MAC in pigs by 68%. Additional epidural morphine or systemic buprenorphine decreased MTZ isoflurane MAC by 33 and 50%, respectively.  相似文献   

10.
Partitioning of four modern inhalational anesthetics (halothane, isoflurane, enflurane, and sevoflurane) between the gas phase and nine organic solvents that model different amino acid side-chains and lipid membrane domains was performed in an effort to define which microenvironments present in proteins and lipid bilayers might be favored. Compared to a purely aliphatic environment (hexane), the presence of an aromatic-, alcohol-, thiol- or sulfide group on the solvent improved anesthetic partitioning, by factors of 1.3-5.2 for halothane, 1.7-5.6 for isoflurane, 1.7-7.6 for enflurane, and 1.5-7.3 for sevoflurane. The most favorable solvent for halothane partitioning was ethyl methyl sulfide, a model for methionine. Enflurane and isoflurane partitioned most extensively into methanol, a model for serine, and sevoflurane into ethanol, a model for threonine. Isoflurane also partitioned favorably into ethyl methyl sulfide. The results suggest that volatile general anesthetics interact better with partly polar groups, which are present on amino acids frequently found buried in the hydrophobic core of proteins, compared to purely aliphatic side-chains. Furthermore, if an anesthetic molecule was located in a saturated region of a phospholipid bilayer membrane, there would be an energetically favorable driving force for it to move into several higher dielectric microenvironments present on membrane proteins. The results provide evidence that proteins rather than lipids are the likely targets of volatile general anesthetics in biological membranes.  相似文献   

11.
The effects of varying concentrations and types of volatile anesthetics on neurochemical sequelae of brain ischemia were evaluated in the rat. Rats were assigned to treatment defined by a 3×3 design (anesthetic type and dose) with 5 rats/cell. Each group received halothane, enflurane, or isoflurane 0.5, 1.0, or 2.0 MAC (minimal alevolar concentration). This was followed by preischemic plasma glucose sampling, 5 min hypotension (30 mmHg) and 5 min decapitation cerebral ischemia. Preischemia plasma glucose increased with increasing anesthetic concentration and was highest in the isoflurane groups, varying from a low (±SD) of 7.19±1.79 mol/ml in the 0.5 MAC halothane group to a high of 12.68±3.65 mol/ml in the 2.0 MAC isoflurane group. End-ischemic brain lactate correlated with preischemic plasma glucose (r=0.5, =0.5). We conclude that increasing concentration of volatile anesthesia with iv phenylephrine blood pressure support produces higher levels of plasma glucose and brain lactate with cerebral ischemia.  相似文献   

12.
PCO(2) in the lumen and serosa of cecum and colon was measured in rats, guinea pigs, and dogs to examine the relationship between serosal PCO(2) and the incidence of intestinal necrotic lesions after administration of gas-carrier contrast agents in rodents. The effects of the dietary substrate were tested in a group of mice maintained on a diet based on glucose as the only carbohydrate source. The anesthetic used was a fentanyl-fluanison-midazolam mixture (rodents) and pentobarbital (dogs). PCO(2) was measured in vivo and postmortem, and the kinetics of the postmortem serosal PCO(2) [transmural CO(2) flux (J(CO(2)))] was calculated. PCO(2) in the cecal serosa and lumen, respectively, was 64 +/- 4 and 392 +/- 18 Torr in rats, 67 +/- 3 and 276 +/- 17 Torr in guinea pigs, and 73 +/- 6 and 137 +/- 7 Torr in mice on glucose-based diet. In the colon serosa and lumen of dogs, PCO(2) was 30 +/- 6 and 523 +/- 67 Torr, respectively. Serosal PCO(2) increased rapidly after death in rats and slower in guinea pigs and mice, and the slowest change was observed in dogs. Compared with dogs, serosal PCO(2) and J(CO(2)) of rats and guinea pigs were significantly higher. Serosal PCO(2) of guinea pigs was similar to that of rats, whereas the J(CO(2)) of guinea pigs was significantly lower. These data suggest a causal relationship between the ability of the cecal and colonic wall to act as a barrier to CO(2) diffusion and the presence of characteristic gas-carrier contrast agent-induced intestinal lesions in mice and rats and their absence in guinea pigs, dogs, and other species.  相似文献   

13.
We assessed the possible effects of the volatile halogenated anesthetics halothane, enflurane, and isoflurane on Ca(2+) electrode measurements and on the Ca(2+) sensitivity of the bioluminescent protein aequorin. In Ca(2+)-EGTA buffers of different pCa values (7. 870, 6.726, 6.033, 4.974, 4.038, and 2.995) and in serial Ca(2+) dilutions (10(-4), 10(-3), and 10(-2) M), halothane, enflurane, and isoflurane each caused a concentration-dependent and reversible increase in the absolute value of the negative electrode potential. Isoflurane and enflurane had larger effects than halothane. Neither of these anesthetics changed aequorin luminescence at any pCa tested in the range 2-8. There was no potentiation or inactivation of aequorin luminescence over a period of up to 2 h. These results suggest that (1) halothane, enflurane, and isoflurane interfere with Ca(2+) electrode measurements, most likely by changing the physicochemical properties of the membrane; (2) these anesthetics do not inactivate or otherwise modify the characteristics of the reaction of Ca(2+) with aequorin; and (3) these anesthetics do not change the apparent affinity of EGTA for Ca(2+).  相似文献   

14.
Inhalant anaesthetic agents are commonly used in studies investigating the electroencephalographic (EEG) effects of noxious stimuli in animals. Halothane causes less EEG depression than isoflurane, however, the EEG effects of halothane, isoflurane, sevoflurane and desflurane have not been compared in the same model. This study aimed to compare the EEG effects of these inhalational agents in the rat. Forty male Sprague-Dawley rats were assigned to four groups and anaesthetized with halothane, isoflurane, sevoflurane or desflurane. EEG was recorded from the left and right somatosensory cortices for 5 min at three different multiples of minimal alveolar concentration (MAC) (1.25, 1.5 and 1.75). Median, 95% spectral edge frequency and total power were derived and a single mean value for each was calculated for the first 60 s of each recording period. When the raw EEG contained burst suppression (BS), the BS ratio (BSR) over 60 s was calculated. No BS was found in EEG recorded from the halothane group at any concentration. BS was present at all concentrations with the other anaesthetic agents. BS was almost complete at all concentrations of isoflurane, whereas BSR increased significantly with increasing concentrations of sevoflurane and desflurane. No significant differences were found between the BSR due to the 1.75 MAC multiple of isoflurane, sevoflurane or desflurane. Halothane causes significantly less depression of cortical activity than the newer inhalant agents at equivalent multiples of MAC. These data support the hypothesis that halothane has a fundamentally different mechanism of action than the other inhalant agents.  相似文献   

15.
Halothane minimum alveolar concentration (MAC)-sparing response is preserved in rats rendered tolerant to the action of dexmedetomidine. It has been shown that halothane and isoflurane act at different sites to produce immobility. The authors studied whether there was any difference between halothane and isoflurane MAC-sparing effects of dexmedetomidine in rats after chronic administration of a low dose of this drug. Twenty-four female Wistar rats were randomly allocated into four groups of six animals: two groups received 10 μg/kg intraperitoneal dexmedetomidine for five days (treated groups) and the other two groups received intraperitoneal saline solution for five days (naive groups) prior to halothane or isoflurane MAC determination (one treated and one naive group of halothane and one treated and one naive group of isoflurane). Halothane or isoflurane MAC determination was performed before (basal) and 30 min after an intraperitoneal dose of 30 μg/kg of dexmedetomidine (post-dex) from alveolar gas samples at the time of tail clamp. Administration of an acute dose of dexmedetomidine to animals that had chronically received dexmedetomidine resulted in a MAC-sparing effect that was similar to that seen in naive animals for halothane; however, the same treatment increased the MAC-sparing response of dexmedetomidine for isoflurane. Isoflurane but not halothane MAC-sparing response of acutely administered dexmedetomidine is enhanced in rats chronically treated with this drug.  相似文献   

16.
17.
Fetal development in mice exposed to isoflurane   总被引:2,自引:0,他引:2  
The developmental toxicity of trace (0.006%), subanesthetic (0.06%), and light anesthetic (0.6%) exposure to isoflurane was examined in Swiss/Webster mice. No adverse effects were demonstrated following exposure of dams to 0.006% (n = 26) and 0.06% (n = 27) isoflurane for 4 hr daily on days 6-15 of pregnancy. Exposure to 0.6% isoflurane (n = 23) for the same period resulted in significantly decreased fetal weight, decreased skeletal ossification, minor hydronephrosis, and increased renal pelvic cavitation. The incidence of cleft palate also was significantly increased, abnormalities occurring in 12.1% of fetuses and affecting 11 of 23 litters. This incidence was considerably higher than that of the combined treatment and colony control groups (0.75%) and those that we have found in previous experiments with this mouse strain following exposure to halothane (1.2%) or enflurane (1.9%).  相似文献   

18.
Tracheal mucous transport was measured using similar techniques in several species. One- to 10-microliter quantities of 99mTc-macroaggregated albumin (99mTc-MAA) were instilled via oral intubation in the distal trachea of rats, rabbits, and dogs. Tracheostomies were used for the instillation in guinea pigs. All animals were anesthetized with halothane for the instillation and allowed to recover immediately in restrainers. Clearance of the 99mTc-MAA in rats and guinea pigs was measured by a slit-collimated NaI scanner. In rabbits and dogs a series of gamma-camera scintiphotos were taken. Clearance was faster and more efficient in dogs than in the other species. No significant differences existed among the rats, rabbits, and guinea pigs in the percentages of the originally deposited material remaining at the instillation site after 1 h (P greater than 0.2). Mean values and standard deviations were 83 +/- 23%, 81 +/- 22% and 70 +/- 20% for rats, guinea pigs, and rabbits, respectively. However, in the dogs a mean of 14 +/- 12% remained at the original site of deposition after only 25 min indicating much more rapid clearance. Mean leading-edge velocities were 9.8 +/- 2.1 (SD) for dogs, 3.2 +/- 1.1 for rabbits, 2.7 +/- 1.4 for guinea pigs, and 1.9 +/- 0.7 mm/min for rats. Clearance patterns qualitatively among the species. In dogs the material moved as a few discrete boluses, whereas in the other species the activity spread toward the larynx. The relatively slow mucous transport of rats, rabbits, and guinea pigs could have important implications in inhalation toxicological studies.  相似文献   

19.
The study reported here was done to determine the relationship between anesthesia depth and bispectral index (BIS) in stimulated pigs. Isoflurane minimal alveolar concentration (MAC) was determined using the tail-clamp method in 16 Yorkshire/Landrace-cross pigs with mean+/-SEM weight of 27.7+/-1.76 kg. One week later, BIS, ECG, heart rate, arterial blood pressure, esophageal temperature, end-tidal CO2 tension and isoflurane concentration, arterial pH, PaO2, PaCO2, plasma bicarbonate concentration, and base excess were determined at each of five isoflurane MAC-multiples: 0.8, 1.0, 1.3, 1.6, and 2.0. Six treatments were studied: isoflurane; isoflurane and atracurium; isoflurane, atracurium, and fentanyl; isoflurane with noxious stimulation; isoflurane and atracurium with noxious stimulation; and isoflurane, atracurium, and fentanyl with noxious stimulation. The noxious stimulus during BIS measurement was the same as that for MAC determination. Each pig was studied three times (n = 8), and order of MAC-multiples and treatments was randomized. Data were evaluated by use of general linear model analysis of variance and linear regression analysis, with statistical significance set at P < 0.05. Significant differences in BIS values were identified between MAC-multiples within each treatment and between treatment 3 compared with treatments 2 and 4. Significant differences also were observed within and between treatments for heart rate, arterial blood pressure, and PaO2. Use of BIS appears reliable for identification of light versus deep anesthesia, but is of limited use for discrimination between isoflurane MAC-multiples of 1 and 1.6. We conclude that, compared with other treatments, atracurium and noxious stimulation had no significant effect on BIS.  相似文献   

20.
The effects of halothane, isoflurane, and enflurane on ionic currents induced by bath application of gamma-amino-butyric acid (GABA) were studied with the rat dorsal root ganglion neurons maintained in primary culture. The whole-cell patch clamp technique was used to record the current. In normal neurons before exposure to anesthetics, GABA at low concentrations (1-3 x 10(-6) M) induced a small sustained inward current. At higher concentrations (3 x 10(-5) M-1 x 10(-3) M), GABA induced a large inward current, which decayed to a steady-state level (desensitization). Halothane (0.86 mM), isoflurane (0.96 mM), and enflurane (1.89 mM), each equivalent to the respective 2 minimum alveolar concentration (MAC) units, augmented the sustained current evoked by 3 x 10(-6) M GABA to 330-350% of control and the peak current evoked by 3 x 10(-5) M of GABA to 136-145% of control. The decay phase of the current was accelerated by the anesthetics, the time for the current to decline to 70% of the peak being reduced to 23-39% of control. In contrast, the densitized steady-state current evoked by high concentrations of GABA was decreased by anesthetics. In conclusion, general anesthetics exert a dual effect on the GABA receptor channel complex: to potentiate the nondesensitized (both peak and sustained) current and to suppress the desensitized steady-state current. The potentiation of the GABA receptor channel response may be a primary action of anesthetics leading to surgical anesthesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号