首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorotetracycline (CTC) was used as a fluorescent Ca2+-sensitive probe to study the redistribution of intracellular membrane-bound Ca2+ in thyroxine (T4)-treated rat thymocytes. Incubation of thymocytes in the Ca2+-supplemented medium in the presence of 1-100 nM T4 for 30 min resulted in a twofold increase in the amount of EGTA-accessible plasma membrane-bound Ca2+ as compared to that in the Ca2+-free medium. The induced decrease in CTC fluorescence was more pronounced with the occurrence of respiration and oxidative phosphorylation in inhibitors. The mitochondrial Ca2+ pool was shown to increase. The nonmitochondrial Ca2+ pool decreased after a 30-min incubation in the presence of 1 nM T4 and increased when 100 nM T4 was used under the same conditions. Without incubation, different concentrations of T4 stimulated the decrease in the Ca2+ pool of the endoplasmic reticulum (ER) compared to the control cells, which was demonstrated using inhibitors of the ER Ca2+-ATPase (vanadate, BHQ). Calmodulin blockers (triftazin and R24) caused a significant decrease (over 50%) in CTC fluorescence in the T4-treated thymocytes. This suggests that T4 can act as an in vitro stimulator of calmodulin-dependent Ca2+ accumulation in thymocyte membranes. The results of our experiments with AlF4- suggest that T4 stimulates the activity of G-proteins by a receptor-mediated mechanism.  相似文献   

2.
The fluorescent probe chlortetracycline (CTC) was used to investigate redistribution of intracellular Ca2+ in concanavalin A (Con A)-stimulated human peripheral blood lymphocytes. The addition of the mitogen to CTC-equilibrated lymphocytes induced (within 10 to 15 minutes) a Con A-concentration dependent decrease in CTC fluorescence indicating the release of membrane-bound Ca2+. The effect was independent of the level of extracellular Ca2+ and could be observed in the presence of EGTA; it was suppressed by the metabolic inhibitors FCCP, antimycin and sodium cyanide. Analysis of the excitation spectra of CTC fluorescence indicated that the observed effect is caused by redistribution of intracellular Ca2+ rather than Mg2+. Thus the lectin interaction with the lymphocyte plasma membrane results in Ca2+ release into the cytosol from the intracellular stores.  相似文献   

3.
Transbilayer movement of the fluorescent membrane probe TMA-DPH [1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene] in the plasma membrane of human platelets was investigated by measuring fluorescence intensity and fluorescence decay. Labeling of unstimulated platelets by TMA-DPH results in a rapid increase in fluorescence intensity, leveling off within 1 min. Dilution of platelets into buffer without TMA-DPH leads to an almost complete rapid efflux of TMA-DPH, indicating that TMA-DPH labels only the outer leaflet of the plasma membrane. Transbilayer movement of the fluorescent probe in unstimulated platelets could be observed upon prolonged incubation and occurs with a t1/2 of 60-90 min. Stimulation of platelets with thrombin directly after the initial rapid uptake of TMA-DPH results in a fast increase in membrane-bound TMA-DPH, fully explained by the increase in plasma membrane caused by secretion of intracellular storage organelles. No indications for increased transbilayer movement of the probe were found, since dilution of thrombin-stimulated TMA-DPH-labeled platelets into buffer without TMA-DPH indicated no uptake of TMA-DPH by intracellular membranes. In contrast to thrombin, stimulation of TMA-DPH-labeled platelets with the Ca2(+)-ionophore ionomycin results in a much larger increase in fluorescence intensity. This process is accompanied by labeling of intracellular membranes as indicated by incomplete efflux of TMA-DPH after dilution of the stimulated platelets. Thus, stimulation of platelets by ionomycin gives rise to rapid and massive inward movement of TMA-DPH (t1/2 approximately 10-12 s). Prolonged incubation of platelets in the absence of any stimulus allows labeling of the total lipid pool, including intracellular membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Stimulus-secretion coupling in pancreatic exocrine cells was studied using dissociated acini, prepared from mouse pancreas, and chlorotetracycline (CTC), a fluorescent probe which forms highly fluorescent complexes with Ca2+ and Mg2+ ions bound to membranes. Acini, preloaded by incubation with CTC (100 microM), displayed a fluorescence having spectral properties like that of CTC complexed to calcium (excitation and emission maxima at 398 and 527 nm, respectively). Stimulation with either bethanechol or caerulein resulted in a rapid loss of fluorescence intensity and an increase in outflux of CTC from the acini. After 5 min of stimulation, acini fluorescence had been reduced by 40% and appeared to be that of CTC complexed to Mg2+ (excitation and emission maxima at 393 and 521 nm, respectively). The fluorescence loss induced by bethanechol was blocked by atropine and was seen at all agonist concentrations that elicited amylase release. Maximal fluorescence loss, however, required a bethanechol concentration three times greater than that needed for maximal amylase release. In contrast, acini preloaded with ANS or oxytetracycline, probes that are relatively insensitive to membrane-bound divalent cations, displayed no secretagogue-induced fluorescence changes. These results are consistent with the hypothesis that CTC is able to probe some set of intracellular membranes which release calcium during secretory stimulation and that this release results in dissociation of Ca(2+)-complexed CTC.  相似文献   

5.
Human neutrophils labeled with chlortetracycline (CTC), commonly used as a probe of membrane-bound calcium, release lysosomal enzymes and exhibit a rapid decrease in fluorescence when exposed to the chemotactic peptide fMet-Leu-Phe or the lectin Con A. This decrease has been attributed to the release of calcium from a membrane-associated "trigger pool." The nature of this putative pool has been further characterized by examining the effects of various inhibitors on the CTC fluorescence response and lysosomal enzyme release from stimulated neutrophils. These agents included inhibitors of glycolysis (2-deoxyglucose and iodoacetate), an uncoupler of oxidative- phosphorylation (KCN), and a sulfhydryl inhibitor (N-ethylmaleimide). Resting neutrophils labelled with CTC demonstrated an enhanced decay of baseline fluorescence when exposed to 2-deoxyglucose or iodoacetate. This suggested that the pool of membrane-bound calcium labelled by this probe was maintained by glycolytic metabolism. Furthermore, 2-deoxyglucose and iodoacetate inhibited both the stimulated decrease in CTC fluorescence and lysosomal enzyme release induced by fMet-Leu-Phe and Con A in a time-dependent manner. KCN did not inhibit either response to stimulation, but did retard the recovery of CTC fluorescence observed when fMet-Leu-Phe was used as the stimulus. High concentrations of N-ethylmaleimide (100 microM) completely inhibited both the CTC fluorescence response and lysosomal enzyme release almost immediately; low concentrations of N-ethylmaleimide (30 microM) inhibited lysosomal enzyme release in a time-dependent manner without significantly affecting changes in CTC fluorescence. These results are consistent with the hypothesis that CTC serves as a probe of membrane-bound "trigger" calcium, the release of which is dependent upon intact glycolysis and is a requirement for lysosomal enzyme release.  相似文献   

6.
Human platelets were depleted of intracellular Ca2+ and then made selectively permeable to external Ca2+ by addition of the ionophore ionomycin. In this cell system a rapid release of arachidonic acid was seen in direct response to added Ca2+ at concentrations corresponding to cytosolic Ca2+ levels measured in thrombin-stimulated platelets. Thrombin and other activators of Ca2+/phospholipid-dependent protein kinase (C-kinase) potentiated the Ca2+-stimulated arachidonic acid release while exerting little or no effect in the absence of added Ca2+. Agents which increase (R59022) or decrease (isoquinolinesulphonylmethylpiperazine) the activation of C-kinase correspondingly enhanced or inhibited, respectively, the potentiation of arachidonic acid release caused by thrombin. These results support the hypothesis that arachidonic acid release in human platelets is regulated by a co-operative action between intracellular Ca2+ and C-kinase.  相似文献   

7.
The effects of protein kinase C (PKC) on Ca2+ transport were investigated in human intact platelets. The indicator quin2 was used to measure the free cytoplasmic Ca2+ concentration ([Ca2+]cyt) and to search for possible PKC effects on the Ca(2+)-ATPase extrusion pump located in the plasma membrane. The Ca2+ indicator chlorotetracycline (CTC) was used to study PKC effects on the dense tubular Ca(2+)-ATPase uptake pump. The activity of PKC was stimulated by phorbol 12-myristate 13-acetate (PMA) and was inhibited with calphostin C. Neither PKC activation nor inhibition had any effect on [Ca2+]cyt or the Ca2+ extrusion pump. Substantial activation of the dense tubular pump was observed with PMA. In resting platelets bathed in 2 mM external Ca2+ giving [Ca2+]cyt = 102-106 nM, activation of PKC by PMA (100 nM) increases the rate and extent of dense tubular Ca2+ uptake to 1.62 +/- 0.35 and 1.25 +/- 0.3 times control value (respectively). The Vm of the dense tubular pump was measured by using ionomycin to manipulate [Ca2+]cyt. It is shown that PMA increases the Vm by a factor of 1.7 +/- 0.4 but has no effect on the Km value (= 180 nM). An unexpected finding was that PKC activity supports a portion of the basal activity of the dense tubular Ca2+ pump in resting platelets. Preincubation with the inhibitor calphostin C (100 nM) decreases the rate and extent of dense tubular Ca2+ uptake in resting platelets by 38 +/- 5% and 29 +/- 21% (respectively). This is due to a 28 +/- 9% decrease in the Vm of the dense tubular pump. This suggests that there is a low level of stimulation of dense tubular Ca2+ pump mediated by PKC in resting platelets.  相似文献   

8.
Human platelets exhibit an extremely rapid increase in cytoplasmic Ca2+ concentrations ((Ca2+]in) and a dose-dependent cytoplasmic pH change ((pH]in) upon thrombin stimulation. A cytoplasmic alkalinization, maximal by 60 s, is preceded by a very rapid acidification, which is masked by the alkalinization when saturating thrombin doses are used. Using the pH probe 2',7'-bis-(carboxyethyl)-5(6)-carboxyfluorescein we report here the kinetics of simultaneous cytoplasmic pH and Ca2+ changes in thrombin-stimulated platelets, measured in single cells by flow cytometry. This permits analysis of the responding subpopulation. Maximal thrombin stimulation (greater than or equal to 4.5 nM) induces a dose-dependent increase in pHin from approximately 7.0 to 7.30 and a maximal [Ca2+]in transient of up to 800 nM. The Ca2+ transient coincides temporally with the rapid initial acidification, while the alkalinization is maximal considerably later. The Ca2+ transients occur maximally in each responding cell, but occur only in a subpopulation of the platelets at subsaturating (less than 4.5 nM) thrombin doses; in contrast, the dose-dependent cytoplasmic acidification appears to occur uniformly in all platelets. The rapid increase in [Ca2+]in is not dependent on the alkalinization, and the former occurs maximally in amiloride treated, Na+/H+ exchange inhibited human platelets. These results indicate that the acidification and the rise in [Ca2+]in may be interrelated, whereas the cytoplasmic alkalinization (maximal considerably later than either the acidification or the [Ca2+]in rise) may be independent of these earlier, temporally correlated increases in H+ and Ca2+ concentrations.  相似文献   

9.
Although an increase in cytosolic pH (pHi) caused by Na+/H+ exchange enhances Ca2+ mobilization in platelets stimulated by low concentrations of thrombin [Siffert & Akkerman (1987) Nature (London) 325, 456-458], studies using fluorescent indicators for pHi (BCECF) and [Ca2+]i (fura2) suggest that Ca2+ is mobilized while the cytosolic pH decreases. Several lines of evidence indicate that the initial fall in BCECF fluorescence is not due to cytosolic acidification but is caused by a platelet shape change. (1) Pulse stimulation of platelets by successive addition of hirudin (4 unit/ml) and thrombin (0.2 unit/ml) induced a shape change of 43 +/- 8% and a fall in BCECF fluorescence, which both remained unchanged when Na+/H+ exchange was inhibited by ethylisopropylamiloride (EIPA, 100 microM). (2) Increasing the thrombin concentration to 0.4 unit/ml doubled the shape change and the fall in BCECF fluorescence, but again EIPA had no effect on these responses. (3) Treating platelets with 2 microM-ADP induced shape change and a decline in BCECF fluorescence that was unaffected by EIPA. (4) A second addition of thrombin to platelets that had already undergone shape change induced an immediate increase in BCECF fluorescence without a prior decrease. (5) Activation of protein kinase C by 1,2-dioctanoyl-sn-glycerol (DiC8) neither induced shape change nor a decline in BCECF fluorescence; in contrast BCECF fluorescence rapidly increased indicating an immediate cytosolic alkalinization. Concurrent analysis of [Ca2+]i under conditions in which shape change did not interfere with BCECF fluorescence showed that cytosolic alkalinization and Ca2+ mobilization started almost simultaneously. These observations suggest that cytosolic alkalinization is not preceded by a fall in pHi and can support Ca2+ mobilization induced by weak agonists.  相似文献   

10.
Maximal stimulation of platelets with thrombin results in a rapid increase in cytoplasmic Ca2+ (from 0.1 microM to 1-3 microM), as measured with the fluorescent intracellular Ca2+ indicator Quin-2. Prior addition of the adenylate cyclase stimulators PGD2, PGE1 or forskolin inhibited the rise in cytoplasmic Ca2+. When added after the maximal response to thrombin was attained adenylate cyclase stimulators caused a rapid fall of cytoplasmic Ca2+ back to the original "resting" level. This effect coincides with the reversal of thrombin-induced, Ca2+-dependent protein phosphorylation, and cytoskeleton assembly. It is suggested that cAMP-dependent reactions maintain low levels of cytoplasmic Ca2+ by promoting transport and/or binding of Ca2+.  相似文献   

11.
Covic L  Gresser AL  Kuliopulos A 《Biochemistry》2000,39(18):5458-5467
Thrombin activates platelets in an ordered sequence of events that includes shape change, increase in cytoplasmic Ca(2+), activation of the alphaIIbbeta3 integrin, granule secretion, aggregation, and formation of a stable hemostatic plug. Activation of this process has also been implicated in the pathogenesis of atherosclerosis, stroke, and thrombosis. There are two identified thrombin-activated receptors on the surface of human platelets. PAR1 is a high-affinity thrombin receptor, and PAR4 is a low apparent affinity thrombin receptor of uncertain function. The goal of these studies is to determine the kinetics of thrombin activation of PAR1 and PAR4 and to relate the individual inputs from each receptor to platelet Ca(2+) signaling, secondary autocrine stimulation, and aggregation. Using a combination of PAR-specific peptide ligands and anti-PAR1 reagents, we separated the biphasic thrombin Ca(2+) response of platelets into two discrete components-a rapid spike response caused by PAR1, followed by a slower prolonged response from PAR4. Despite having a 20-70-fold slower rate of activation, PAR4 produces the majority of the integrated Ca(2+) signal that is sustained by the continuous presence of catalytically active thrombin. Surprisingly, PAR4 activation is much more effective than PAR1 activation in mounting secondary autocrine Ca(2+) signals from secreted ADP. The strong ADP response due to activated PAR4, however, requires prior activation of PAR1 as would normally occur during treatment of platelets with thrombin. Thus, the late signal generated by activated PAR4 is not redundant with the early signal from PAR1 and instead serves to greatly extend the high intracellular Ca(2+) levels that support the late phase of the platelet aggregation process.  相似文献   

12.
Calcium dynamics in human neutrophils have been studied using Quin 2 fluorescence as a measure of free cytoplasmic calcium and chlortetracycline fluorescence as an indicator of membrane-bound calcium. The results show that 1) FMLP-induced increased cytoplasmic calcium likely comes from at least two different pools. Calcium is released from one only after a high affinity receptor interaction and from the second also after a lower affinity interaction. The initial increment in cytosolic calcium does not appear to originate in the pool(s) reflected by CTC fluorescence. 2) Cytochalasin B strikingly alters the FMLP effect on membrane associated calcium, inducing a marked “recovery” phase which could be a reflection of fusion of granule membranes with the plasma membrane. 3) PMA, at concentrations inducing extensive specific granule release (≤ 10 ng/ml) has no measurable direct effect on membrane-bound or cytosolic calcium. However, PMA inhibits a subsequent CTC fluorescence response to FMLP and following the ionophore, A23187, it induces a clear decrease in cytosolic calcium. These indirect effects may be explained in terms of PMA's activation of protein kinase C.  相似文献   

13.
Several observations indicate that the triggering event for receptor-mediated actin polymerization takes place in or close to the plasma membrane. Stimulation of human neutrophils with the chemotactic peptide formylmethionyl-leucyl-phenylalanine (fMet-Leu-Phe) causes rapid and transient changes in both chlorotetracycline (CTC) fluorescence and the cellular content of filamentous actin (F-actin), thus suggesting a regulatory role for membrane-bound calcium in actin polymerization. In the present study, tetracaine, a proposed antagonist to membrane-bound calcium, totally inhibited the rebinding of the membrane calcium released by fMet-Leu-Phe. This was accompanied by a magnified and sustained increase in the cellular content of F-actin. In agreement, N-ethylmaleimide, an inhibitor of motile functions, completely abolished the fMet-Leu-Phe-triggered changes in both CTC fluorescence and F-actin content and rapidly reversed the responses when added after the peptide. The tumor promoter phorbol-12-myristate-13-acetate, caused only small changes in CTC fluorescence and F-actin content, and reduced a subsequent fMet-Leu-Phe-induced CTC response and actin polymerization. Inhibition of the breakdown of phosphatidylinositol 4,5-bisphosphate, by calcium depletion, had no significant effects on the fMet-Leu-Phe-induced CTC response and alterations in F-actin content, whereas pretreatment with pertussis toxin totally inhibited both these responses. Consequently, the strong correlation between changes in CTC fluorescence and F-actin content, found in this study, suggests a triggering or modulating role of membrane-associated calcium on actin polymerization in human neutrophils.  相似文献   

14.
Chlorotetracycline (CTC) shows a strongly enhanced fluorescence upon addition of mitochondria isolated from Jerusalem artichoke ( Helianthus tuberosus L.) tubers in a low-cation medium. This indicates the presence of membrane-bound divalent cations. The chelation by CTC of the membrane-bound divalent cations does not affect the oxidation of exogenous NADH significantly. The removal of the bound divalent cations using ethyleneglycol-bis-(β-aminoethylether)-N,N'-tetraacetic acid (EGTA) and EDTA causes an 80% decrease in CTC fluorescence. Titration of CTC fluorescence (a direct measure of bound divalent cations) and 9-aminoacridine fluorescence (a measure of surface potential) with EGTA and EDTA gives similar curves, although CTC fluorescence responds more slowly to the addition of chelators. The same bound divalent cations appear to be monitored by CTC fluorescence or by 9-aminoacridine fluorescence.  相似文献   

15.
One of the earliest events following stimulation of human platelets with thrombin is a rise in the cytosolic pH, pHi, mediated by Na+/H+ exchange, and an increase in the cytosolic free Ca2+ concentration, [Ca2+]i. In the present study we investigated whether an increase in pHi alone, induced by the Na+/H+ ionophore monensin, is sufficient for platelet activation. Although monensin (20 microM) raised pHi from 7.10 +/- 0.05 (n = 21) to 7.72 +/- 0.17 (n = 13), neither Ca2+ influx nor mobilization were detectable upon this treatment in fura2-loaded platelets. In contrast, thrombin (0.05 U/ml) raised pHi to 7.31 +/- 0.10 (n = 10) and increased [Ca2+]i by more than 250 nM both in the presence and absence of extracellular Ca2+. Thrombin also caused the formation of phosphatidic acid and phosphorylation of the 20 kDa and 47 kDa proteins in platelets labeled with 32P. Monensin, however, induced none of these responses. It is concluded that an increase in pHi alone is not a sufficient trigger for platelet activation but enhances intracellular signal transduction in platelets stimulated by natural agonists.  相似文献   

16.
The effect of platelet-derived growth factor (PDGF) on cellular Ca2+ was examined in BALB/c-3T3 cells. PDGF induced: A decrease in cell 45Ca2+ content. An apparent increased rate of efflux of preloaded 45Ca2+. A decrease in residual intracellular 45Ca2+ remaining after rapid efflux. When added after the rapid phase of efflux of 45Ca2+ had occurred, an immediate decrease in post-efflux residual intracellular 45Ca2+. All of the observed changes in 45Ca2+ induced by PDGF are consistent with a rapid release of Ca2+ from an intracellular Ca2+ pool that has the slowest efflux and is relatively inaccessible to extracellular EDTA. When incubated with chlortetracycline (CTC), a fluorescent Ca2+ probe, 3T3 cell mitochondria became intensely fluorescent. Addition of PDGF resulted in a rapid decrease in CTC fluorescence intensity in both adherent and suspended 3T3 cells. The effects of PDGF on 3T3 cell Ca2+ stores and CTC fluorescence intensity were identical with the effects of the Ca2+ ionophore A23187 and of the proton ionophore carbonyl cyanide m-chlorophenyl hydrazone. Serum, which contains PDGF, also altered intracellular Ca2+ stores, but platelet-poor plasma, which does not contain PDGF, had no effect. EGF, insulin, and tetradecanoyl phorbol acetate (TPA), other factors which stimulate 3T3 cell growth, did not alter 3T3 cell Ca2+ stores. Release of Ca2+ from intracellular sequestration sites may be a mechanism by which PDGF stimulates cell growth.  相似文献   

17.
We have studied Microciona prolifera cells as a model for inflammation and secretion. Dissociated in Ca-, Mg-free seawater with 2.5 mM EDTA, the cells aggregate when exposed to Ca (greater than 5 mM) and Ca ionophores. Extracellular Ca is not required over the course of aggregation; brief pulses of Ca suffice. Aggregation was induced by A23187 in excess EDTA after cells were prepared by pulse Ca. It appeared that Ca ionophore stimulated the secretion of Microciona aggregation factor (MAF) to a locus or in a form inaccessible to external EDTA. Pulse-induced aggregation depended on MAF because it was inhibited by MAF fragments, which are ligands for MAF-binding sites. Sponge cells were preloaded with three fluorescent dyes that monitor aspects of stimulus-secretion coupling: 1) 3,3'-dipropylthiadicarbocyanine iodide (dis-C3-(5)), a carbocyanine dye presumed to report changes in membrane potential; 2) 9-aminoacridine (9AA), which presumably reports secretion from acid vesicles; and 3) chlortetracycline (CTC), presumed to report mobilization of membrane-associated Ca. Exposure of cells either to constant Ca or to pulse Ca stimuli caused prompt decreases in the fluorescence of cells with diS-C3-(5) and increases in fluorescence of cells with 9AA. In contrast, although constant Ca provoked decreases in fluorescence of cells with CTC, a pulse Ca was without effect. Moreover, inhibitors of stimulus-response coupling (e.g., aspirin, sodium salicylate, 5 mM; diclofenac, 100 microM) inhibited sponge aggregation induced by either constant or pulse stimuli. In contrast, like the endogenous mediator of inflammation, leukotriene B4, trienoic alkyl catechols (urushiol) from poison ivy provoked aggregation. These studies suggest the utility of this marine model for analysis of stimulus-response coupling in cells of higher species that also respond to secretagogues in the absence of external Ca.  相似文献   

18.
The time courses of the intracellular release of membrane-bound Ca2+ measured by chlortetracycline fluorescence, and exocytosis measured with an extracellular calcium electrode have been determined simultaneously in platelets at 21°C. Thrombin, trypsin and the thiol reagent, thimerosal produced concentration dependent release of intracellular membrane calcium which always significantly preceded the onset of secretion. Thrombin and trypsin initiated Ca2+ mobilization in 0.75 to 1.8 sec. whereas secretion commenced 4–8 sec. later. Ca2+ release was 30–50% completed before exocytosis started. This is the first direct evidence that the release of intracellular Ca2+ in platelets occurs with a time course consistent with its proposed role in activation-secretion coupling.  相似文献   

19.
Intracellular free Ca2+ [( Ca2+]i) and pH (pHi) were measured simultaneously by dual wavelength excitation in thrombin-stimulated human platelets double-labeled with the fluorescent probes fura2 and 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein to determine the relationship between changes in [Ca2+]i and pHi, respectively. At 37 degrees C, thrombin (0.5 or 0.1 units/ml) increased [Ca2+]i with no detectable lag period to maximum levels within 13 s followed by a slow return to resting levels. There was a transient decrease in pHi within 9 s that was immediately followed by an alkalinization response, attributable to activation of Na+/H+ exchange, that raised pHi above resting levels within 22 s. At 10-15 degrees C, thrombin-induced changes in [Ca2+]i and pHi were delayed and therefore better resolved, although no differences in the magnitude of changes in [Ca2+]i and pHi were observed. However, the increase in [Ca2+]i had peaked or was declining before the alkalinization response was detected, suggesting that Ca2+ mobilization occurs before activation of Na+/H+ exchange. In platelets preincubated with 5-(N-ethyl-N-isopropyl)amiloride or gel-filtered in Na+-free buffer (Na+ replaced with N-methyl-D-glutamine) to inhibit Na+/H+ exchange, thrombin stimulation caused a rapid, sustained decrease in pHi. Under these conditions there was complete inhibition of the alkalinization response, whereas Ca2+ mobilization was only partially inhibited. Nigericin (a K+/H+ ionophore) caused a rapid acidification of more than 0.3 pH unit that was sustained in the presence of 5-(N-ethyl-N-isopropyl)amiloride. Subsequent stimulation with thrombin resulted in slight inhibition of Ca2+ mobilization. These data show that, in human platelets stimulated with high or low concentrations of thrombin, Ca2+ mobilization can occur without a functional Na+/H+ exchanger and in an acidified cytoplasm. We conclude that Ca2+ mobilization does not require activation of Na+/H+ exchange or preliminary cytoplasmic alkalinization.  相似文献   

20.
The uptake of chlortetracycline (CTC) and the nature of the fluorescence of CTC was studied in intact human erythrocytes from apparently healthy donors. The uptake of CTC at 22 degrees C proceeded with a t1/2 of about 3 min, and after 15 min a stable equilibrium was achieved with an intracellular accumulation by a factor of 5-6 relative to the medium concentration. The accumulation did not change in the range of CTC concentrations tested (20-500 microM). The Ca specificity of the CTC fluorescence spectrum was confirmed by Ca depletion of red cells using A23187 in the presence of EGTA and 0.2 mM Mg. This procedure decreased the total intracellular calcium content by about 70% and reduced the fluorescence intensity to one-fourth. Fluorescence microscopy of red cells incubated with 100 microM CTC at 22 degrees C showed that the fluorescence originated mainly from the red cell membrane. In addition, in about 15% of erythrocytes one or more fluorescent dots (diameter greater than 0.2 less than 1 microns) were detected. The fluorescence of the dots and membranes was related to calcium, as evidenced by the reduction of their intensity in Ca depleted cells. The number of erythrocytes with fluorescent dots and the frequency of the dots per cell was largely unaffected by lowering the incubation temperature to 0 degrees C, indicating that the dots most probably do not represent endocytotic artifacts induced by CTC. The number of dots was increased in erythrocytes preincubated with primaquine, demonstrating that CTC fluorescence can be applied to monitor the appearance of intracellular Ca storing vesicles. It is concluded that in (at least) 15% of erythrocytes obtained from apparently healthy donors intracellular vesicles containing Ca can be detected by CTC fluorescence microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号