首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Interesting and very promising antisense properties of 2'-deoxy-2'-fluoroarabinonucleic acids ((a) Wilds, C.J.; Damha, M.J. 2'-Deoxy-2'-fluoroarabinonucleosides and oligonucleotides (2'F-ANA): synthesis and physicochemical studies. Nucl. Acids Res. 2000, 28, 3625-3635; (b) Viazovkina, E.; Mangos, M.; Elzagheid, M.I.; Damha, M.J. Current Protocols in Nucleic Acid Chemistry 2002, 4.15.1-4.15.21) (2'F-ANA) has encouraged our research group to optimize the synthetic procedures for 2'-deoxy-2'-fluoro-beta-D-arabinonucleosides (araF-N). The synthesis of araF-U, araF-T, araF-A and araF-C is straightforward, (Tann, C.H.; Brodfuehrer, P.R.; Brundidge, S.P.; Sapino, C., Jr. Howell H.G. Fluorocarbohydrates in synthesis. An efficient synthesis of 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodouracil (beta-FIAU) and 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)thymine (beta-FMAU). J. Org. Chem. 1985, 50, 3644-3647; Howell, H.G.; Brodfuehrer, P.R.; Brundidge, S.P.; Benigni, D.A.; Sapino, C., Jr. Antiviral nucleosides. A stereospecific, total synthesis of 2'-fluoro-2'-deoxy-beta-D-arabinofuranosyl nucleosides. J. Org. Chem. 1988, 53, 85-88; Maruyama, T.; Takamatsu, S.; Kozai, S.; Satoh, Y.; Izana, K. Synthesis of 9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)adenine bearing a selectively removable protecting group. Chem. Pharm. Bull. 1999, 47, 966-970) however, the synthesis of the guanine analogue is more complicated and affords poor to moderate yields of araF-G (4) ((a) Elzagheid, M.I.; Viazovkina, E.; Masad, M.J. Synthesis of protected 2'-deoxy-2'-fluoro-beta-D-arabinonucleosides. Synthesis of 2'-fluoroarabino nucleoside phosphoramidites and their use in the synthesis of 2'F-ANA. Current Protocols in Nucleic Acid Chemistry 2002, 1.7.1-1.7.19; (b) Tennila, T.; Azhayeva, E.; Vepsalainen, J.; Laatikainen, R.; Azhayev, A.; Mikhailopulo, I. Oligonucleotides containing 9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-adenine and -guanine: synthesis, hybridization and antisense properties. Nucleosides, Nucleotides and Nucl. Acids 2000, 19, 1861-1884). Here we describe an efficient synthesis of araF-G (4) that involves coupling of 2-deoxy-2-fluoro-3,5-di-O-benzoyl-alpha-D-arabinofuranosyl bromide (1) with 2-chlorohypoxanthine (2) to afford 2-chloro-beta-araF-I (3) in 52% yield. Nucleoside (3) was transformed into araF-G (4) by treatment with methanolic ammonia (150 degrees C, 6 h) in 67% yield.  相似文献   

2.
Vocadlo DJ  Mayer C  He S  Withers SG 《Biochemistry》2000,39(1):117-126
The novel mechanism-based reagent 2-acetamido-2-deoxy-5-fluoro-alpha-L-idopyranosykl fluoride has been synthesized, and the kinetic parameters K(M) = 0.23 mM and K(CAT)= 0.55 min(-1) for its hydrolysis by vibrio furnisi beta-N-acetylglucosaminidase (ExoII) HAVE been determined. Investigation of mixtures of enzyme with this slow substrate by electrospray mass spectrometry revealed a high steady-state population of the 2-acetamido-2-deoxy-5-fluoro-beta-L-idopyranosyl-enzyme, indicating that the hydrolytic mechanism of ExoII involves the formation and rate-determining hydrolysis of a glycosyl-enzyme intermediate. Analysis of a peptic digest of the glycosyl-enzyme by HPLC/ESMS/MS in the netural-loss mode permitted identification of a peptide bearing the 5-fluoro-sugar moiety. Tandem MS sequencing of the labeled peptide, in conjuction with multiple sequence alignmentsS of family 3 members, allowed the identification of ASP242 as the catalytic nucleophile within the sequence IVFSDDLSM.  相似文献   

3.
Two different oligosaccharides were obtained from the Smith degradation of the O-polysaccharide isolated from the lipopolysaccharide of Salmonella Dakar. The structures of these oligosaccharides were investigated by chemical analysis, NMR spectroscopy and MALDI-TOF mass spectrometry. The following structures of these products were determined: alpha-D-GalpNAc-(1-->4)-alpha-D-Quip3NAc-(1-->3)-alpha-L-Rhap-(1-->2)-threitol and [FORMULA: SEE TEXT] where Quip3NAc is 3-acetamido-3,6-dideoxyglucose. The reaction products confirmed the structure of the repeating unit of the Salmonella Dakar O-polysaccharide reported previously [Kumirska, J.; Szafranek, J.; Czerwicka, M.; Paszkiewicz, M.; Dziadziuszko, H.; Kunikowska, D.; Stepnowski, P. Carbohydr. Res. 2007,342, 2138-2143].  相似文献   

4.
The multigram syntheses of beta-D-glucopyranosyluronic acid-(1-->3)-2-acetamido-2-deoxy-4- and 6-O-sulfo-D-galactopyranose disodium salt, the disaccharide repeating units of chondroitin 4- and 6-sulfates, are described. The disaccharide benzyl methyl 2,3,4-tri-O-benzoyl-beta-D-glucopyranosyluronate- (1-->3)-2-acetamido-2-deoxy-alpha-D-galactopyranoside was used as a common intermediate. Selective benzoylation at O-6 followed by O-sulfonation at C-4 of the aminosugar moiety, saponification and catalytic hydrogenation afforded the 4-O-sulfo derivative, whereas selective O-sulfonation at C-6 followed by similar deprotection steps provided the 6-O-sulfo derivative in high yield.  相似文献   

5.
Abstract

Interesting and very promising antisense properties of 2′-deoxy-2′-fluoroarabinonucleic acids ((a) Wilds, C.J.; Damha, M.J. 2′-Deoxy-2′-fluoroarabinonucleosides and oligonucleotides (2′F-ANA): synthesis and physicochemical studies. Nucl. Acids Res. 2000, 28, 3625–3635; (b) Viazovkina, E.; Mangos, M.; Elzagheid, M.I.; Damha, M.J. Current Protocols in Nucleic Acid Chemistry 2002, 4.15.1–4.15.21) (2′F-ANA) has encouraged our research group to optimize the synthetic procedures for 2′-deoxy-2′-fluoro-β-D-arabinonucleosides (araF-N). The synthesis of araF-U, araF-T, araF-A and araF-C is straightforward, (Tann, C.H.; Brodfuehrer, P.R.; Brundidge, S.P.; Sapino, C., Jr. Howell H.G. Fluorocarbohydrates in synthesis. An efficient synthesis of 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-iodouracil (β-FIAU) and 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)thymine (β-FMAU). J. Org. Chem. 1985, 50, 3644–3647; Howell, H.G.; Brodfuehrer, P.R.; Brundidge, S.P.; Benigni, D.A.; Sapino, C., Jr. Antiviral nucleosides. A stereospecific, total synthesis of 2′-fluoro-2′-deoxy-β-D-arabinofuranosyl nucleosides. J. Org. Chem. 1988, 53, 85–88; Maruyama, T.; Takamatsu, S.; Kozai, S.; Satoh, Y.; Izana, K. Synthesis of 9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)adenine bearing a selectively removable protecting group. Chem. Pharm. Bull. 1999, 47, 966–970) however, the synthesis of the guanine analogue is more complicated and affords poor to moderate yields of araF-G (4) ((a) Elzagheid, M.I.; Viazovkina, E.; Masad, M.J. Synthesis of protected 2′-deoxy-2′-fluoro-β-D-arabinonucleosides. Synthesis of 2′-fluoroarabino nucleoside phosphoramidites and their use in the synthesis of 2′F-ANA. Current Protocols in Nucleic Acid Chemistry 2002, 1.7.1–1.7.19; (b) Tennila, T.; Azhayeva, E.; Vepsalainen, J.; Laatikainen, R.; Azhayev, A.; Mikhailopulo, I. Oligonucleotides containing 9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-adenine and -guanine: synthesis, hybridization and antisense properties. Nucleosides, Nucleotides and Nucl. Acids 2000, 19, 1861–1884). Here we describe an efficient synthesis of araF-G (4) that involves coupling of 2-deoxy-2-fluoro-3,5-di-O-benzoyl-α-D- arabinofuranosyl bromide (1) with 2-chlorohypoxanthine (2) to afford 2-chloro-β-araF-I (3) in 52% yield. Nucleoside (3) was transformed into araF-G (4) by treatment with methanolic ammonia (150°C, 6 h) in 67% yield.  相似文献   

6.
Kinetic measurements suggest that neighbouring acetamido-group participation occurs in the spontaneous hydrolysis and methanolysis of o-carboxyphenyl 2-acetamido-2-deoxy-β-D-glucopyranoside and in the spontaneous hydrolysis of 2,4-dinitrophenyl 2-acetamido-2-deoxy-β-D-glucopyranoside and 2-acetamido-2-deoxy-β-D-glucopyranosyl fluoride. The methanolyses of these compounds proceed with predominant retention of configuration which is also consistent with neighbouring acetamido-group participation. The oxazoline intermediate which would arise from such a process was detected during methanolysis of 2-acetamido-2-deoxy-β-D-glucopyranosyl fluoride in the presence of bases by n.m.r., i.r., and u.v. spectroscopy. Attempts to isolate the oxazoline were unsuccessful.  相似文献   

7.
Starting from D-mannose, D-glucose and L-fucose, the pentasaccharide derivative methyl 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl-(1-->3)-2-O-acetyl-4,6-O-benzylidene-alpha-D-mannopyranosyl-(1-->3)-2-O-acetyl-6-O-benzyl-4-O-(2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl)-alpha-D-mannopyranosyl-(1-->4)-[2-(trimethylsilyl)ethyl 2,3-di-O-benzyl-beta-D-glucopyranosid]uronate was synthesized. This compound with two alpha-mannopyranosyl units was transformed, via Walden inversion and subsequent deprotection, into the alpha-D-glucosamine-type target compound, namely methyl alpha-L-fucopyranosyl-(1-->3)-2-acetamido-2-deoxy-alpha-D-glucopyranosyl-(1-->3)-2-acetamido-2-deoxy-4-O-(alpha-L-fucopyranosyl)-alpha-D-glucopyranosyl-(1-->4)-[2-(trimethylsilyl)ethyl beta-D-glucopyranosid]uronate which is related to the repeating unit of the O-antigen from Shigella dysenteriae type 4.  相似文献   

8.
Book reviewed in this article:
reviews type of article–
M ason , J. L. (ed.): Evolution of domesticated animals . London, New York: Longman 1984.
G riffiths , G. C. D. (ed.): Flies of the Nearctic Region . Vol. VIII: Cyclorrhapha II (Schizophora: Calyptratae), Part 2 Anthomyiidae, Number 1 by G. C. D. G riffiths . Stuttgart: E. Schweitzerbart'sche Verlagsbuchhandlung 1982.
S impson , G. G.: Penguins . Past and Present, Here and There. New Haven and London: Yale University Press 1983.
G ans , E.; P ouch , F. H. (eds.): Biology of the Reptilia . Vol. 12. New York – London: Academic Press 1982. 564 S. DM 353,–. G ans , E. (ed.):
M atsuno , K.; D ose , K.; H arada , K.; R ohlfing , D. L. (eds.): Molecular Evolution and Protobiology . New York, London
F elsenstein , J. (ed.): Numerical Taxonomy . Nato AS1 Series. Series G Ecological Sciencesxs
S meets , W. J. A. J.; N ieuwenhuys , R.; R oberts , B. L.: The Central Nervous System of Cartilaginous Fishes . Structure and Functional Correlations. Berlin, Heidelberg, New York: Springer 1983
H echt , M. K.; W allace , B.; P range , G. T. (eds.): Evolutionary Biology . Vol. 18. New York and London  相似文献   

9.
The O-specific polysaccharide of P. fluorescens IMV 2366 was studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including 2D gsCOSY, TOCSY, gsNOESY, H-detected 1H,(13)C gsHSQC, HMQC-TOCSY, and gsHMBC experiments. The polysaccharide contains L-rhamnose, 2-acetamido-2,6-dideoxy-D-galactose (D-FucNAc) and 3-acylamido-3,6-dideoxy-D-glucose (D-Qui3NAcyl, where Acyl is 3-hydroxy-2,3-dimethyl-5-oxoprolyl). The structure 1 of the polysaccharide was found to be similar to the structure 2 of a 6-deoxy-L-talose (L-6dTal)-containing O-specific polysaccharide of a non-classified P. fluorescens strain, 361, studied earlier [Khomenko, V. A.; Naberezhnykh, G. A.; Isakov, V. V.; Solov'eva, T. F.; Ovodov, Y. S.; Knirel, Y. A.; Vinogradov, E. V. Bioorg. Khim. 1986, 12, 1641-1648; Naberezhnykh, G. A.; Khomenko, V. A.; Isakov, V. V., El'kin, Y. N.; Solov'eva, T. F.; Ovodov, Y. S. Bioorg. Khim. 1987, 13, 1428-1429]. --> 2)-beta-D-Quip3NAcyl-(1 --> 3)-alpha-L-Rhap-(1 --> 3)-alpha-D-FucpNAc-(1 --> 1. --> 4)-beta-D-Quip3NAcyl-(1 --> 3)-alpha-L-6dTalp4Ac-(1 --> 3)-alpha-D-FucpNAc-(1 -->2.  相似文献   

10.
Lee YJ  Fulse DB  Kim KS 《Carbohydrate research》2008,343(10-11):1574-1584
The synthesis of dibenzyl 6-O-naphthylmethyl-2,3,5-tri-O-benzoyl-beta-D-galactofuranosyl-(1-->5)-2,3-di-O-benzoyl-6-O-benzyl-beta-D-galactofuranosyl-(1-->4)-3-O-benzyl-2-O-pivaloyl-alpha-l-rhamnopyranosyl-(1-->3)-2-acetamido-2-deoxy-4,6-di-O-benzoyl-alpha-D-glucopyranosyl phosphate (1), a protected form of the tetrasaccharide phosphate of the linkage region of the arabinogalactan-peptidoglycan complex in the mycobacterial cell wall, has been accomplished. Key steps include the coupling of four monosaccharide building blocks with complete stereoselectivity by glycosylations employing thioglycosides, 2'-carboxybenzyl glycosides, and glycosyl fluorides as glycosyl donors. The alpha-glycosyl phosphate linkage was also stereoselectively elaborated by reaction of a tetrasaccharide hemiacetal with tetrabenzyl pyrophosphate in the presence of a base.  相似文献   

11.
The condensation of 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl bromide and 2,3,4,6-tetra-O-benzyl-D-mannopyranosyl chloride with benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside (1), under Koenigs-Knorr conditions, gave the fully benzylated derivatives of benzyl 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranoside, benzyl 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranoside, and benzyl 2-acetamido-2-deoxy-4-O-α-D-mannopyranosyl-α-D-glucopyranoside. Three further compounds, namely, benzyl 2-acetamido-3-O-benzyl-2-deoxy-6-O-(2,3,4,6-tetra-O-benzyl-D-glucopyranosyl)-α-D-glucopyranoside, benzyl 2-acetamido-3-O-benzyl-2-deoxy-6-O-(2,3,4,6-tetra-O-benzyl-D)-mannopyranosyl)-α-D-glucopyranoside, and benzyl 2-acetamido-3-O-benzyl-2-deoxy-4,6-di-O-(2,3,4,6-tetra-O-benzyl-D-mannopyranosyl)-α-D-glucopyranoside, were formed by reaction of the respective glycosyl halide with benzyl 2-acetamido-3-O-benzyl-2-deoxy-α-D-glucopyranoside present as contaminant in 1.  相似文献   

12.
2-Amino-2,4-dideoxy-4-fluoro- and 2-amino-2,4,6-trideoxy-4, 6-difluoro-D-galactose, and 2-amino-2,4-dideoxy-4-fluoro- and 2-amino-4-deoxy-4, 4-difluoro-D-xylo-hexose were synthesized, as potential modifiers of tumor cell-surface glyco-conjugate, from benzyl 2-acetamido-3-O-benzyl-2-deoxy-4, 6-di-O-mesyl-alpha-D-glucopyranoside and benzyl 2-acetamido-3, 6-di-O-benzyl-2-deoxy-4-O-mesyl-alpha-D-glucopyranoside, which were converted into the corresponding 4,6-difluoro-2,4, 6-trideoxy and 2,4-dideoxy-4-fluoro derivatives. Benzyl 2-acetamido-2-deoxy-4-O-mesyl-alpha-D-galactopyranoside and benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-alpha-D-xylo-hexo-4-ulopyra noside were treated with diethylaminosulfur trifluoride to give 2-amino-2,4-dideoxy-4-fluoro-D-glucose and 2-amino-2,4-dideoxy-4, 4-di-fluoro-D-xylo-hexose derivatives, respectively, to give after deprotection the target compounds. Several of the peracetylated sugar derivatives inhibited L1210 tumor-cell growth in vitro at concentrations of 1-5 10(-5) M. The peracetylated derivative of 2-amino-2,4-dideoxy-4-fluoro-D-galactose inhibited protein and glycoconjugate biosynthesis, and also exhibited antitumor activity in mice with L1210 leukemia.  相似文献   

13.
An efficient method for the synthesis of 5'-O-monomethoxytrityl-2',3'-dideoxy-2'-fluoro-3'-thioarabinothymidine [(5'MMT)araF-T(3'SH), (5)] and its 3'-phosphoramidite derivative (6) suitable for automated incorporation into oligonucleotides, is demonstrated. A key step in the synthesis involves reaction of 5'-O-MMT-2,3'-O-anhydrothymidine (4) (Eleuteri, A.; Reese, C.B.; Song, Q. J. Chem. Soc. Perkin Trans. 1 1996, 2237 pp.) with sodium thioacetate to give (5'-MMT)araF-T(3'SAc) (5) (Elzagheid, M.I.; Mattila, K.; Oivanen, M.; Jones, B.C.N.M.; Cosstick, L?nnberg, H. Eur. J. Org. Chem. 2000, 1987-1991). This nucleoside was then converted to its corresponding phosphoramidite derivative, 6, as described previously ((a) Sun, S.; Yoshida, A.; Piccirilli, J.A. RNA, 1997, 3, 1352-1363; (b) Matulic-Adamic, J.; Beigelman, L. Helvetica Chemica Acta 1999, 82, 2141-2150: (c) Fettes, K.J.; O'Neil, I.; Roberts, S.M.; Cosstick, R. Nucleosides, Nucleotides and Nucl. Acids 2001, 20, 1351-1354).  相似文献   

14.
The structure of the lipopolysaccharide (LPS) from non-typeable Haemophilus influenzae strain 176 has been investigated. Electrospray ionization-mass spectrometry (ESIMS) on O-deacylated LPS (LPS-OH) and core oligosaccharide (OS) samples obtained after mild-acid hydrolysis of LPS provided information on the composition and relative abundance of the glycoforms. ESIMS tandem-mass spectrometry on LPS-OH confirmed the presence of minor sialylated and disialylated glycoforms. Oligosaccharide samples were studied in detail using high-field NMR techniques. It was found that the LPS contains the common inner-core element of H. influenzae, L-alpha-D-Hepp-(1-->2)-[PEtn-->6]-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-L-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdop-(2-->6)-Lipid A having glycosyl substitution at the O-3 position of the terminal heptose as recently observed for non-typeable H. influenzae strain 486 [M?nsson, M.; Bauer, S. H. J.; Hood, D. W.; Richards, J. C.; Moxon, E. R.; Schweda, E. K. H., Eur. J. Biochem. 2001, 268, 2148--2159]. The following LPS structures were identified as the major glycoforms, the most significant being indicated with an asterisk (*) (glycoforms are partly substituted with Gly at the terminal Hep):  相似文献   

15.
Reaction of benzyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-mesyl-alpha-D-galactopyran oside with cesium floride gave benzyl 2-acetamido-3,6-anhydro-4-O-benzyl-2-deoxy-alpha-D-galactopyranoside instead of the desired 6-fluoro derivative. Acetonation of benzyl 2-acetamido-2-deoxy-6-O-mesyl-alpha-D-galactopyranoside gave the corresponding 3,4-O-isopropylidene derivative. The 6-O-mesyl group was displaced by fluorine with cesium fluoride in boiling 1,2-ethanediol, and hydrolysis and subsequent N-acetylation gave the target compound. In another procedure, treatment of 2-acetamido-1,3,4-tri-O-acetyl-2-deoxy-alpha-D-galactose with N-(diethylamino)sulfur trifluoride gave 2-acetamido-1,3,4-tri-O-acetyl-2,6-dideoxy-6-fluoro-D-galactose which, on acid hydrolysis followed by N-acetylation, gave 2-acetamido-2,6-dideoxy-6-fluoro-D-galactose.  相似文献   

16.
The regioselectivity of 20 extracellular β-N-acetylhexosaminidases of fungal origin was screened in the reverse hydrolysis with 2-acetamido-2-deoxy- -glucopyranose. Most of the enzymes used yielded 2-acetamido-2-deoxy-β- -glucopyranosyl-(1→4)-2-acetamido-2-deoxy- -glucopyranose (3) and 2-acetamido-2-deoxy-β- -glucopyranosyl-(1→6)-2-acetamido-2-deoxy- -glucopyranose (4). So far unknown product of enzymatic condensation, 2-acetamido-2-deoxy-β- -glucopyranosyl-(1→3)-2-acetamido-2-deoxy- -glucopyranose (2) was synthesised using the β-N-acetylhexosaminidases from Penicillium funiculosum CCF 1994, P. funiculosum CCF 2325 and Aspergillus tamarii CCF 1665. Addition of salts ((NH4)2SO4 or MgSO4 (0.1–1.0 M)) to the reaction increased the yields and also enhanced the β-N-acetylhexosaminidase regioselectivity.  相似文献   

17.
2-Acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl phosphate, pure according to thin-layer and gas—liquid chromatography, optical rotation, and treatment with alkaline phosphatase and 2-acetamido-2-deoxy-β-d-glucosidase, was prepared by treatment of 2-methyl-[4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-1,2-dideoxy-α-d-glucopyrano]-[2,1-d]-2-oxazoline with dibenzyl phosphate, followed by the removal of the benzyl groups by catalytic hydrogenolysis, and O-deacetylation. In contrast, a sample prepared by the phosphoric acid procedure was shown to consist mainly of the β anomer. 2-Acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-α-d-glucopyranosyl phosphate was treated wit P1-diphenyl P2-dolichyl pyrophosphate to give a fully acetylated pyrophosphoric diester, which was O-deacetylated to give P1-2-acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl P2-dolichyl pyrophosphate. This compound could be separated from the β anomer by t.l.c., and its behavior under dilute acid and alkaline conditions was investigated.  相似文献   

18.
We find that Rad50S mutations in yeast and mammals exhibit constitutive PIKK (PI3-kinase like kinase)-dependent signaling [T. Usui, H. Ogawa, J.H. Petrini, A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7 (2001) 1255-1266.; M. Morales, J.W. Theunissen, C.F. Kim, R. Kitagawa, M.B. Kastan, J.H. Petrini, The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev. 19 (2005) 3043-4354.]. The signaling depends on Mre11 complex functions, consistent with its role as a DNA damage sensor. Rad50S is distinct from hypomorphic mutations of Mre11 and Nbs1 in mammals [M. Morales, J.W. Theunissen, C.F. Kim, R. Kitagawa, M.B. Kastan, J.H. Petrini, The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev. 19 (2005) 3043-3054.; J.P. Carney, R.S. Maser, H. Olivares, E.M. Davis, Le M. Beau, J.R. Yates, III, L. Hays, W.F. Morgan, J.H. Petrini, The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93 (1998) 477-486.; G.S. Stewart, R.S. Maser, T. Stankovic, D.A. Bressan, M.I. Kaplan, N.G. Jaspers, A. Raams, P.J. Byrd, J.H. Petrini, A.M. Taylor, The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99 (1999) 577-587.; B.R. Williams, O.K. Mirzoeva, W.F. Morgan, J. Lin, W. Dunnick, J.H. Petrini, A murine model of nijmegen breakage syndrome. Curr. Biol. 12 (2002) 648-653.; J.W. Theunissen, M.I. Kaplan, P.A. Hunt, B.R. Williams, D.O. Ferguson, F.W. Alt, J.H. Petrini, Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol. Cell 12 (2003) 1511-1523.] and the Mre11 complex deficiency in yeast [T. Usui, H. Ogawa, J.H. Petrini, A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7 (2001) 1255-1266.; D'D. Amours, S.P. Jackson, The yeast Xrs2 complex functions in S phase checkpoint regulation. Genes Dev. 15 (2001) 2238-49. ; M. Grenon, C. Gilbert, N.F. Lowndes, Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat. Cell Biol. 3 (2001) 844-847. ] where the signaling is compromised. Herein, we describe evidence for chronic signaling by Rad50S and discuss possible mechanisms.  相似文献   

19.
The structure of the pneumococcal common antigen, C-polysaccharide, from a noncapsulated pneumococcal strain, CSR SCS2, was studied using 1H-NMR, 13C-NMR and 31P-NMR spectroscopy. The dependence of NMR chemical shifts on the variation in pD was also studied. It was established that the C-polysaccharide is composed of a backbone of tetrasaccharide-ribitol repeating units that are linked to each other by a phosphodiester linkage between position 5 of a D-ribitol residue and position 6 of a beta-D-glucopyranosyl residue. The polysaccharide is substituted with one residue of phosphocholine at position 6 of the 4-substituted 2-acetamido-2-deoxy-alpha-D-galactopyranosyl residue. Both galactosamine residues in the polysaccharide are N-acetylated. O)-P-Cho | 6 6)-beta-D-Glcp-(1-->3)-alpha-AATp-(1-->4)-alpha-D-GalpNAc-(1-->3)- bet a-D-GalpNAc-(1-->1)-D-ribitol-5-P-(O--> where AAT is 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose and Cho is choline. This structure differs, concerning phosphocholine substituents and N-acetylation, from those reported previously for pneumococcal C-polysaccharide [Jennings, H.J., Lugowski, C. & Young, N.M. (1980) Biochemistry 19, 4712-4719; Fischer, W., Behr, T., Hartmann, R., Peter-Katalinic, J. & Egge, H. (1993) Eur. J. Biochem. 215, 851-857; Kulakowska, M., Brisson, J.-R., Griffith, D.W., Young, N.M. & Jennings, H.J. (1993) Can. J. Chem. 71, 644-648]. The structures of the C-polysaccharides present in three pneumococcal types were also examined. They contain one (in 18B) or two (in 32F and 32A) phosphocholine residues in the repeating unit. The degree of substitution was not determined. The backbone of all examined C-polysaccharides was identical and in all cases both galactosamine residues appeared to be N-acetylated.  相似文献   

20.
The synthesis of methyl (beta-D-glucopyranosyluronic acid)-(1-->3)-(2-acetamido-2-deoxy-6-O-sulfonato-beta-D-galactopyr anosyl)-(1-->4)-(beta-D-glucopyranosid)uronate trisodium salt, a chondroitin 6-sulfate trisaccharide derivative, is described. Loss of stereocontrol in glycosylation reactions involving activated 4,6-O-benzylidene derivatives of the 2-deoxy-2-trichloroacetamido-D-galacto series and D-glucuronic acid-derived acceptors was highlighted. This draw-back was overcome through the use of phenyl 3,4,6-tri-O-acetyl-2-deoxy-1-thio-2-trichloroacetamido-beta-D-gala ctopyranoside, which afforded the desired beta-linked disaccharide derivative in high yield with an excellent stereoselectivity. This later was submitted to acid-catalyzed methanolysis, followed by benzylidenation, and condensed with methyl 2,3,4-tri-O-benzoyl-1-O-trichloroacetimidoyl-alpha-D-glucopyran uronate to afford the expected trisaccharide derivative. Subsequent transformation of the N-trichloroacetyl group into N-acetyl, mild acid hydrolysis, selective O-sulfonation at C-6 of the amino sugar moiety, and saponification afforded the target molecule as its sodium salt in high yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号