首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA and RNA and the cytoarchitecture of human frontal cortex   总被引:1,自引:0,他引:1  
DNA and RNA were studied in the layers of human prefrontal cortex by quantitative microchemical analyses on microtome-prepared serial frozen sections. Eleven cortical specimens from six autopsy brains were assayed. The mean total number of cells per mm3 of fresh cortex was estimated from DNA values. The number in layer I (61,000) was falsely high because of the inclusion of cells from the pia mater. From a plateau of 82,000-86,000 in layers II, IIIa and IIIb, the number of cells rose to 91,000 and 113,000 in layers IIIc and IV, respectively. The mean number was slightly lower in layer V, then gradually rose through layer VI to 127,000 cells in white matter. Per unit dry weight, DNA and cells varied much less than per unit volume; values averaged 14 per cent higher in layers II and IV than in neighbouring layers and in white matter were 20 per cent lower than in layer I. Intracortical patterns of RNA and RNA/cell reflected chiefly the distribution of neuronal cell bodies. Per unit fresh volume, RNA roughly paralleled DNA in layers I-V; through layer VI and into white matter RNA declined as DNA rose, reflecting the decline in neurons and increasing predominance of glial cells of lower RNA content. Per unit dry weight, RNA rose 50 per cent from layer I to layer II; a plateau of high values extended through layers II-V, then RNA declined rapidly through layer VI to a level in white matter that was 28 per cent of the value in layer II. Mean RNA/cell in cortex was 9-8 pg, with a maximum in layer IIIb (11.4 pg); in subcortical white matter it was 5.3 pg.  相似文献   

2.
The homologues of the two distinct architectonic areas 44 and 45 that constitute the anterior language zone (Broca's region) in the human ventrolateral frontal lobe were recently established in the macaque monkey. Although we know that the inferior parietal lobule and the lateral temporal cortical region project to the ventrolateral frontal cortex, we do not know which of the several cortical areas found in those regions project to the homologues of Broca's region in the macaque monkey and by means of which white matter pathways. We have used the autoradiographic method, which permits the establishment of the cortical area from which axons originate (i.e., the site of injection), the precise course of the axons in the white matter, and their termination within particular cortical areas, to examine the parietal and temporal connections to area 44 and the two subdivisions of area 45 (i.e., areas 45A and 45B). The results demonstrated a ventral temporo-frontal stream of fibers that originate from various auditory, multisensory, and visual association cortical areas in the intermediate superolateral temporal region. These axons course via the extreme capsule and target most strongly area 45 with a more modest termination in area 44. By contrast, a dorsal stream of axons that originate from various cortical areas in the inferior parietal lobule and the adjacent caudal superior temporal sulcus was found to target both areas 44 and 45. These axons course in the superior longitudinal fasciculus, with some axons originating from the ventral inferior parietal lobule and the adjacent superior temporal sulcus arching and forming a simple arcuate fasciculus. The cortex of the most rostral part of the inferior parietal lobule is preferentially linked with the ventral premotor cortex (ventral area 6) that controls the orofacial musculature. The cortex of the intermediate part of the inferior parietal lobule is linked with both areas 44 and 45. These findings demonstrate the posterior parietal and temporal connections of the ventrolateral frontal areas, which, in the left hemisphere of the human brain, were adapted for various aspects of language production. These precursor circuits that are found in the nonlinguistic, nonhuman, primate brain also exist in the human brain. The possible reasons why these areas were adapted for language use in the human brain are discussed. The results throw new light on the prelinguistic precursor circuitry of Broca's region and help understand functional interactions between Broca's ventrolateral frontal region and posterior parietal and temporal association areas.  相似文献   

3.
Alimentary conditioned response to the sound of turning of the feeding-rack reinforced in 33 and 25 per cent of cases was formed faster in rats with frontal cortical lesion than in intact animals. The results obtained permit to suppose that during integrative brain activity the frontal areas of the cerebral cortex participate in organization of behavior with a high probability of reinforcement.  相似文献   

4.
BIOCHEMICAL EFFECTS OF THYROID DEFICIENCY ON THE DEVELOPING BRAIN   总被引:12,自引:1,他引:11  
Abstract— The effects of neonatal thyroidectomy on some constituents of the cerebrum, cerebellum and liver of the rat have been studied during the first 7 weeks of life. In the normal rat between the 6th and 14th post-natal days the RNA content per unit of DNA in the brain increased by 70 per cent. Although the brain continued to grow from the 14th to the 35th day, the amount of RNA relative to DNA decreased by about 20 per cent. The ratio of protein to DNA increased during the whole period studied and in the cerebral cortex it was more than trebled between the age of 6 and 35 days. The growth of the cerebellum extended over a longer period than that of the cerebrum, its weight increasing by 88 per cent between the ages of 14 and 35 days as compared with a cerebral increase of 34 per cent. The DNA content showed a 50 per cent increase during this period. Qualitatively these maturational changes were not affected by neonatal thyroidectomy. Quantitative changes, which applied equally to the cerebral cortex and brain as a whole, were observed. At the age of 35 days, the weights of the cerebral hemispheres and cerebellum were reduced by thyroidectomy by 20 per cent; the overall DNA content per organ did not change, but the amounts of protein and RNA relative to DNA decreased significantly. It is therefore inferred that thyroid deficiency affects the size of the cells in brain and cerebellum rather than their total number. Conversely, the cell population of the liver was only a quarter of that in the control. There was a small but significant decrease in the hepatic protein and RNA content in the hypothyroid animal. The activities of the following enzymes which served as markers for subcellular fractions in homogenates of cerebral cortex were determined: lactate dehydrogenase for the supernatant, glutamate dehydrogenase for the mitochondrial and glutamate decarboxylase for the synaptosomal fractions. When the activities were expressed on a fresh weight basis a significant decrease by comparison with the control values was observed only in the case of glutamate decarboxylase (—15 per cent at the age of 17–32 days); when the activities were based on DNA content all values were reduced, probably as a result of the general decrease in cell size. Pyrimidine metabolism of brain and liver, studied after the administration of [6-14C]-orotic acid, was not affected in either tissue by neonatal thyroidectomy. A small but significant reduction in the incorporation of labelled pyrimidine nucleotides in liver RNA was observed, but no significant decrease in the incorporation in cerebral RNA was found in the hypothyroid rats.  相似文献   

5.
The HPC-1/syntaxin 1A (STX1A) gene maps to the Williams syndrome (WS) commonly deleted region on chromosome 7q11.23 and encodes a protein implicated in the docking of synaptic vesicles with the presynaptic plasma membrane. To assess the potential role of STX1A in the WS phenotype, we carried out expression studies at the RNA and protein levels, in fetal and adult human tissues. RNA in situ hybridization on human embryo sections showed strong STX1A expression in spinal cord and ganglia. However, in adulthood, this gene was preferentially expressed in brain, as shown by Northern blot and RT-PCR experiments. Marked expression levels were observed in cerebellum and cerebral cortex. The STX1A protein was prevalently distributed in the molecular layer of the cerebellar cortex. A qualitative and quantitative analysis using a specific anti-STX1A antibody did not disclose any significant difference among frontal, temporal, and occipital poles of the human adult cortex in the two hemispheres. This is the first study focused on STX1A expression in humans. Our results indicate that this gene is strongly expressed in cerebral areas involved in cognitive process, supporting a likely role in the neurological symptoms of WS.  相似文献   

6.
New method of mapping intracortical interactions was used to study the participation of cortical brain areas in the processes of perception and of mental reproduction of emotional states in humans. When an emotion was identified, the activity focus was observed in the left temporal cortex. If emotion was not identified, the temporal focus did not appear, but activity foci were seen in frontal regions of both hemispheres. When emotional states were mentally reproduced, activity foci were encountered mostly in the frontal cortical areas.  相似文献   

7.
It is not clear whether specific brain areas act as hubs in the eyes-closed (EC) resting state, which is an unconstrained state free from any passive or active tasks. Here, we used electrophysiological magnetoencephalography (MEG) signals to study functional cortical hubs in 88 participants. We identified several multispectral cortical hubs. Although cortical hubs vary slightly with different applied measures and frequency bands, the most consistent hubs were observed in the medial and posterior cingulate cortex, the left dorsolateral superior frontal cortex, and the left pole of the middle temporal cortex. Hubs were characterized as connector nodes integrating EC resting state functional networks. Hubs in the gamma band were more likely to include midline structures. Our results confirm the existence of multispectral cortical cores in EC resting state functional networks based on MEG and imply the existence of optimized functional networks in the resting brain.  相似文献   

8.
The effects of corticosteroids in the brain are mediated through the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). We used a sensitive competitive RT-PCR assay to quantify the amounts of GR and MR mRNA in human brain tissue specimens from patients with focal epilepsies. GR and MR mRNAs were expressed at approximately the same levels in the temporal lobe, frontal lobe, and hippocampus as compared to tissues with high glucocorticoid/mineralocorticoid receptor expression (liver/kidney). GR and MR mRNA concentrations in the temporal lobe increased markedly during childhood and reached adult levels at puberty. GR and MR mRNA expression was significantly higher in the temporal lobe and frontal lobe cortex of women than in those of men. In women, MR and GR mRNA concentrations were markedly lower in hippocampal tissue than in frontal and temporal lobe cortex tissue. In conclusion, our data demonstrate sex- and site-dependent expression of corticosteroid receptor mRNA in the human brain.  相似文献   

9.
Despite the lack of direct cytogenetic studies, the neuronal cells of the normal human brain have been postulated to contain normal (diploid) chromosomal complement. Direct proof of a chromosomal mutation presence leading to large-scale genomic alterations in neuronal cells has been missing in the human brain. Large-scale genomic variations due to chromosomal complement instability in developing neuronal cells may lead to the variable level of chromosomal mosaicism probably having a substantial effect on brain development. The aim of the present study was the pilot assessment of chromosome complement variations in neuronal cells of developing and adult human brain tissues using interphase multicolor fluorescence in situ hybridization (mFISH). Chromosome-enumerating DNA probes from the original collection (chromosomes 1, 13 and 21, 18, X, and Y) were used for the present pilot FISH study. As a source of fetal brain tissue, the medulla oblongata was used. FISH studies were performed using uncultured fetal brain samples as well as organotypic cultures of medulla oblongata tissue. Cortex tissues of postmortem adult brain samples (Brodmann area 10) were also studied. In cultured in vitro embryonic neuronal brain cells, an increased level of aneuploidy was found (mean rate in the range of 1.3-7.0% per individual chromosome, in contrast to 0.6-3.0% and 0.1-0.8% in uncultured fetal and postmortem adult brain cells, respectively). The data obtained support the hypothesis regarding aneuploidy occurrence in normal developing and adult human brain.  相似文献   

10.
A large series of protein pathway components have been shown to be dysregulated in Down syndrome (DS) brain. No information about pathomechanisms linked to the trisomic state can be obtained from adult DS brain, however, as neurodegeneration occurs from the fourth decade. The aim of the study was to search for protein dysregulation in fetal DS brain before neurodegenerative changes are observed. Proteins were extracted from fetal DS and control frontal cortex, run on 2-DE, followed by quantification of protein spots with subsequent nano-ESI-LC-MS/MS analysis using an ion trap. Aberrant expression of proteins tropomodulin-2, tubulin alpha 1A chain, and alpha-internexin may indicate disturbed synaptic plasticity; fatty acid binding protein 7 suggests impaired maintenance of neuroepithelial cells; and creatine kinase B may reflect defective energy metabolism. RNA binding protein 4B derangement may represent impaired splicing, altered retrotransposon gag domain-containing protein 1 levels may be pointing to altered retrotransposition, and level changes of the potassium-chloride transporter solute carrier family 12 member 7 may lead to impaired ion fluxes with electrophysiological consequences. Taken together, aberrant protein levels from several pathways in fetal DS are challenging as well as fertilizing the area of research and providing the basis for additional neurochemical and functional studies.  相似文献   

11.
The distribution of endothelin mRNA and immunoreactivity in the human brain was investigated using the technique of in situ hybridization and immunocytochemistry. Cryostat sections from 22 cases of neurologically normal adult human brain, collected 3-7 h post-mortem were hybridized with 35S-labelled complementary (c)RNA probes prepared from the 3' non-coding region of endothelin-1 cDNA, and the chromosomal genes encoding endothelin-2 and -3. In situ hybridization with all three cRNA probes revealed labelled neuronal cell bodies in laminae III-VI of the parietal, temporal and frontal cortices. Labelled cells were also seen, scattered throughout the para- and periventricular, supraoptic and lateral hypothalamic nuclei, the caudate nucleus, amygdala, hippocampus, basal nucleus of Meynert, substantia nigra, raphe nuclei, Purkinje cell layer of the cerebellum and in the dorsal motor nuclei of the vagus of the medulla oblongata. The distribution of neurones immunoreactive to endothelin was similar to that of endothelin mRNA, although fewer immunoreactive cells throughout the brain, were noted. Immunoreactive fibres were present mainly in the cortex and hypothalamus, and to a lesser extent in the brain stem. Combined in situ hybridization and immunocytochemistry on the same section revealed the presence of endothelin-1 mRNA and immunoreactivity in the same cortical neuronal cell. Colocalisation studies in the cortex revealed endothelin-1 mRNA and immunoreactivity in a number of cells which also expressed neuropeptide Y mRNA and immunoreactivity. In the hypothalamus and basal nucleus of Meynert endothelin immunoreactivity was colocalised to a subset of neurophysin- and galanin-immunoreactive cell bodies respectively. Endothelin mRNA and immunoreactivity was also seen in some blood vessel endothelial cells. The findings of endothelin mRNAs and immunoreactivity in heterogenous neuronal populations further emphasises the potential role of endothelin as a neuropeptide, probably having diverse actions in the nervous system of man.  相似文献   

12.
The metabolic changes in hippocampus, temporal cortex and prefrontal cortex in SD rats along with aging were explored using a metabonomic approach, which based on high resolution “magic angle spinning” 1H NMR spectroscopy. The metabolite profiles were analyzed by partial least squares-discriminant analysis, and the results showed that the metabolites of the above three brain regions in old rats were dramatically different from that in the adult and young rats. The old rats showed increased myo-inositol and lactate in all of the three brain regions, and decreased N-acetylaspartate in temporal and frontal cortex, Glutamate–GABA level became imbalance in temporal cortex of old rats. In addition, compared with the adult female rats, male rats had higher levels of N-acetylaspartate, taurine, and creatine in temporal or frontal cortex. The age-related metabolic changes may indicate the early functional alterations of neural cells in these brain regions, especially the temporal cortex. The gender-related metabolic changes suggest the significance of the hormonal regulation in brain metabolism. Our work highlights the potential of metabolic profiling to enhance our understanding of biological mechanisms of brain aging.  相似文献   

13.
14.
Abstract— The question of a constant density of glial cells in mammalian cerebral cortex regardless of species was examined by surveying the cortical activities of two enzymes primarily localized to dial cells. The cortical activity of butyrylcholinesterase (EC 3.1.1.8) was essentially constant at a rate of approx. 0.1 μmol of butyrylthiocholine hydrolysed min-1 g-1 over the range of species from rat (brain wt., 1.6 g) to fin whale and sperm whale (brain wt., 6800 and 7800 g, respectively). Over the same range the activity of cortical acetylcholinesterase, a neuronal enzyme, decreases by a factor of 7. Thus, butyrylcholinesterase ranged from < 2 per cent (in small rodent brains) to approximately 10 per cent (in whale brain) of the cortical acetylcholinesterase activity. The cortical activity of carbonic anhydrase (EC 4.2.1.1) was constant at a rate of 6.2 (± 0.25) μmol of CO2 evolved min-1 g-1 over the range of species from guinea-pig (brain wt., 4.75 g) to fin whale (brain wt., 6800 g). These data obtained by assaying the dehydration reaction were confirmed by limited assays of the esterase activity of the enzyme (with p-nitrophenylacetate as substrate) and agreed with limited, previously reported data for the hydration reaction. Thus, the circumstantial evidence strongly favoured a relative constancy of cortical glial cell density regardless of species. The rates of anaerobic glycolysis in the cerebral cortex of various species were also investigated. For six species from mouse (brain wt., 0.4 g) to beef (brain wt., 380 g) cortical anaerobic glycolysis varied only slightly in the range of 50–62 μmol of CO2 evolved h-1 g-l, whereas cortical oxygen consumption for the same range of species decreased by a factor of 3. Previously frozen samples of beef cortex glycolysed at 35 per Cent of the rate of fresh (unfrozen) samples. Since identical rates were obtained for previously frozen samples of fin whale cerebral cortex, we concluded that the relative constancy of cortical anaerobic glycolysis could be extended to the range from mouse to whale and that this aspect of cortical metabolism is probably primarily glial in localization. Some implications of the latter conclusion for the proposed role of astrocytes as modulators of neuronal activity have been discussed.  相似文献   

15.
Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.  相似文献   

16.
FREE AMINO ACIDS AND RELATED COMPOUNDS IN BIOPSIES OF HUMAN BRAIN   总被引:7,自引:2,他引:5  
Abstract— Contents (μmol/g wet wt.) of 35 free amino acids and related compounds were measured in biopsies of human brain from ten patients. Brain specimens were frozen in liquid nitrogen within 10 sec of their removal at neurosurgery; thus, the values found should approximate those which occur in living brain.
Levels in free pools of biopsied cerebral cortex of most of the amino acids that are constituents of proteins were only 20-50 per cent of those found in autopsied cortex. The content of cystine and ethanolamine was much lower in biopsied than in autopsied cortex. Concentrations of GABA in biopsied cortex were only 20 per cent as high as those found in autopsied cortex, and levels of γ-aminobutyryl dipeptides were also significantly lower in biopsied cortex. Amounts of cystathionine in biopsied cortex varied markedly, but averaged much higher than in autopsied cortex; a single biopsy specimen of cerebellar grey matter had a cystathionine content 36-fold greater than the mean found in autopsied cerebellum.
Appreciable variability in contents among cortical biopsies was found for glycerophosphoethanolamine, phosphoethanolamine, ethanolamine, taurine, aspartic acid, glutamic acid, glutamine, and GABA, as well as for cystathionine. Whether this variability occurred between different subjects, or between different cortical areas, was not clear, although the former possibility was suggested by findings in multiple cortical biopsies from one patient.  相似文献   

17.
Psychopathy is a clinical condition characterized by a failure in normal social interaction and morality. Recent studies have begun to reveal brain structural abnormalities associated with psychopathic tendencies in children. However, little is known about whether variations in brain morphology are linked to the developmental trajectory of psychopathic traits over time. In this study, structural magnetic resonance imaging (sMRI) data from 108 14-year-old adolescents with no history of substance abuse (54 males and 54 females) were examined to detect cortical thickness variations associated with psychopathic traits and individual rates of change in psychopathic traits from ages 9 to 18. We found cortical thickness abnormalities to correlate with psychopathic traits both cross-sectionally and longitudinally. Specifically, at age 14, higher psychopathic scores were correlated with thinner cortex in the middle frontal gyrus, particularly in females, and thicker cortex in the superior temporal gyrus, middle temporal gyrus, and parahippocampal gyrus, particularly in males. Longitudinally, individual rates of change in psychopathic tendency over time were correlated with thicker cortex in the superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, parahippocampal gyrus, and posterior cingulate gyrus, particularly in males. Findings suggest that abnormal cortical thickness may reflect a delay in brain maturation, resulting in disturbances in frontal and temporal functioning such as impulsivity, sensation-seeking, and emotional dysregulation in adolescents. Thus, findings provide initial evidence supporting that abnormal cortical thickness may serve as a biomarker for the development of psychopathic propensity in adolescents.  相似文献   

18.
Human voices play a fundamental role in social communication, and areas of the adult "social brain" show specialization for processing voices and their emotional content (superior temporal sulcus, inferior prefrontal cortex, premotor cortical regions, amygdala, and insula). However, it is unclear when this specialization develops. Functional magnetic resonance (fMRI) studies suggest that the infant temporal cortex does not differentiate speech from music or backward speech, but a prior study with functional near-infrared spectroscopy revealed preferential activation for human voices in 7-month-olds, in a more posterior location of the temporal cortex than in adults. However, the brain networks involved in processing nonspeech human vocalizations in early development are still unknown. To address this issue, in the present fMRI study, 3- to 7-month-olds were presented with adult nonspeech vocalizations (emotionally neutral, emotionally positive, and emotionally negative) and nonvocal environmental sounds. Infants displayed significant differential activation in the anterior portion of the temporal cortex, similarly to adults. Moreover, sad vocalizations modulated the activity of brain regions involved in processing affective stimuli such as the orbitofrontal cortex and insula. These results suggest remarkably early functional specialization for processing human voice and negative emotions.  相似文献   

19.
A study was carried out on 8 adult cats of functional role of the frontal, parietal and occipital parts of the neocortex, and also of the dorsal hippocampus, mediodorsal thalamic nucleus and caudate nucleus head, in realization of a delayed spatial choice (DSCh) before and after compensatory reorganizations of the brain activity caused by multiple electrical stimulation of the frontal part of the cerebral cortex. Compensatory reorganization led to a change of functional significance of these structures. While before this change the frontal cortex, hippocampus and mediodorsal thalamic nucleus were critically necessary brain areas for the realization of the DSCh, after it parietal and occipital cortical areas acquired such significance. The obtained data are discussed proceeding from the principle of the integrity in the brain activity.  相似文献   

20.
Abstract— Cell nuclei were isolated in yields ranging from 38 to 61 per cent from six anatomically defined brain regions of the albino rat. To provide basic information for further studies of altered genomic activity in brain cell nuclei, various properties of these isolated nuclei were measured, including counts of their number, estimates of the distribution of sizes, amounts of RNA, DNA and protein, and endogenous RNA polymerase activity. DNA content per nucleus approximated the accepted value of 6 pg per diploid set of chromosomes. Distributions of nuclear size showed a sensitivity to the concentration of divalent cation, with a shift toward larger nuclear diameters as the Mg concentration was reduced. Cell nuclei from hippocampus, hypothalamus-preoptic region, cerebral cortex, amygdala and midbrain plus brainstem were generally similar in yield, distribution of size, and RNA, DNA and protein content. Cell nuclei from cerebellum differed from those of other brain regions, in all of these parameters. The cerebellum contained a high content of DNA and had an enormous number (8 × 108 per g wet wt.) of cell nuclei of predominantly very small size and characterized by lower ratios of RNA, histones and non-histone protein to DNA and lower endogenous activity of RNA polymerase than nuclei from other brain structures. These properties correlated well with properties of cerebellar tissue, namely, high content of small granule neurons and low ratio of RNA to DNA, and suggest that the small cerebellar nuclei may have relatively inactive genomes. The relationship of 'large' and 'small' cell nuclei to cell types in the brain is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号