共查询到20条相似文献,搜索用时 15 毫秒
1.
I. V. Boni 《Molecular Biology》2006,40(4):587-596
More than 30 years ago Shine and Dalgarno proposed a classic model of prokaryotic translation initiation, based on the central role of the mRNA-16S rRNA interactions. Since then basic research has greatly extended the view of this process, owing to rapid progress in experimental techniques and genome sequencing. This review focuses on bioinformatic data and experimental results obtained in vitro and in vivo, demonstrating the diversity of molecular mechanisms for ribosome recruitment in prokaryotes. 相似文献
2.
Using as examples non-canonical features of translation initiation for some bacterial and mammalian mRNAs with unusual 5'- untranslated regions (5'-UTR) or lacking these regions (leaderless mRNAs), the authors of this review discuss similarities in mechanisms of translation initiation on prokaryotic and eukaryotic ribosomes. 相似文献
3.
The position of mRNA on 40S ribosomal subunits in eukaryotic initiation complexes was determined by UV crosslinking using mRNAs containing uniquely positioned 4-thiouridines. Crosslinking of mRNA positions (+)11 to ribosomal protein (rp) rpS2(S5p) and rpS3(S3p), and (+)9-(+)11 and (+)8-(+)9 to h18 and h34 of 18S rRNA, respectively, indicated that mRNA enters the mRNA-binding channel through the same layers of rRNA and proteins as in prokaryotes. Upstream of the P-site, the proximity of positions (-)3/(-)4 to rpS5(S7p) and h23b, (-)6/(-)7 to rpS14(S11p), and (-)8-(-)11 to the 3'-terminus of 18S rRNA (mRNA/rRNA elements forming the bacterial Shine-Dalgarno duplex) also resembles elements of the bacterial mRNA path. In addition to these striking parallels, differences between mRNA paths included the proximity in eukaryotic initiation complexes of positions (+)7/(+)8 to the central region of h28, (+)4/(+)5 to rpS15(S19p), and (-)6 and (-)7/(-)10 to eukaryote-specific rpS26 and rpS28, respectively. Moreover, we previously determined that eukaryotic initiation factor2alpha (eIF2alpha) contacts position (-)3, and now report that eIF3 interacts with positions (-)8-(-)17, forming an extension of the mRNA-binding channel that likely contributes to unique aspects of eukaryotic initiation. 相似文献
4.
5.
6.
《Cell》2022,185(24):4474-4487.e17
7.
The bacteriophage λ's cI mRNA was utilized to examine the importance of the 5'-terminal phosphate on expression of leadered and leaderless mRNA in Escherichia coli. A hammerhead ribozyme was used to produce leadered and leaderless mRNAs, in vivo and in vitro, that contain a 5'-hydroxyl. Although these mRNAs may not occur naturally in the bacterial cell, they allow for the study of the importance of the 5'-phosphorylation state in ribosome binding and translation of leadered and leaderless mRNAs. Analyses with mRNAs containing either a 5'-phosphate or a 5'-hydroxyl indicate that leaderless cI mRNA requires a 5'-phosphate for stable ribosome binding in vitro as well as expression in vivo. Ribosome-binding assays show that 30S subunits and 70S ribosomes do not bind as strongly to 5'-hydroxyl as they do to 5'-phosphate containing leaderless mRNA and the tRNA-dependent ternary complex is less stable. Additionally, filter-binding assays revealed that the 70S ternary complex formed with a leaderless mRNA containing a 5'-hydroxyl has a dissociation rate (k(off)) that is 4.5-fold higher compared with the complex formed with a 5'-phosphate leaderless mRNA. Fusion to a lacZ reporter gene revealed that leaderless cI mRNA expression with a 5'-hydroxyl was >100-fold lower than the equivalent mRNA with a 5'-phosphate. These data indicate that a 5'-phosphate is an important feature of leaderless mRNA for stable ribosome binding and expression. 相似文献
8.
9.
Disrupted-In-Schizophrenia 1 (DISC1) was identified as a candidate gene for schizophrenia. DISC1 is disrupted by a balanced t(1;11)(q42.1;q14.3) translocation segregating with schizophrenia and related psychiatric illness in a large Scottish family. Here, we show that DISC1 interacts via its globular domain with the p40 subunit of the eukaryotic translation initiation factor 3. Furthermore, we found that overexpression of DISC1 in SH-SY5Y cells induces the assembly of eIF3- and TIA-1-positive stress granules (SGs), discrete cytoplasmic granules formed in response to environmental stresses. Our findings suggest that DISC1 may function as a translational regulator and may be involved in stress response. 相似文献
10.
Brock JE Pourshahian S Giliberti J Limbach PA Janssen GR 《RNA (New York, N.Y.)》2008,14(10):2159-2169
Leaderless mRNAs are translated in the absence of upstream signals that normally contribute to ribosome binding and translation efficiency. In order to identify ribosomal components that interact with leaderless mRNA, a fragment of leaderless cI mRNA from bacteriophage λ, with a 4-thiouridine (4S-U) substituted at the +2 position of the AUG start codon, was used to form cross-links to Escherichia coli ribosomes during binary (mRNA+ribosome) and ternary (mRNA+ribosome+initiator tRNA) complex formation. Ribosome binding assays (i.e., toeprints) demonstrated tRNA-dependent binding of leaderless mRNA to ribosomes; however, cross-links between the start codon and 30S subunit rRNA and r-proteins formed independent of initiator tRNA. Toeprints revealed that a leaderless mRNA's 5′-AUG is required for stable binding. Furthermore, the addition of a 5′-terminal AUG triplet to a random RNA fragment can make it both competent and competitive for ribosome binding, suggesting that a leaderless mRNA's start codon is a major feature for ribosome interaction. Cross-linking assays indicate that a subset of 30S subunit r-proteins, located at either end of the mRNA tunnel, contribute to tRNA-independent contacts and/or interactions with a leaderless mRNA's start codon. The interaction of leaderless mRNA with ribosomes may reveal features of mRNA binding and AUG recognition that are distinct from known signals but are important for translation initiation of all mRNAs. 相似文献
11.
The L1 retrotransposon codes for a unique bicistronic mRNA, which serves as a transposition intermediate and as a template for the synthesis of two proteins. According to preliminary data, the translation of both cistrons is initiated by a noncanonical mechanism. The L1 mRNA was translated in rabbit reticulocyte lysate (RRL), a standard system widely used to study the eukaryotic mechanisms of protein synthesis. Translation yielded not only the expected products, but also several products of aberrant translation initiation on internal AUG codons. Such products are not generated during in vivo translation of the L1 mRNA. When RRL was supplemented with a cytoplasmic extract of HeLa cells, the aberrant products were not synthesized, while the first cistron was translated with the same efficiency. The efficiency of translation of the second cistron became substantially lower, corresponding to the situation in vivo. These and other experiments clearly demonstrated that the new combined system RRL + HeLa is far more adequate for studying the mechanisms of translation initiation than the standard RRL system. 相似文献
12.
Start codon recognition is a crucial event in the initiation of protein synthesis. To gain insight into the mechanism of start codon recognition in eukaryotes, we used a yeast reconstituted initiation system to isolate the step of Met-tRNAi•eIF2•GTP ternary complex (TC) binding to the 40S subunit. We examined the kinetics and thermodynamics of this step in the presence of base changes in the mRNA start codon and initiator methionyl tRNA anticodon, in order to investigate the effects of base pairing and sequence on the stability of the resulting 43S•mRNA complex. We observed that the formation of three base pairs, rather than their identities, was the key determinant of stability of TC binding, indicating that nothing is inherently special about the sequence AUG for this step. Surprisingly, the rate constant for TC binding to the 40S subunit was strongly codon dependent, whereas the rate constant for TC dissociation from the 43S•mRNA complex was not. The data suggest a model in which, after the initial diffusion-limited encounter of TC with the 40S subunit, the formation of three matching start codon/anticodon base pairs triggers a conformational change that locks the complex into a stable state. This induced-fit mechanism supports the proposal that initiation codon recognition by the 43S complex induces a conformational change from an open state to a closed one that arrests movement along the mRNA. 相似文献
13.
Decapping by Dcp1 in Saccharomyces cerevisiae is a key step in mRNA degradation. However, the cap also binds the eukaryotic initiation factor (eIF) complex 4F and its associated proteins. Characterisation of the relationship between decapping and interactions involving eIF4F is an essential step towards understanding polysome disassembly and mRNA decay. Three types of observation suggest how changes in the functional status of eIF4F modulate mRNA stability in vivo. First, partial disruption of the interaction between eIF4E and eIF4G, caused by mutations in eIF4E or the presence of the yeast 4E-binding protein p20, stabilised mRNAs. The interactions of eIF4G and p20 with eIF4E may therefore act to modulate the decapping process. Since we also show that the in vitro decapping rate is not directly affected by the nature of the body of the mRNA, this suggests that changes in eIF4F structure could play a role in triggering decapping during mRNA decay. Second, these effects were seen in the absence of extreme changes in global translation rates in the cell, and are therefore relevant to normal mRNA turnover. Third, a truncated form of eIF4E (Delta196) had a reduced capacity to inhibit Dcp1-mediated decapping in vitro, yet did not change cellular mRNA half-lives. Thus, the accessibility of the cap to Dcp1 in vivo is not simply controlled by competition with eIF4E, but is subject to switching between molecular states with different levels of access. 相似文献
14.
Sven Vanselow Lea Neumann-Arnold Franziska Wojciech-Moock Wolfgang Seufert 《The Journal of biological chemistry》2022,298(2)
The eukaryotic translation initiation factor 2 (eIF2) has key functions in the initiation step of protein synthesis. eIF2 guides the initiator tRNA to the ribosome, participates in scanning of the mRNA molecule, supports selection of the start codon, and modulates the translation of mRNAs in response to stress. eIF2 comprises a heterotrimeric complex whose assembly depends on the ATP-grasp protein Cdc123. Mutations of the eIF2γ subunit that compromise eIF2 complex formation cause severe neurological disease in humans. To this date, however, details about the assembly mechanism, step order, and the individual functions of eIF2 subunits remain unclear. Here, we quantified assembly intermediates and studied the behavior of various binding site mutants in budding yeast. Based on these data, we present a model in which a Cdc123-mediated conformational change in eIF2γ exposes binding sites for eIF2α and eIF2β subunits. Contrary to an earlier hypothesis, we found that the associations of eIF2α and eIF2β with the γ-subunit are independent of each other, but the resulting heterodimers are nonfunctional and fail to bind the guanosine exchange factor eIF2B. In addition, levels of eIF2α influence the rate of eIF2 assembly. By binding to eIF2γ, eIF2α displaces Cdc123 and thereby completes the assembly process. Experiments in human cell culture indicate that the mechanism of eIF2 assembly is conserved between yeast and humans. This study sheds light on an essential step in eukaryotic translation initiation, the dysfunction of which is linked to human disease. 相似文献
15.
Local secondary structures in coding sequences have important functions across various translational processes. To date, however, the local structures and their functions in the early stage of translation elongation remain poorly understood. Here, we surveyed the structural stability in the first 180 nucleotides of the coding sequence of 27 species using computational method. We found that the structural stability in the 30–80 nucleotide interval was significantly higher than that in other regions in eukaryotes and most prokaryotes. No significant correlation between local translation efficiency and structural stability was observed, suggesting that this structural region has undergone selection pressure directly to maintain high stability. Furthermore, ribosome was blocked by this region, providing an opportunity for co-translational regulation. Remarkably, in eukaryotes, we found that mRNAs with higher structural stability in the 30–80 nucleotide interval tended to encode the secreted proteins. Overall, our results revealed a previously unappreciated correlation between structural stability and protein localization. 相似文献
16.
Eukaryotic mRNAs possess a poly(A) tail that enhances translation via the (7)mGpppN cap structure or internal ribosome entry sequences (IRESs). Here we address the question of how cellular IRESs recruit the ribosome and how recruitment is augmented by the poly(A) tail. We show that the poly(A) tail enhances 48S complex assembly by the c-myc IRES. Remarkably, this process is independent of the poly(A) binding protein (PABP). Purification of native 48S initiation complexes assembled on c-myc IRES mRNAs and quantitative label-free analysis by liquid chromatography and mass spectrometry directly identify eIFs 2, 3, 4A, 4B, 4GI, and 5 as components of the c-myc IRES 48S initiation complex. Our results demonstrate for the first time that the poly(A) tail augments the initiation step of cellular IRES-driven translation and implicate a distinct subset of translation initiation factors in this process. The mechanistic distinctions from cap-dependent translation may allow specific translational control of the c-myc mRNA and possibly other cellular mRNAs that initiate translation via IRESs. 相似文献
17.
It has been proposed that eukaryotic translation systems have a greater capacity for cotranslational folding of domains than prokaryotic translation systems, which reduces interdomain misfolding in multidomain proteins and, therefore, leads to tolerance for random recombination of domains. However, there has been a controversy as to whether prokaryotic and eukaryotic translation systems differ in the capacity for cotranslational domain folding. Here, to examine whether these systems differ in the tolerance for the random domain recombination, we systematically combined six proteins, out of which four are soluble and two are insoluble when produced in an Escherichia coli and a wheat germ cell-free protein synthesis systems, to construct a fusion protein library. Forty out of 60 two-domain proteins and 114 out of 120 three-domain proteins were more soluble when produced in the wheat system than in the E. coli system. Statistical analyses of the solubilities and the activities indicated that, in the wheat system but not in the E. coli system, the two soluble domains comprised mainly of beta-sheets tend to avoid interdomain misfolding and to fold properly even at the neighbor of the misfolded domains. These results demonstrate that a eukaryotic system permits the concomitance of a wider variety of domains within a single polypeptide chain than a prokaryotic system, which is probably due to the difference in the capacity for cotranslational folding. This difference is likely to be related to the postulated difference in the tolerance for random recombination of domains. 相似文献
18.
The maize genomic DNA sequence encoding the eukaryotic translation initiation factor 5 (eIF-5) has been isolated from genomic library of maize seedlings and the exon–intron structure determined (accession number AJ132240). The length of genomic DNA sequenced was about 7 kb and contained two exons with the translation start site in exon 2. The only intron is located in the non-coding 5′ region and it is 1298 bp long with the splice acceptor and donor sites conforming to the AG/GT rules. Repetitive sequence fragments are located in the 5′ and 3′ intergenic region. The accumulation of eIF-5 mRNA was studied by RNA blot and in situ hybridization. The observed distribution of mRNA may correlate with the function of the protein, as it appears to be highly abundant in tissues where the proportion of cells actively dividing is very high, such as meristematic regions. 相似文献
19.
Matías Blaustein Leandro Quadrana Guillermo Risso Manuel de la Mata Federico Pelisch Anabella Srebrow 《Journal of cellular biochemistry》2009,107(4):826-833
Post‐splicing activities have been described for a subset of shuttling serine/arginine‐rich splicing regulatory proteins, among them SF2/ASF. We showed that growth factors activate a Ras‐PI 3‐kinase‐Akt/PKB signaling pathway that not only modifies alternative splicing of the fibronectin EDA exon, but also alters in vivo translation of reporter mRNAs containing the EDA binding motif for SF2/ASF, providing two co‐regulated levels of isoform‐specific amplification. Translation of most eukaryotic mRNAs is initiated via the scanning mechanism, which implicates recognition of the m7G cap at the mRNA 5′‐terminus by the eIF4F protein complex. Several viral and cellular mRNAs are translated in a cap‐independent manner by the action of cis‐acting mRNA elements named internal ribosome entry sites that direct internal ribosome binding to the mRNA. Here we use bicistronic reporters that generate mRNAs carrying two open reading frames, one translated in a cap‐dependent manner while the other by internal ribosome entry site‐dependent initiation, to show that in vivo over‐expression of SF2/ASF increases the ratio between cap‐dependent and internal ribosome entry site‐dependent translation. Consistently, knocking‐down of SF2/ASF causes the opposite effect. Changes in expression levels of SF2/ASF also affect alternative translation of an endogenous mRNA, that one coding for fibroblast growth factor‐2. These results strongly suggest a role for SF2/ASF as a regulator of alternative translation, meaning the generation of different proteins by the balance among these two translation initiation mechanisms, and expand the known potential of SF2/ASF to regulate proteomic diversity to the translation field. J. Cell. Biochem. 107: 826–833, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
20.
Internal translation initiation on the foot-and-mouth disease virus IRES is affected by ribosomal stalk conformation 总被引:1,自引:0,他引:1
A human cell line, in which expression of the ribosomal stalk proteins P1 and P2 has been suppressed by RNAi technology, has been used to test how the loss of these proteins affects IRES-dependent translation. Foot-and-mouth disease virus (FMDV) IRES-dependent translation from a bicistronic construct is about three fold higher in the P1/P2-depleted cells than in control cells in the presence of Lb protease. By contrast, no effect on Hepatitis C virus (HCV) IRES translation was observed. These results emphasize the functional heterogeneity of the IRES and they highlight a functional connection between the ribosomal stalk and picornavirus IRES-dependent translation. 相似文献