首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study characterized the effects of withdrawal from cocaine on the expression of NMDA receptor subunits (NR1, NR2B) and neuronal nitric oxide synthase. FosB induction was measured to confirm that repeated cocaine exposure influenced protein expression, as previously reported. Administration of cocaine followed by 24 h, 72 h, or 14 days of withdrawal resulted in alterations of NR1 and NR2B subunits and neuronal nitric oxide synthase expression as measured by immunohistochemical labeling of rat brain sections. Optical density analyses revealed significant up-regulation of NR1 in the ventral tegmental area at 72 h and 14 days of withdrawal. Structure-specific and withdrawal time-dependent alterations in NR2B expression were also found. After 24 h of withdrawal, cocaine-induced decreases in NR2B expression were observed in the nucleus accumbens shell, whereas increases in NR2B expression were found in medial cortical areas. Two weeks of withdrawal from cocaine caused an approximately 50% increase in NR2B subunit expression in regions of the cortex, neostriatum, and nucleus accumbens. In contrast, cocaine-induced up-regulation of neuronal nitric oxide synthase was transient and evident in cortical areas only at 24 h after the last drug injection. The results suggest that region-specific changes in interactions among proteins associated with the NMDA receptor complex may underlie neuronal adaptations following repeated cocaine administration.  相似文献   

2.
Increased glutamate transmission in the nucleus accumbens and ventral tegmental area has been proposed as a mechanism underlying sensitized behavioral responses to repeated cocaine administration. GluR1, GluR2/3, and NMDAR1 subunits of glutamate receptors were quantified from immunoblots in these brain nuclei in rats at 24 h and 3 weeks after discontinuing 1 week of daily cocaine injections. Motor behavior was monitored after the first and last injections of daily cocaine, and those rats that showed >20% increase in motor activity after the last compared with the first injection were considered to have developed behavioral sensitization. The subjects that developed behavioral sensitization showed a significant increase in GluR1 levels in the nucleus accumbens at 3 weeks but not at 24 h of withdrawal. Conversely, sensitized animals showed a significant increase in NMDAR1 and GluR1 levels in the ventral tegmental area at 1 day but not at 3 weeks of withdrawal. None of these increases occurred in the rats exposed to daily cocaine that did not develop behavioral sensitization (<20% increase in motor activity), and no changes were measured in the level of GluR2/3 in any treatment group. The functional importance of the increases in glutamate receptor subunit levels is suggested by the fact that the changes were present only in rats that developed behavioral sensitization to repeated cocaine administration.  相似文献   

3.
Addiction to psychostimulants elicits behavioral and biochemical changes that are assumed to be mediated by alterations of gene expression in the brain. The changes in gene expression after 3 weeks of withdrawal from chronic cocaine treatment were evaluated in the nucleus accumbens core and shell, dorsal prefrontal cortex and caudate using a complementary DNA (cDNA) array. The level of mRNA encoded by several genes was identified as being up- or down-regulated in repeated cocaine versus saline subjects. The results from the cDNA array were subsequently confirmed at the protein level with immunoblotting. Of particular interest, parallel up-regulation in protein and mRNA was found for the adenosine A1 receptor in the accumbens core, neuroglycan C in the accumbens shell, and the GluR5 glutamate receptor subtype in dorsal prefrontal cortex. However, there was an increase in TrkB protein in the nucleus accumbens core of cocaine-treated rats without a corresponding alteration in mRNA. These changes of gene expression in corticolimbic circuitry may contribute to the psychostimulant-induced behavioral changes associated with addiction.  相似文献   

4.
Homer proteins regulate sensitivity to cocaine   总被引:8,自引:0,他引:8  
Drug addiction involves complex interactions between pharmacology and learning in genetically susceptible individuals. Members of the Homer gene family are regulated by acute and chronic cocaine administration. Here, we report that deletion of Homer1 or Homer2 in mice caused the same increase in sensitivity to cocaine-induced locomotion, conditioned reward, and augmented extracellular glutamate in nucleus accumbens as that elicited by withdrawal from repeated cocaine administration. Moreover, adeno-associated virus-mediated restoration of Homer2 in the accumbens of Homer2 KO mice reversed the cocaine-sensitized phenotype. Further analysis of Homer2 KO mice revealed extensive additional behavioral and neurochemical similarities to cocaine-sensitized animals, including accelerated acquisition of cocaine self-administration and altered regulation of glutamate by metabotropic glutamate receptors and cystine/glutamate exchange. These data show that Homer deletion mimics the behavioral and neurochemical phenotype produced by repeated cocaine administration and implicate Homer in regulating addiction to cocaine.  相似文献   

5.
Beta-endorphin is an endogenous opioid peptide that has been hypothesized to be involved in the behavioral effects of drugs of abuse including psychostimulants. Using microdialysis, we studied the effect of cocaine on extracellular levels of beta-endorphin in the nucleus accumbens, a brain region involved in the reinforcing effects of psychostimulant drugs. Experimenter-delivered cocaine (2 mg/kg, i.v.) increased extracellular beta-endorphin immunoreactive levels in the nucleus accumbens, an effect attenuated by 6-hydroxy-dopamine lesions or systemic administration of the D1-like receptor antagonist, SCH-23390 (0.25 mg/kg, i.p.). The effect of cocaine on beta-endorphin release in the nucleus accumbens was mimicked by a local perfusion of dopamine (5 microm) and was blocked by coadministration of SCH-23390 (10 microm). Self-administered cocaine (1 mg/kg/infusion, i.v.) also increased extracellular beta-endorphin levels in the nucleus accumbens. In addition, using functional magnetic resonance imaging, we found that cocaine (1 mg/kg, i.v.) increases regional brain activity in the nucleus accumbens and arcuate nucleus. We demonstrate an increase in beta-endorphin release in the nucleus accumbens following experimenter-delivered and self-administered cocaine mediated by the local dopaminergic system. These findings suggest that activation of the beta-endorphin neurons within the arcuate nucleus-nucleus accumbens pathway may be important in the neurobiological mechanisms underlying the behavioral effects of cocaine.  相似文献   

6.
Goto Y  Grace AA 《Neuron》2005,47(2):255-266
The prefrontal cortex and the hippocampus exhibit converging projections to the nucleus accumbens and have functional reciprocal connections via indirect pathways. As a result, information processing between these structures is likely to be bidirectional. Using evoked potential measures, we examined the interactions of these inputs on synaptic plasticity within the accumbens. Our results show that the direction of information flow between the prefrontal cortex and limbic structures determines the synaptic plasticity that these inputs exhibit within the accumbens. Moreover, this synaptic plasticity at hippocampal and prefrontal inputs selectively involves dopamine D1 and D2 activation or inactivation, respectively. Repeated cocaine administration disrupted this synaptic plasticity at hippocampal and prefrontal cortical inputs and goal-directed behavior in the spatial maze task. Thus, interactions of limbic-prefrontal cortical synaptic plasticity and its dysfunction within the accumbens could underlie complex information processing deficits observed in individuals following psychostimulant administration.  相似文献   

7.
Recent studies suggest that calcium influx via L-type calcium channels is necessary for psychostimulant-induced behavioral sensitization. In addition, chronic amphetamine upregulates subtype Cav1.2-containing L-type calcium channels. In the present studies, we assessed the effect of calcium channel blockers (CCBs) on cocaine-induced behavioral sensitization and determined whether the functional activity of L-type calcium channels is altered after repeated cocaine administration. Rats were administered daily intraperitoneal injections of either flunarizine (40 mg/kg), diltiazem (40 mg/kg) or cocaine (20 mg/kg) and the combination of the CCBs and cocaine for 30 days. Motor activities were monitored on Day 1, and every 6th day during the 30-day treatment period. Daily cocaine administration produced increased locomotor activity. Maximal augmentation of behavioral response to repeated cocaine administration was observed on Day 18. Flunarizine pretreatment abolished the augmented behavioral response to repeated cocaine administration while diltiazem was less effective. Measurement of tissue monoamine levels on Day 18 revealed cocaine-induced increases in DA and 5-HT in the nucleus accumbens. By contrast to behavioral response, diltiazem was more effective in attenuating increases in monoamine levels than flunarizine. Cocaine administration for 18 days produced increases in calcium uptake in synaptosomes prepared from the nucleus accumbens and frontal cortex. Increases in calcium uptake were abolished by flunarizine and diltiazem pretreatment. Taken together, the augmented cocaine-induced behavioral response on Day 18 may be due to increased calcium uptake in the nucleus accumbens leading to increased dopamine (DA) and serotonin (5-HT) release. Flunarizine and diltiazem attenuated the behavioral response by decreasing calcium uptake and decreasing neurochemical release.  相似文献   

8.
Regulators of G protein signaling (RGS) modulate heterotrimeric G proteins in part by serving as GTPase-activating proteins for Galpha subunits. We examined a role for RGS9-2, an RGS subtype highly enriched in striatum, in modulating dopamine D2 receptor function. Viral-mediated overexpression of RGS9-2 in rat nucleus accumbens (ventral striatum) reduced locomotor responses to cocaine (an indirect dopamine agonist) and to D2 but not to D1 receptor agonists. Conversely, RGS9 knockout mice showed heightened locomotor and rewarding responses to cocaine and related psychostimulants. In vitro expression of RGS9-2 in Xenopus oocytes accelerated the off-kinetics of D2 receptor-induced GIRK currents, consistent with the in vivo data. Finally, chronic cocaine exposure increased RGS9-2 levels in nucleus accumbens. Together, these data demonstrate a functional interaction between RGS9-2 and D2 receptor signaling and the behavioral actions of psychostimulants and suggest that psychostimulant induction of RGS9-2 represents a compensatory adaptation that diminishes drug responsiveness.  相似文献   

9.
10.
11.
Adenosine A1 receptor (A1) protein and mRNA is increased in the nucleus accumbens following repeated cocaine treatment. In spite of this protein up-regulation, A1 agonist-stimulated [35S]GTPgammaS binding was attenuated in accumbens homogenates of rats withdrawn for 3 weeks from 1 week of daily cocaine injections. Cellular subfractionation revealed that the discrepancy between total A1 protein and G protein coupling resulted from a smaller proportion of receptors in the plasma membrane. The decrease in functional receptor in the plasma membrane was further indicated by diminished formation of heteromeric receptor complex consisting of A1 and dopamine D1A receptors. To explore the functional significance of the altered distribution of A1 receptors, at 3 weeks after discontinuing repeated cocaine or saline, animals were injected with cocaine and 45 min later the subcellular distribution of A1 receptors quantified. Whereas a cocaine challenge in repeated saline-treated animals induced a marked increase in membrane localization of the A1 receptor, the relative distribution of receptors in repeated cocaine rats was not affected by acute cocaine. These data suggest that the sorting and recycling of A1 receptors is dysregulated in the nucleus accumbens as the consequence of repeated cocaine administration.  相似文献   

12.
AMPA receptor (AMPAR) plasticity at glutamatergic synapses in the mesostriatal dopaminergic pathway has been implicated in persistent cocaine-induced behavioral responses; however, the precise mechanism underlying these changes remains unknown. Utilizing cocaine psychomotor sensitization in mice we find that repeated cocaine results in a basal reduction of Ser 845 GluA1 and cell surface GluA1 levels in the dorsal striatum (dStr) following a protracted withdrawal period, an adaptation that is dependent on Cav1.3 channels but not those expressed in the VTA. We find that the basally-induced decrease in this phosphoprotein is the result of recruitment of the striatal dopamine D2 pathway, as evidenced by enhanced levels of D2 receptor (D2R) mRNA expression and D2R function as examined using the D2R antagonist, eticlopride, as well as alterations in the phosphorylation status of several downstream molecular targets of D2R’s, including CREB, DARPP-32, Akt and GSK3β. Taken together with our recently published findings examining similar phenomena in the nucleus accumbens (NAc), these results underscore the utilization of divergent molecular mechanisms in the dStr, in mediating cocaine-induced persistent behavioral changes.  相似文献   

13.
AMPA receptor (AMPAR) plasticity at glutamatergic synapses in the mesostriatal dopaminergic pathway has been implicated in persistent cocaine-induced behavioral responses; however, the precise mechanism underlying these changes remains unknown. Utilizing cocaine psychomotor sensitization in mice we find that repeated cocaine results in a basal reduction of Ser 845 GluA1 and cell surface GluA1 levels in the dorsal striatum (dStr) following a protracted withdrawal period, an adaptation that is dependent on Cav1.3 channels but not those expressed in the VTA. We find that the basally-induced decrease in this phosphoprotein is the result of recruitment of the striatal dopamine D2 pathway, as evidenced by enhanced levels of D2 receptor (D2R) mRNA expression and D2R function as examined using the D2R antagonist, eticlopride, as well as alterations in the phosphorylation status of several downstream molecular targets of D2R’s, including CREB, DARPP-32, Akt and GSK3β. Taken together with our recently published findings examining similar phenomena in the nucleus accumbens (NAc), these results underscore the utilization of divergent molecular mechanisms in the dStr, in mediating cocaine-induced persistent behavioral changes.  相似文献   

14.
Repeated exposure to cocaine progressively increases drug-induced locomotor activity, which is termed behavioral sensitization. Previous studies have demonstrated that sensitization to cocaine is associated with a decrease in dopamine D? receptor function in the medial prefrontal cortex. The present report tested the hypothesis that reduced medial prefrontal cortex D? receptor function as a result of repeated cocaine exposure results in augmented excitatory transmission to the nucleus accumbens and ventral tegmental area, possibly as a partial result of enhanced inhibition of local dopamine release. Dual probe microdialysis experiments were conducted in male Sprague-Dawley rats 1, 7 or 30 days following the last of four daily injections of saline (1.0 mL/kg) or cocaine (15 mg/kg). Infusion of quinpirole (0.01, 1.0 and 100 μM), a D?-like receptor agonist, into the medial prefrontal cortex produced a dose-dependent decrease in cortical, nucleus accumbens and ventral tegmental area extracellular glutamate levels in control but not sensitized animals. Quinpirole also reduced basal dopamine levels in the medial prefrontal cortex in sensitized animals following 1 day of withdrawal from cocaine. Following 30 days of withdrawal, quinpirole also reduced dopamine levels in sensitized animals relative to saline controls, but not relative to baseline levels. These findings indicate that the expression of sensitization to cocaine is associated with altered modulation of mesocorticolimbic glutamatergic transmission at the level of the medial prefrontal cortex.  相似文献   

15.
16.
CART peptides are modulators of mesolimbic dopamine and psychostimulants   总被引:1,自引:0,他引:1  
CART peptide produces behavioral effects when injected into the VTA or nucleus accumbens. In the VTA, the peptide behaves like an endogenous psychostimulant and produces increased locomotor activity and conditioned place preference. Since this is blocked by dopamine receptor blockers, it presumably involves release of dopamine. But in the nucleus accumbens, CART peptide reduces the locomotor-increasing effects of cocaine. This suggests that the peptide is an interesting target for medications development.  相似文献   

17.
The dopamine D1 receptor plays a major role in mediating behavioral responses to cocaine administration. The time course for the acquisition and the relative stability for the expression of behavioral responses suggest the involvement of enduring neuroadaptations in response to repeated cocaine exposure. Changes in gene expression through the D1 receptors may accompany and mediate the development of such neuroadaptations to repeated cocaine stimulation. To test this possibility, we systematically compared the expression of the fos and Jun family immediate early genes in the nucleus accumbens and caudoputamen in D1 receptor mutant and wild-type control mice after acute and repeated cocaine exposure. Moreover, we compared the expression of three molecules that have been implicated in mediating the actions of cocaine, Galphaolf, beta-catenin and brain-derived neurotrophic factor, in the two groups of mice before and after cocaine administration. We found that there is a lack of induction of c-Fos, FosB, Fra-2 and JunB by acute cocaine exposure, and of DeltaFosB by repeated cocaine administration in both the NAc and CPu of D1 receptor mutant mice compared with wild-type control mice. Moreover, the D1 receptor is differentially required for mediating Galphaolf, beta-catenin and BDNF expression in the NAc and CPu upon cocaine exposure. These results suggest that the D1 receptor is a critical mediator for cocaine-induced expression of these genes.  相似文献   

18.
Chronic cocaine administration reduces G protein signaling efficacy. Here, we report that the expression of AGS3, which binds to GialphaGDP and inhibits GDP dissociation, was upregulated in the prefrontal cortex (PFC) during late withdrawal from repeated cocaine administration. Increased AGS3 was mimicked in the PFC of drug-naive rats by microinjecting a peptide containing the Gialpha binding domain (GPR) of AGS3 fused to the cell permeability domain of HIV-Tat. Infusion of Tat-GPR mimicked the phenotype of chronic cocaine-treated rats by manifesting sensitized locomotor behavior and drug seeking and by increasing glutamate transmission in nucleus accumbens. By preventing cocaine withdrawal-induced AGS3 expression with antisense oligonucleotides, signaling through Gialpha was normalized, and both cocaine-induced relapse to drug seeking and locomotor sensitization were prevented. When antisense oligonucleotide infusion was discontinued, drug seeking and sensitization were restored. It is proposed that AGS3 gates the expression of cocaine-induced plasticity by regulating G protein signaling in the PFC.  相似文献   

19.
Abstract : The expression of glutamate receptor/subunit mRNAs was examined 3 weeks after discontinuing 1 week of daily injections of saline or cocaine. The level of mRNA for GluR1-4, NMDAR1, and mGluR5 receptors was measured with in situ hybridization and RT-PCR. In nucleus accumbens, acute cocaine treatment significantly reduced the mRNA level for GluR3, GluR4, and NMDAR1 subunits, whereas repeated cocaine reduced the level for GluR3 mRNA. Acute cocaine treatment also reduced the NMDAR1 mRNA level in dorsolateral striatum and ventral tegmental area. In prefrontal cortex, repeated cocaine treatment significantly increased the level of GluR2 mRNA. The GluR2 mRNA level was not changed by acute or repeated cocaine in any other brain regions examined. Repeated cocaine treatment also significantly increased mGluR5 mRNA levels in nucleus accumbens shell and dorsolateral striatum. Functional properties of the ionotropic glutamate receptors are determined by subunit composition. In addition, metabotropic glutamate receptors can modulate synaptic transmission and the response to stimulation of ionotropic receptors. Thus, the observed changes in levels of AMPA and NMDA receptor subunits and the mGluR5 metabotropic receptor may alter excitatory neurotransmission in the mesocorticolimbic dopamine system, which could play a significant role in the enduring biochemical and behavioral effects of cocaine.  相似文献   

20.
Borgland SL  Taha SA  Sarti F  Fields HL  Bonci A 《Neuron》2006,49(4):589-601
Dopamine neurons in the ventral tegmental area (VTA) represent a critical site of synaptic plasticity induced by addictive drugs. Orexin/hypocretin-containing neurons in the lateral hypothalamus project to the VTA, and behavioral studies have suggested that orexin neurons play an important role in motivation, feeding, and adaptive behaviors. However, the role of orexin signaling in neural plasticity is poorly understood. The present study shows that in vitro application of orexin A induces potentiation of N-methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission via a PLC/PKC-dependent insertion of NMDARs in VTA dopamine neuron synapses. Furthermore, in vivo administration of an orexin 1 receptor antagonist blocks locomotor sensitization to cocaine and occludes cocaine-induced potentiation of excitatory currents in VTA dopamine neurons. These results provide in vitro and in vivo evidence for a critical role of orexin signaling in the VTA in neural plasticity relevant to addiction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号