首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main goal of using global biodiversity hotspots for conservation purposes is to protect taxa with small geographic ranges because these are highly vulnerable to extinction. However, the extent to what different hotspots types are effective for meeting this goal remains controversial because hotspots have been previously defined as either the richest or most threatened and richest sites in terms of total, endemic or threatened species. In this regard, the use of species richness to set conservation priorities is widely discussed because strategies focused on this diversity measure tend to miss many of the taxa with small geographic ranges. Here we use data on global terrestrial mammal distributions to show that, hotspots of total species, endemism and threat defined in terms of species richness are effective in including 27%, 29% and 11% respectively, of the taxa with small geographic ranges. Whilst, the same hotspot types defined in terms of a simple diversity index, which is a function of species richness and range-size rarity, include 68%, 44% and 90% respectively, of these taxa. In addition, we demonstrate that index hotspot types are highly efficient because they conserve 79% of mammal species (21% more species than richness hotspot types), with 59% of species shared by three hotspot types (31% more than richness hotspot types). These results suggest that selection of different diversity measures to define hotspots may strongly affect the achievement of conservation goals.  相似文献   

2.
Land-snail species richness has repeatedly been found to increase with the increasing site calcium content and humidity. These two factors, reported as the main drivers of land-snail assemblage diversity, are also among the main habitat characteristics of calcareous seepages. Here we explore local species richness and compositional variation of forest spring-fed patches (i.e. seepages), to test the hypothesis that these habitats might act as biodiversity hotspots and refugia of regional snail faunas. In contrast to treeless spring fens, only little is known about land snail faunas inhabiting forest seepages. Studying 25 isolated calcareous forest seepages, evenly distributed across the White Carpathians Protected Landscape Area (SE Czech Republic), we found that these sites, albeit spatially very limited, can harbour up to 66% of the shelled land-snail species known to occur in this well-explored protected area (in total 83 species). By comparing land snail assemblages of the studied seepages with those occurring in the woodland surroundings of each site as well as those previously sampled in 28 preserved forest sites within the study area, we found the seepages to be among the most species rich sites. Although the numbers of species did not statistically differ among these three systems, we found highly significant differences in species composition. Seepage faunas were composed of many species significantly associated with spring sites, in contrast to the assemblages of both surrounding and preserved forest sites. Our results highly support the hypothesis that calcareous forest seepages might serve as refugia and biodiversity hotspots of regional land snail faunas. Protection of these unique habitats challenges both conservation plans and forest management guidelines as they might act as sources for the recolonization and restoration of forest snail assemblages particularly in areas impoverished by harvesting and clearcutting.  相似文献   

3.
Aims To investigate the relative explanatory power of source faunas and geographical variables for butterfly incidence, frequency, richness, rarity, and endemicity on offshore islands. Location The western Italian offshore islands (Italy and Malta). Methods Thirty‐one islands were examined. Data were taken from our own field surveys and from the literature. Two approaches were undertaken, described as island‐focused and species‐focused, respectively. Offshore islands were allocated to their neighbouring source landmasses (Italian Peninsula, Sicily and Sardinia–Corsica) and compared with each other for faunal attributes, source and island geography. Generalized linear and stepwise multiple regression models were then used to determine the relationships of island species richness, rarity and endemicity with potential geographical predictors and source richness, rarity, and endemicity (island‐focused). Species frequency and incidence were assessed in relation to geographical and source predictors using stepwise linear and logistic regression, and inter‐island associations were examined using K‐Means clustering and non‐metric scaling (species‐focused). Results The analysis reveals firm evidence for the influence of the nearest large landmass sources on island species assemblages, richness, rarity and endemicity. A clear distinction in faunal affinities occurs between the Sardinian islands and islands lying offshore from the Italian mainland and Sicily. Islands neighbouring these three distinct sources differ significantly in richness, rarity and endemicity. Source richness, rarity, and endemicity have explanatory power for island richness, rarity, and endemicity, respectively, and together with island geography account for a substantial part of the variation in island faunas (richness 59%, rarity 60% and endemicity 64%). Source dominates the logistic regression parameters predicting the incidence of island species [13 (38%) of 34 species that could be analysed]; three ecological factors (source frequency, flight period and maximal altitude at which species live) explained 75% of the variation in the occurrence of species on the islands. Species found more frequently on islands occurred more frequently at sources, had longer flight periods, and occurred at lower altitudes at the sources. The incidence of most species on islands (84%) is correctly predicted by the same three variables. Main conclusions The Italian region of the Mediterranean Sea has a rich butterfly fauna comprising endemics and rare species as well as more cosmopolitan species. Analysis of island records benefited from the use of two distinct approaches, namely island‐focused and species‐focused, that sift distinct elements in island and source faunas. Clear contemporary signals appear in island–source relationships as well as historical signals. Differences among faunas relating to sources within the same region caution against assuming that contemporary (ecological) and historical (evolutionary) influences affect faunas of islands in different parts of the same region to the same extent. The implications of source–island relationships for the conservation of butterflies within the Italian region are considered, particularly for the long‐term persistence of species.  相似文献   

4.
Plant diversity surely determines arthropod diversity, but only moderate correlations between arthropod and plant species richness had been observed until Basset et al. (Science, 338, 2012 and 1481) finally undertook an unprecedentedly comprehensive sampling of a tropical forest and demonstrated that plant species richness could indeed accurately predict arthropod species richness. We now require a high‐throughput pipeline to operationalize this result so that we can (i) test competing explanations for tropical arthropod megadiversity, (ii) improve estimates of global eukaryotic species diversity, and (iii) use plant and arthropod communities as efficient proxies for each other, thus improving the efficiency of conservation planning and of detecting forest degradation and recovery. We therefore applied metabarcoding to Malaise‐trap samples across two tropical landscapes in China. We demonstrate that plant species richness can accurately predict arthropod (mostly insect) species richness and that plant and insect community compositions are highly correlated, even in landscapes that are large, heterogeneous and anthropogenically modified. Finally, we review how metabarcoding makes feasible highly replicated tests of the major competing explanations for tropical megadiversity.  相似文献   

5.
1. Documenting species abundance distributions in natural environments is critical to ecology and conservation biology. Tropical forest insect faunas vary in space and time, and these partitions can differ in their contribution to overall species diversity. 2. In the Neotropics, the Central American butterfly fauna is best known in terms of general natural history, but butterfly community diversity is best documented by studies on South American fruit-feeding butterflies. Here, we present the first long-term study of fruit-feeding nymphalid species diversity from Central America and provide a unique comparison between Central and South American butterfly communities. 3. This study used 60 months of sampling among multiple spatial and temporal partitions to assess species diversity in a Costa Rican rainforest butterfly community. Abundance distributions varied significantly at the species and higher taxonomic group levels, and canopy and understorey samples were found to be composed of distinct species assemblages. 4. Strong similarities in patterns of species diversity were found between this study and one from Ecuador; yet, there was an important difference in how species richness was distributed in vertical space. In contrast to the Ecuadorian site, Costa Rica had significantly higher canopy richness and lower understorey richness. 5. This study affirms that long-term sampling is vital to understanding tropical insect species abundance distributions and points to potential differences in vertical structure among Central and South American forest insect communities that need to be explored.  相似文献   

6.
Acridid communities are sensitive to anthropogenic disturbance and the community structure of acridids plays vital role in functioning the forest ecosystem. They are potentially useful bioindicators for conservation planning and habitat disturbances. Acridid assemblages of three different habitat types based on degree of disturbance as follows five natural sites, five moderately disturbed sites and five highly disturbed sites in Chaupahari forest, West Bengal, India were studied. Diversity, abundance, equitability and species richness of acridid were observed in respect to undisturbed and disturbed habitats. The species richness and diversity of the sites tracked the intensity of disturbance, the greatest value being associated with the natural site followed by the moderately disturbed site and highly disturbed site. The highest species richness and diversity index indicate the suitable habitat for acridid population. Statistical analysis infers that different species show different behavior and the sites are also different in relation to different habitat types.  相似文献   

7.
Determining which factors affect species richness is important for conservation theory and practice. However, richness of common and rare species may be affected by different factors. We use an extensive inventory of woody plants from a tropical dry forest landscape in Yucatan, Mexico to assess the unique effects of environmental variables, spatial dependence of sampling sites, forest stand age and the combined effect of all groups of variables on species richness of woody plants with different levels of rarity (common, intermediate, rare, very rare)—according to their abundance, habitat specificity and spatial distribution range in the landscape. Analyzing separately common species and those with different levels of rarity uncovered contrasting patterns and correlates of species richness that were not apparent when focusing on all woody plants. In particular, richness of common and intermediate species was influenced mainly by environmental factors, whereas richness of very rare species was affected mostly by the unique effect of spatial dependence of sampling sites, suggesting a main role of environmental filtering and dispersal limitation, respectively. However, common and very rare species also responded inversely to some landscape metrics, revealing contrasting environmental preferences of these groups of species. These contrasting results suggest different underlying mechanisms and the need for very different conservation strategies. Therefore, basic and applied research on tropical forest biodiversity should consider separately species with different levels of rarity, focusing on which factors control variation in each level, and paying special attention to very rare species, generally the most specious and vulnerable to local extinction.  相似文献   

8.
In central Japan, Aokigahara woodland is considered to be one of the most natural areas around Mount Fuji and a core area in the conservation of the biodiversity of Mount Fuji. We chose butterflies as an indicator species of biodiversity and examined six communities in and around the woodland in 2000 using transect counts to examine and search for diversity and rarity hotspots and their associated landscapes. The results showed that butterfly species richness and species diversities H 1/ were significantly higher in forest-edge sites than in forest-interior and/or open-land sites, and variation in the total number of species among these three landscape types was well accounted for by ecologically specialist species, such as landscape specifics, oligovoltines, narrow diet feeders and low-density species. Thus, the species regarded as vulnerable to extinction, including Red List species, were observed more often in forest-edge sites than in forest-interior and/or open-land sites. As a result, in the study area, diversity and rarity hotspots were found in forest-edge landscapes. The reasons why butterfly diversity and rarity hotspots were established in forest-edge landscapes were analyzed and interpreted from several points of view, including disturbance level, landscape elements and plant species richness. From these results, and the fact that some species were confined to forest-interior sites, we conclude that it is very important to conserve and manage forest-edge habitats (considered to be semi-natural) as well as forest-interior habitats (considered to be the most natural) to maintain the diversity of butterfly communities and preserve the various types of threatened species in and around the Aokigahara woodland.  相似文献   

9.
Plant species diversity maintains the stability of ecosystems and the diversity of consumer species such as insect herbivores. Considering that gall-inducing insects are highly specialized on their host plants and dependent on the occurrence, abundance and distribution of plants, we evaluated the diversity patterns of gall-inducing insect along Brazilian Neotropical savannas and the potential role of plant species richness, vegetation structure and super-host presence on determining these patterns. We found 1,882 individual plants that belonged to 64 different host plant species grouped in 31 families, associated to 112 galling insect species. The galling richness was positively influenced by plant species richness and the presence of the super-host genus Qualea (Vochysiaceae). Plant species richness explained 48 % of the galling richness and areas with presence of super-hosts had more than twice of galling species than areas where they were absent. On the other hand, we found no evidence that larger plants hosted more species of galling insects. We observed that for the diversity of galling insects in the Brazilian Cerrado, vegetation structure explained almost the same portion as plant richness, because structural variables did not have an effect on residuals of galling richness and plant richness regression. Our findings suggests that plant richness has a more important role on the mitigation of natural enemies and adaptive radiation of galling species, while structural aspects of the vegetation does not seem to have that effect. Furthermore, we show that the super-host taxa provide an increment in local galling richness because they present a great diversity of local number of gall morphospecies (i.e. alpha diversity) and the high turnover of morphospecies among different localities (i.e. beta diversity). Therefore we argue that the quality of resources (richness and super host presence) appears to be a most important factor for the diversity of galling insects in Neotropical systems, than the amount of resources.  相似文献   

10.
Topographic heterogeneity as a determinant of insect diversity pattern has been little studied. Responses of grasshopper assemblages to three hill sizes were assessed in the arid Succulent Karoo, South Africa. This area is one of the world’s 25 hotspots for conservation priorities. Small hills overall were more speciose than medium or large hills. There were also significantly higher densities of small-sized grasshoppers on small hills than on medium or large ones. The slopes of the three hill sizes did not differ significantly either in their species richness or abundance, and there was no significant difference in species richness between summits only of the three hill sizes. Patterns of grasshopper species dominance were markedly variable among sites, but with clear differences between small and larger hills, associated with vegetation characteristics. Vegetation cover and grass cover was less on the small hills. Grasshopper taxonomic groups varied among the three hill sizes, with small hills being taxonomically more diverse, supporting species from four families and nine subfamilies, while medium and large hills only supported Acrididae. It is concluded that topography has a remarkably strong effect on various aspects of grasshopper spatial heterogeneity and that small hills in particular are a major factor to consider in spatial conservation planning.  相似文献   

11.
The establishment of a network of reserves is of fundamental importance to the loss of biodiversity. Seven different area selection methods for the establishment of a reserve network were applied in the present study: (a) 5% cut-off value of the grid cells with the highest species richness or conservation value, (b) complementarity analysis using as criteria species richness or conservation value or rarest species richness, and (c) mixed complementarity analysis using as criteria species richness or conservation value. These methods were applied in the orchid taxa of east Macedonia. The conservation values of taxa were estimated on the basis of regional rarity, broad-scale rarity, and species specialization. The spatial overlap between the resulting networks and the Natura 2000 network of the study area was assessed. Furthermore, the efficiency of the latter network to protect the orchid taxa of the study area was examined. Our results suggest that: (a) a multiscale estimation of rarity is necessary for the unbiased estimation of species conservation values; (b) species specialization adds valuable ecological information to the assessment of taxa conservation values; (c) complementarity and mixed complementarity analyses on species richness or conservation value safeguard all the taxa of the region; (d) complementarity analysis on the basis of the richness of the rarest species safeguards all the rarest taxa, but not the total number of the remaining taxa; (e) the 5% cut-off value on species richness or conservation value fails to protect all the taxa of the region, including a large number of the rarest taxa; and (f) the Natura 2000 network, despite its large coverage in the study area, fails to safeguard all the taxa, including some of the rarest.  相似文献   

12.
  1. South Africa is a megadiverse country. Here, natural communities are unevenly distributed across, and within, seven distinct biomes. In such heterogeneous landscapes, understanding spatial patterns of biodiversity is essential for planning and implementing efficient conservation measures.
  2. The southern Kalahari, forming part of South Africa's savanna biome, is an arid region of peculiarly high diversity and endemism. The responses of orthopteran assemblages to changing environmental conditions across the Kalahari were investigated by comparing alpha and beta diversity levels across discrete vegetation types in the Tswalu Kalahari Reserve. The degree of association between species and specific vegetation types were also studied and how a key life history trait - dispersal ability – influences community composition was determined.
  3. This study identified 46 grasshopper species within the reserve, which compares well with richness levels in other more productive habitats of the country. Local (alpha) diversity was higher in mountain and mountain-ecotone sites versus vegetation types on the plains, and species turnover was also exceptionally high – approaching 100% - across these two groups. The few (3) dispersal limited species recovered were associated only with the mountain-ecotone group, with emergent dominance patterns suggesting that competitive rather than dispersal abilities determine the species composition of unique assemblages in the landscape.
  4. Topology plays a key role in maintaining spatial diversity across the southern Kalahari landscape. Mountains, and their ecotones, promote not only species turnover, but also richness and functional diversity. These can be viewed as islands of diversity, and should be targeted priority areas for conservation beyond the boundaries of protected areas.
  相似文献   

13.
It is important to conserve bryophyte diversity in fragmented forests, due to the vulnerability of this group to environmental change. In this study, the utility of bryophyte functional groups (taxonomic classes, substrate classes, and life-forms) was examined as indicators for planning urban area conservation of bryophyte diversity. The study sites comprised 27 fragmented forests in Kyoto City, Japan. Using linear regression models, it was found that the species richness of almost all functional groups was positively correlated with patch size. Furthermore, two types of bryophyte life-form (fans and thalloid mats) were significantly correlated with environmental factors considered important for conservation planning. The species richness of fan bryophytes was positively correlated with the presence of natural forest patches and was negatively correlated with distance from mountainous areas. Similarly, the species richness of thalloid mat bryophytes was negatively correlated with maintenance practices. These results may be explained by the vulnerability of these two bryophyte groups to environmentally caused drought stress, accompanied by decreasing patch size, maintenance practices, disturbance, and/or loss of natural vegetation. Considering that drought stress represents a major threat to bryophyte diversity in fragmented forests, the species richness of hygrophilous life-forms (e.g., fans and thalloid mats) may be used as an indicator of fragmented forests that are less affected by drought stress, and these species should be preferentially conserved to maintain high levels of bryophyte diversity.  相似文献   

14.
Coastal barrens in Nova Scotia are heathlands characterised by short, predominantly ericaceous vegetation, sparse tree cover, exposed bedrock, pockets of Sphagnum bog, and stressful climatic conditions. Although coastal barrens are prominent in the physical and cultural landscape, they are largely unprotected. We selected six barrens along the Atlantic coast, and surveyed 20 1-m2 plots at each barren for vascular plants, macrolichens, mosses and environmental factors. We recorded 173 species (105 vascular, 41 macrolichen, 27 moss), including six provincially rare vascular species found predominantly in nearshore areas with high levels of substrate salt and nutrients, variable substrate depth, and short vegetation. Although vascular plant and moss richness were similarly correlated with vegetation height, substrate depth, organic matter content, and rock exposure, there were no clear correlations between vascular plant, macrolichen and moss richness across all sites. Vascular plant rarity and species richness were not correlated, but had inverse relationships with key environmental gradients. Tailoring conservation efforts to protect areas of high richness may thus mean that rare species are missed, and vice versa. Ordination and ANOSIM show that barrens vegetation differs widely among sites; therefore, protecting any singular coastal barren will not protect the entire range of vegetation communities and species in this heathland type. Conservation planning should emphasize protecting environmental gradients correlated with richness, rarity and plant community structure, including substrate depth and moisture, and vegetation height. Additionally, protected areas should include a coastal-inland gradient and a diversity of substrate types, including exposed rock and trees.  相似文献   

15.
1. Quantifying how biological diversity is distributed in the landscape is one of the central themes of conservation ecology. For this purpose, landscape classifications are being intensively used in conservation planning and biodiversity management, although there is still little information about their efficacy. 2. I used data from 158 running water sites in Hungary to examine the contribution of six a priori established habitat types to regional level diversity of fish assemblages. Three community measures [species richness, diversity (Shannon, Simpson indices), assemblage composition] were examined at two assemblage levels (entire assemblage, the native assemblage). The relative role of non‐native species was quantified to examine their contribution to patterns in diversity in this strongly human influenced landscape. 3. Additive diversity partitioning revealed the primary importance of beta diversity (i.e. among‐site factors) to patterns in species richness. Landscape‐scale patterns in species richness were best explained by between‐habitat type (beta2: 41.2%), followed by within‐habitat type (beta1: 37.7%) and finally within‐site (alpha: 21.1%) diversity. Diversity indices showed patterns different from species richness, indicating the importance of relative abundance distributions on the results. Exclusion of non‐natives from the analysis gave similar results to the entire‐assemblage level analysis. 4. Canonical analysis of principal coordinates, complemented with indicator species analysis justified the separation of fish assemblages among the habitat types, although classification error was high. Multivariate dispersion, a measure of compositional beta diversity, showed significant differences among the habitat types. Contrary to species diversity (i.e. richness, diversity indices), patterns in compositional diversity were strongly influenced by the exclusion of non‐natives from the analyses. 5. This study is the first to quantify how running water habitat types contribute to fish diversity at the landscape scale and how non‐native species influence this pattern. These results on riverine fish assemblages support the hypothesis that environmental variability (i.e. the diversity of habitat types) is an indication of biodiversity and can be used in large‐scale conservation designs. The study emphasises the joint application of additive diversity partitioning and multivariate statistics when exploring the contribution of landscape components to the overall biodiversity of the landscape mosaic.  相似文献   

16.
Biodiversity conservation requires prioritization of areas for in situ conservation. In that perspective, the present study documents the global diversity of a component of the soil macrofauna, the land planarians, and concerns an exploratory analysis of their possible role as indicators of biodiversity. Diversity is described by three quantitative methods: (1) hotspots of species richness, selecting areas richest in species, (2) hotspots of range-size rarity, identifying areas richest in narrowly endemic species, and (3) complementarity, prioritizing areas according to their greatest combined species richness. The biodiversity measures of species richness and range-size rarity show a great correspondence in the identification of hotspots of diversity; both measures identify the following seven areas as the most biodiverse for land planarians: Sao Paulo, Florianopolis, western Java, Tasmania, Sri Lanka, North Island/New Zealand, and Sydney. It is discussed to what extent the results for the land planarians correspond with those obtained in other studies that assessed biodiversity hotspots for taxa on a global scale. It is noteworthy that land planarians identify a few global hotspots of diversity that generally do not feature, or only have low rankings, in other studies: New Zealand, southeastern Australia, and Tasmania.  相似文献   

17.
The success of the hotspot approach for biodiversity conservation depends on the spatial scale and the indicator species used. In this study, we investigated grasshopper species richness in Switzerland at a 1 ha resolution including a total of 111 species. We compared the representativeness of common and of endangered grasshopper species for the overall grasshopper species richness and we assessed the efficiency of the hotspot approach for grasshopper conservation. The pattern of overall grasshopper species richness was well represented by both the number of common and the number of endangered grasshopper species. For evaluating the efficiency of different hotspot approaches for conservation, we compared hotspots of common species, hotspots of endangered species (rarity hotspots), and hotspots of all grasshopper species (richness hotspots). Among these hotspot types, richness hotspots not only featured most common grasshopper species, but they even contained more endangered species than the rarity hotspots. The combination of rarity hotspots and hotspots of common species featured more species than the other combinations of hotspot types. However, the gain of combining two hotspot types compared to the single-hotspot approach was low (max. 3 species). About 24% of the species were not contained in any of the hotspots. These grasshopper species require species-specific action plans. As rarity hotspots were located in areas that are rather strongly affected by landscape change, species richness in rarity hotspots may decrease in the future. We conclude that, for grasshoppers, the hotspot approach on the 1 ha scale can be an effective way to conserve a high proportion of species richness.  相似文献   

18.
Although there is much research showing a strong negative effect of habitat fragmentation and deterioration on the viability of different insect populations and on species richness, the effect of fragmentation is modified by other local and landscape factors. One of the most substantial gaps in knowledge is whether species are similar in their response to the same environmental factors and if their response mirrors response of the entire community. From the conservation point of view this knowledge is of primary importance in planning conservation actions, yet these studies are rare. In this paper we test the relative effects of habitat patch and landscape characteristics on butterflies inhabiting calcareous grasslands in southern Poland. Butterfly species richness and abundance were positively affected by patch size and wind shelter. In the case of species richness there was also a positive effect of plant species richness. Butterfly diversity was enhanced in wind sheltered patches, and commonness (non-rarity) enhanced by distance to buildings and by shorter vegetation. Multivariate analysis suggested differences in the responses of individual species to the examined environmental variables, with some species more responsive to patch size and shelter and others to sward height. The conservation of butterfly communities requires sensible and complex management to ensure high habitat diversity. The most important challenge for future studies on calcareous grasslands is to formulate a model of management that guarantees high species richness and conservation of each individual species.  相似文献   

19.
Aim This study was conducted to investigate the potential of predicting alpha diversity and turnover rates of a highly diverse herbivorous insect family (Geometridae) based on vascular plant species richness and vegetation structure. Location The study was carried out on the south‐western slopes of Mount Kilimanjaro within a wide range of habitats between 1200 and 3150 m elevation. Methods The floristic and structural composition of the vegetation was recorded at 48 plots of 400 m2. Geometrid moths were sampled manually at light sources located at the plot centres. Principal components analysis, redundancy analysis and multiple linear regression were used to explore how alpha diversity and species turnover of geometrid moths are related to vegetation structure and plant species richness. Results Alpha diversity of geometrid moths was significantly correlated with species diversity patterns in the most common vascular plant families (R2 = 0.49) and with plant structural parameters (R2 = 0.22), but not with overall floristic diversity. Species turnover of geometrid moths was strongly linked to diversity changes in a range of plant families (40% explained variance), less strongly to changes in vegetation physiognomy (25%), and only weakly to overall floristic diversity (5%). Changes in elevation were a better predictor of both alpha diversity and species turnover of geometrid moths than any principal component extracted from the vegetation data. Main conclusions Vegetation composition, diversity and structure all showed significant correlations with the diversity and species composition of geometrid moth assemblages. Nevertheless, in most cases relationships were indirect, via environmental parameters such as temperature and humidity, which influenced both vegetation and moth fauna. Possible direct links between geometrid diversity and potential food plants were much weaker. The lack of a significant correlation between overall plant species richness and geometrid diversity indicates that tropical geometrid moths may not be very selective in their food plant choice. Accordingly, a clear correlation between floral diversity and herbivore species richness must be regarded as overly simplistic, and the diversity of vascular plants cannot universally be used as a suitable biodiversity indicator for diverse insect taxa at higher trophic levels.  相似文献   

20.
Gall-inducing insects seem to have a diversity pattern distinct from the usual latitudinal decrease in species, with more species occurring in xeric environments instead. Many questions regarding galler diversity over geographical scales remain unanswered: for example, little is known about beta diversity, and the role super host plants play in local/regional richness. Our aim was to compare galling insect and host plant diversity in different biogeographical regions, but under similar environmental conditions. We sampled short stature coastal woodlands on sandy soils of the Atlantic coast in both USA (Florida) and Brazil (Rio Grande do Sul, RS), between 25° and 30° latitude. Little-used 200-m long trails were searched during 90 min for galls; there were four trails in USA and five in Brazil. Gall functional traits (galled plant organ, gall shape and colour) proportions were not different between Florida and RS. Local galling and host plant species richness also did not differ, and neither did regional galling diversity. The beta diversity pattern, however, was distinct: sites in Florida have more similar galling faunas than sites in RS. Common diversity patterns indicate common environmental biotic (plant diversity, vegetation structure) and abiotic (climate, soil) factors might be contributing to these similar responses. As Brazilian sites are in the Atlantic forest hotspot, a high galling insect beta diversity might be caused by a higher heterogeneity at larger scales—sample-based rarefaction curves were ascending for Brazil, but not for USA. Myrtaceans were super hosts in Brazil, but not in Florida, where oaks take up this role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号