首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five new translocations recovered from irradiated sperm, each having a break-point in the proximal X heterochromatin, have been designated T23, T29, T32, T40, and T70. These translocations, together with Oak Ridge T1, make possible the precise localization of several genetic components including the X centromere, the controlling element, and the ribosomal cistrons. Only the data pertaining to centromere location are presented here. The ribosomal cistrons and controlling element will be dealt with separately. Full cytological details are given for each of the five translocations. The break-points on the X define three blocks of heterochromatin designated H1, H2, and H3. Together they comprise the right arm of the X. H3 is the smallest and forms the very end of the chromosome. H1 lies immediately to the right of the centromere. In T23 and T70 the breakpoints are located between H2 and H3; in T29 and T32 between H2 and H1. In Oak Ridge T1 the break-point lies between H1 and the centromere and in T40 between the centromere and the whole left arm of the chromosome. For the first time it has been possible to determine the exact breakpoints of the long paracentric inversion that is found on the X homologue.This series of papers is dedicated to Professor Sally Hughes-Schrader —cytologist, naturalist, scholar — who in her eighty-second year is still exulting in the wonders of chromosome behavior and still endowed with that understanding and grace which have heightened immeasurably the lives of those who have known her  相似文献   

2.
Helen V. Crouse 《Chromosoma》1979,74(2):219-239
The so-called controlling element (CE), which normally programs the curious behavior of the sex chromosome in this genus, has been localized in the short right arm of the polytene X in S. coprophila. The localization was accomplished by use of five X-autosome translocations whose break points define three blocks of heterochromatin (heterochromomeres) extending from the X centromere to the very end (right) of the chromosome. The behavior of the translocation chromosomes at the crucial second spermatocyte division was examined and the precocious chromosome identified in all five cases. Then, knowing the heterochromomere make-up of each chromosome, the position of the CE could be mapped; it is located in heterochromomere H2, the same block of heterochromatin that contains 50% of the ribosomal RNA cistrons. — The question of whether the CE can manipulate any centromere in the nucleus has been only partially answered. It can manipulate translocation chromosomes which possess the centromere of the metacentric autosome (salivary chromosome IV) or that of the shorter rod (salivary chromosome II); but the longer rod (salivary chromosome III) whose proximal end, as seen in the polytene nucleus, is heavily laden with heterochromatin of its own, has not been brought under CE control. — In one of the translocations, T23, the precocious chromosome is a very large metacentric chromosome which resembles the peculiar V-shaped X of S. pauciseta. This peculiarity is not observed in the J-shaped precocious chromosome of T29. These points are discussed.Dedicated to Professor Hans Bauer on the occasion of his 75th birthday.  相似文献   

3.
Structural variability of human chromosome 9 in relation to its evolution   总被引:4,自引:0,他引:4  
I. Hansmann 《Human genetics》1976,31(3):247-262
Summary Human chromosome 9 shows a high susceptibility for structural rearrangements, particularly pericentric inversions, which often are transmitted. Three types of pericentric inversions can be observed on No. 9: 1) Type I, showing the total constitutive heterochromatin in the short arm. 2) Type II with part of the C heterochromatin on the short arm, the rest located on the long arm proximal to the centromere. 3) Type III: a subtelocentric chromosome with part of the C heterochromatin in the very short arm and the rest located interstitially on the long arm. With these inversions as well as with other structural rearrangements, e.g. translocations, the break-points are located preferentially within the C heterochromatin or close to the heterochromatic-euchromatic junctions. These findings are in contrast to the findings in lymphocytes from 5 patients with Fanconi's anemia and after irradiation in vitro, reported in the literature. In lymphocytes break-points seem to be distributed more or less by chance. These observations together led us to speculate that human chromosome 9 primarily was an acrocentric chromosome; in morphology and at least in some functions similar to D-and G-group chromosomes. During evolution this acrocentric chromosome changed to a submetacentric one due to a pericentric inversion.The author is sponsored by the Deutsche Forschungsgemeinschaft.  相似文献   

4.
Summary The rates of functional decay of messenger RNA coding for total soluble, total ribosomal and individual ribosomal proteins were measured in Escherichia coli strain AS-19, at 30o. This was accomplished by blocking RNA synthesis with the inhibitor thiolutin and measuring residual protein synthesis at various times thereafter. The data obtained expressed as a decay constant (Hartwell and Magasanik, 1963) show that both total soluble and total ribosomal protein decay with similar rates (K 2=0.64 and 0.61 respectively) which are slightly faster than the decay rate of -galactosidse (k 2=0.43) under these conditions. All the individual ribosomal proteins appear to comprise a population of cistrons whose individual mRNA's decay with very similar rates with the possible exception of protein L3, whose mRNA appears consistently to decay very rapidly.Additional data on the stability of the total soluble and total ribosomal proteins during thiolutin treatment (that is, proteins synthesized in the absence of concommitant ribosomal RNA synthesis) fail to demonstrate any marked difference between these two protein populations. Examination of the stability of the individual ribosomal proteins however, reveals that some are degraded up to 35% in 15 min of thiolutin exposure, some to about 15% and some appear to be completely stable. In general, a degree of correlation exists between the stability of a given protein and the observed decay rate of its messenger RNA. This observation may explain in part the spread among the rates of mRNA decay. Nevertheless, we conclude that although degradation is occurring, it is not sufficient to alter the main conclusion that the rates of functional decay of mRNA cistrons coding for the ribosomal proteins are very similar.  相似文献   

5.
6.
When DNA from blood or liver of Plethodon c. cinereus is centrifuged to equilibrium in cesium chloride it separates out into 2 components. The smaller or satellite component is relatively rich in G + C and is therefore heavy, and it amounts to about 2% of the total DNA. The heavy satellite does not include the ribosomal cistrons, and it is unrelated to the nucleolar organizer. When squash preparations of cells from the testis of P. c. cinereus are incubated in synthetic E3RNA complementary to the satellite DNA, the RNA anneals specifically to the centromeric heterochromatin of spermatogonia, spermatocytes, and spermatids, and to the centromeric regions of all discernible chromosomes. RNA/DNA hybrids were located by autoradiography. H3RNA complementary to the major component of the DNA anneals to all nuclei and to all parts of the chromosomes. H3RNA complementary to nucleolar DNA from Xenopus laevis anneals specifically to the chromatin associated with nucleoli in nuclei at various stages of the meiotic divisions. The nature of the centromeric heterochromatin and its role in the meiotic divisions are discussed.  相似文献   

7.
Microtus agrestis is characterised by long sex chromosomes, most of which are constitutively heterochromatic, and thus supposedly, genetically inactive. A method to assess the template activity of the chromosomes is to study the distribution of chromatid aberrations produced by H3UdR, among and within the chromosomes. In such a study, in female Microtus agrestis cells in culture, it was found that, a large number of localised chromatid aberrations was induced in the constitutively heterochromatic regions of both X chromosomes. The frequency distribution and types of aberrations were found to be cell cycle dependent. With differential staining it has been possible to demonstrate that the constitutive heterochromatin of the sex chromosomes are involved in the nucleolar organisation in this species, thus containing the ribosomal RNA cistrons.  相似文献   

8.
Additional experiments with homologous as well as heterologous hybridization confirmed our previous finding in Sciara coprophila that XX females have nearly twice the number of ribosomal RNA cistrons as XO males. A comparison between two different X' chromosomes revealed that only the one carrying the irradiation-induced Wavy mutation has a deletion of 70% of its ribosomal RNA cistrons as compared to the standard X. The deletion is relatively stable, and the remaining ribosomal RNA cistrons donot appear to undergo disproportionate replication or magnification as in Drosophila. Homologous hybridization experiments revealed an unusually low reiteration of ribosomal RNA cistrons in this fly, 45 gene copies per X chromosome. The question is raised as to whether such a low number of cistrons may be related to the unusual nucleolar condition encountered in the Sciaridae.  相似文献   

9.
A study of the chromosomal location and genomic organization of the ribosomal RNA cistrons in the genus Warramaba, involving in situ hybridization and restriction enzyme analysis as well as C- and N-banding and silver staining, has confirmed that the parthenogenetic species W. virgo has two phylads. These phylads appear to have originated independently by hybridization between the precursors of the present day bisexual species P169 and P196. The clones of the Standard phylad of W. virgo have their 18S+26S rDNA cistrons located in C-bands 4, 44 and 49, while those of the Boulder-Zanthus phylad have them in C-bands 50, 74 and 87.5. The relative numbers of the ribosomal genes at the different sites vary greatly from clone to clone and are closely correlated with the width of the corresponding C- and N-bands. Site 49 of the ribosomal cistrons is present as a separate band in the eastern race A of P196 but has been incorporated into band 50 in the western race B of this species. The former race is assumed to be ancestral to the Standard phylad of W. virgo, the latter to the Boulder-Zanthus phylad, but there has been loss of the 74 and 87.5 sites in the the Standard phylad and the 4 and 44 sites in the Boulder-Zanthus clones. The ribosomal cistrons in W. picta, a species with a primitive karyotype, occur in several sites, only some of which have counterparts in P169 and P196. The 5S rDNA cistrons are located in bands 59.5, 69 and 72.5 in the Standard phylad of W. virgo. — The genomic organization of the 18S+26S rDNA cistrons, as shown by restriction enzyme analysis, is different in the two W. virgo phylads and there are also differences in organization between P196A and P196B. The pattern in P196B and that in the Boulder-Zanthus phylad suggest that they are related. As in the in situ analyses, the genomic organizations of the ribosomal cistrons in both W. virgo phylads are not simply the additive products of those in any known populations of P169 and P196. New repeat lengths indicative of segmental amplification events occur in particular clones of W. virgo. — Throughout the genus Warramaba the N-banding technique stains all bands containing 18S+26S and 5S rDNA cistrons. The Olert silver technique stains band 72.5 in the Standard phylad, but does not correlate with the locations of 18S+26S ribosomal genes.  相似文献   

10.
Heterochromatin in the European field vole, Microtus agrestis, was studied using a special staining technique and DNA/RNA in situ hybridization. The heterochromatin composed the proximal 1/4 of the short arm and the entire long arm of the X chromosome, practically the entire Y chromosome and the centromeric areas of the autosomes. By using the DNA/RNA in situ hybridization technique, repeated nucleotide sequences are shown to be in the heterochromatin of the sex chromosomes.  相似文献   

11.
R. N. Nankivell 《Chromosoma》1976,56(2):127-142
The four known species of the crenaticeps-group of the genus Atractomorpha have 2n ()=18+X0. All members of the complement are rod-chromosomes and the smallest autosome (no. 9) is megameric. The four species have similar amounts of euchromatin but differ markedly in the amount of heterochromatin present in their genomes. In A. similis, A. crenaticeps and the unnamed species, Species-1, there are distinct proximal segments of heterochromatin in the eight large autosomes. In A. similis these chromosomes also have prominent distal segments of heterochromatin. The fourth species, A. australis, has no visible heterochromatin in its eight large autosomes except for a small segment at the proximal end of autosome 4. In all four species, the heterochromatic segments influence chiasma frequency and chiasma position. Moreover the overall chiasma frequency is lowest in A. similis with most heterochromatin and highest in A. australis with least heterochromatin.  相似文献   

12.
MATURE 5S, 16S and 23S ribosomal RNA species present in E. coli ribosomes are the end products of complex biosyn-thetic pathways. They are formed by reduction in length, and methylation of longer RNA chains transcribed on the ribosomal RNA cistrons of E. coli DNA. While these modifications take place the ribosome structure is formed by progressive addition of ribosomal proteins and conformational changes in the resulting ribonucleoprotein precursor particles1.  相似文献   

13.
Morphology of the Drosophila melanogasterpolytene X chromosome section 20 in normal flies, in strains carrying inversions that break pericentric heterochromatin at different points, and at the background of the Su(UR)ESmutation has been examined. In all of the strains carrying the Su(UR)ESmutation section 20 displayed a distinct banding pattern till to the section 20F, while in the wild-type strains this region was represented by -heterochromatin. The strains carrying different inversions substantially differed in the number and morphology of bands forming section 20. In the Su(UR)ESmutants the most proximal X chromosome euchromatic gene,su(f), is mapped to the boundary between sections 20E and F, while rDNA forming the middle part of the X chromosome mitotic heterochromatin is located in the proximal part of section 20. All large bands observed in section 20 of the w; Su(UR)ESstrain were also present inIn(1)sc 4; Su(UR)ES, which breaks heterochromatin in the distal part. Hence, the bands of polytene chromosome section 20 are virtually devoid of mitotic heterochromatin.  相似文献   

14.
J. E. K. Cooper 《Chromosoma》1977,62(3):269-278
Newborn Microtus agrestis were given single acute whole-body -irradiation (350, 500, or 750R). C-banded bone marrow preparations showed cells with radiation-induced rearrangements of constitutive heterochromatin of the sex chromosomes, usually the consequence of single events, encompassing a wide spectrum of deletions and translocations. These cells persisted in bone marrow for more than a year after irradiation; however, many cells showing the same redistribution of heterochromatin constituted clones of both deletions and translocations. These results indicate that deletion or rearrangement of constitutive heterochromatin does not impair the capacity of bone marrow cells for further proliferation.  相似文献   

15.
Leonard G. Robbins 《Genetics》1981,99(3-4):443-459
Multiple copies of the 18S and 28S ribosomal RNA cistrons are present in both the X and Y chromosomes of Drosophila melanogaster. Data are presented here that identify a locus, Rex, that causes exchange-like events between duplicated ribosomal complexes at the ends of an attached-XY chromosome. Rex: (1) is close to or in the basal heterochromatin of the X chromosome; (2) is semidominant and (its effect) is temperature sensitive; (3) acts maternally; and (4) affects behavior of paternally derived attached-XY chromosomes shortly after fertilization. Though, at this point, the existence of Rex is known only from its effects on behavior of a particular compound chromosome, it presents intriguing possibilities for understanding regulation of chromosome behavior and organization of the ribosomal cistrons.  相似文献   

16.
Summary DNA was extracted from three root segments ofAllium cepa: i) an apical portion 500 m long from the tip (meristem); ii) a second portion 4 mm long (I root segment containing metaxylem cells in the initial stages of differentiation); iii) a third portion 6 mm long (II root segment containing metaxylem cells in further stages of differentiation). A mixture of homologous 18 S and 25 S3H-rRNA was used for invitro DNA-rRNA hybridization. The following percent saturation values were detected in the three samples: 0.08 in meristem DNA (samplea), 0.129 in I root segment DNA (sampleb), and 0.105 in II root segment DNA (samplec).Thermal denaturation of DNA and the derivative curves of the melting profiles evidenced five DNA families which were differently represented in the three DNA samples. DNA elution by thermal chromatography on hydroxyapatite followed by hybridization with3H-rRNA, revealed that ribosomal cistrons melt between 90 and 91 °C, corresponding to a G-C content of 50.7%. Moreover, the amount of the DNA family containing ribosomal cistrons was greater in sampleb andc, in sampleb to a greater extent, as compared with samplea. On the other hand, one DNA family melting at a higher temperature (92–93 °C) was drastically increased in samplec.Buoyant density profiles of unsonicated DNA showed no peaks in the three DNA samples. Upon somcation, a heavy shoulder was observed in the profile of sampleb. As the density of ribosomal cistrons and that of shoulder were very similar, it seems possible that the two fractions contain many DNA sequences in common.The present studies demonstrate that the proportion of ribosomal cistrons and other DNA families does not keep constant during the development of the metaxylem cell line.  相似文献   

17.
In order to clarify the relationship between meiotic pairing and progress of spermatogenesis, an analysis of male meiotic pairing was carried out in four reciprocal translocation heterozygotes and two double heterozygotes for two semi-identical reciprocal translocations. The reciprocal translocations were chosen to range from fertility (T70H/+) through almost complete sterility (T31H/+) to complete sterility (T32H/+, T42/H+). If meiotic pairing in the translocation multivalent was incomplete, it concerned terminal or probably more often proximal chromosome segments (Chain IV). If both segments failed to pair the multivalent symbol is Chain III+I. Complete pairing is symbolized by Ring IV. To contrast and complement observations of this type, the double heterozygotes were introduced. Males of this type in theory possess two heteromorphic bivalents with a central area of incomplete meiotic pairing (loop formation). Of the T70H/T1Wa double heterozygotes, 36% of the males are capable of inducing at least one decidual reaction in two females whereas for T26H/T2Wa, 79% of the males can do so. For the reciprocal translocations, it was found that proximity of the multivalent to the sex bivalent during pachytene increased in the order Ring IV, Chain IV, Chain III+I. The degree of spermatogenic impairment as measured from cell counts in histological sections and tubular whole mounts, is positively related to the frequency of proximity between the sex chromosomes and the translocation multivalent and thus to lack of meiotic pairing within the multivalent. The meiotic pairing analysis of the double heterozygotes yielded the following findings. For the long heteromorphic bivalents a true loop was never seen in T70H/T1Wa and only rarely observed in T26H/T2Wa. Small marker bivalents of both types were usually recognizable by the following criteria: (i) pairing confined to distal or proximal segments, (ii) both distal and proximal segments pairing and loop formation and (iii) pairing covering the entire length of both homologues but the longer one often with a thickened lateral element. The same positive correlation between the absence of pairing (proximal, distal or central) and the proximity of the small marker bivalent synaptonemal complex to the sex bivalent has been found as for unpaired segments within reciprocal translocation multivalents. One unexpected finding was the occurrence of diploid spermatids and spermatozoa especially in T32H/+ males (70–91%) but also in T31H/+ (3–39%).  相似文献   

18.
Plethodontid salamanders have n = 13 or 14 large metacentric or sub-metacentric chromosomes. Sperm nuclei from Plethodon cinereus measure 72×1 m. The nucleoprotein of spermatids is at first finely granular. In elongate spermatids it clumps into larger granules, which then fuse to form the compact nucleoprotein of the mature sperm. The nuclei of mature sperm are negatively birefringent with respect to their length. — 3H RNA complementary to high-density satellite DNA of centromeric heterochromatin in P. cinereus has been hybridized in-situ to spermatids and sperm, and its site of binding to these cells has been examined by autoradiography. Labelling of round spermatid nuclei is localized in a single patch. Elongate spermatid nuclei are labelled only over the rear quarter of the nucleus. Label over the nuclei of mature sperm is localized in a region extending 10–20 m forwards from the rear of the nucleus. — In P. cinereus the ribosomal genes are located near the centromere on the short arm of chromosome 7. 3H ribosomal RNA hybridizes to a single patch in round spermatid nuclei. Elongate spermatid nuclei show label over a short segment of the rear half of the nucleus. In spermatids nearing maturity the labelled region is never more than 20 m long. — These results indicate that in P. cinereus each chromosome is arranged in a U formation with its centromere at the base of the sperm nucleus, and its arms extended forwards along the length of the nucleus. — Among plethodontids, increase in C value and corresponding increase in chromosome size is accompanied by increase in the length rather than the width of the sperm nucleus. — 3H ribosomal RNA hybridizes to a short segment in spermatid and sperm nuclei from Xenopus and Triturus. In these animals, the position of the labelled segment varies from sperm to sperm.  相似文献   

19.
20.
GENE expression may be controlled during translation by ribosomal selection of mRNAs or even individual cistrons. Escherichia coli initiation factors associated with ribosomes affect the binding of ribosomes to mRNA1,2; initiation factor IF3, for instance, influences the specificity of mRNA-ribosome interaction3,4. IF3 activity has been separated into several fractions which show various specificities for different mRNA cistrons4–9. An important problem is the possibility of intracellular changes in IF3 activity10–12. From uninfected E. coli, we have now isolated a protein which changes the specificity of IF3 toward different mRNAs; we call this interference factor i. Pure factor i binds to IF3 and specifically affects the translation of T4 and MS2 RNA. Whereas the initiation of translation of the MS2 coat protein cistron is inhibited by factor i, the synthetase cistron—when available—is more rapidly initiated in the presence of factor i. The overall translation of T4 mRNA appears unchanged by factor i, but certain cistrons are stimulated at the expense of others. Interfering factors such as factor i could be important in controlling translation in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号