首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed the structure of the late cytoplasmic RNAs made after infection with wild-type simian virus 40 and a set of viable mutants, four of which have deletions and one an insertion within the nucleotide sequence specifying the leader segment of the 16S and 19S mRNA's. The principal findings are: (i) simian virus 40 16S and 19S mRNA's made during infections with wild-type virnds and possibly in the nucleotide sequence comprising the "leader" segments. (II) "Spliced" 16S and 19S mRNA's are made during infections with each of the mutants although, in some cases, the ratio of 19S to 16S mRNA species is reduced. (iii) The deletion or insertion of nucleotides within the DNA segment defined by map position 0.70 to 0.75 causes striking alterations in the types of leader structures in the late mRNAs. (iv) Many of the late RNA leader segments produced after infection with the mutants appear to be multiply spliced, i.e., instead of the major 200- to 205-nucleotide-long leader segment present in wild-type 16S mRNA, the RNAs produced by several of the deletion mutants have leaders with whort discontiguous segments.  相似文献   

2.
In order to define bovine leukemia virus (BLV) sequences required for efficient vector replication, a series of mutations were made in a BLV vector. Testing the replication efficiency of the vectors with a helper virus and helper plasmids allowed for separation of the mutant vectors into three groups. The replication efficiency of the first group was reduced by a factor of 7; these mutants contained deletions in the 5' end of the gag gene. The second group of mutants had replication reduced by a factor of 50 and had deletions including the 5' untranslated leader region. The third group of mutants replicated at levels comparable to those of the parental vector and contained deletions of the 3' end of the gag gene, the pol gene, and the env gene. Analysis of cytoplasmic and virion RNA levels indicated that vector RNA expression was not affected but that the vector RNA encapsidation was less efficient for group 1 and group 2 mutants. Additional mutations revealed two regions important for RNA encapsidation. The first region is a 132-nucleotide-base sequence within the gag gene (nucleotides 1015 to 1147 of the proviral DNA) and facilitates efficient RNA encapsidation in the presence of the second region. The second region includes a 147-nucleotide-base sequence downstream of the primer binding site (nucleotide 551) and near the gag gene start codon (nucleotide 698; gag begins at nucleotide 628) and is essential for RNA encapsidation. We conclude that the encapsidation signal is discontinuous; a primary signal, essential for RNA encapsidation, is largely in the untranslated leader region between the primer binding site and near the gag start codon. A secondary signal, which facilitates efficient RNA encapsidation, is in a 132-nucleotide-base region within the 5' end of the gag gene.  相似文献   

3.
4.
5.
6.
A study of the cis-acting elements involved in the 3' end formation of the RNAs from the major late L4 family of adenovirus-2 was undertaken. Series of 5' or 3' end deletion mutants and mutants harboring either internal deletions or substitutions were prepared and assayed for in vitro cleavage. This first allowed the demonstration of a sequence, located at -6 to -29, relative to AAUAAA, whose deletion or substitution reduces cleavage efficiency at the L4 polyadenylation site two to three fold. This upstream efficiency element 5' AUCUUUGUUGUC/AUCUCUGUGCUG 3' is constituted of a partially repeated 12 nucleotide long, UCG rich sequence. The activities of the 2 sequence elements in cleavage are additive. We also searched for regulatory sequences downstream of the L4 polyadenylation site. We found that the deletion or substitution of a 30 nucleotide long UCG rich sequence, between nucleotides +7 and +35 relative to the cleavage site and harboring a UCCUGU repeat reduces cleavage efficiency at least ten fold. A GUUUUU sequence, starting at +35 had no influence. Thus, the usage of the L4 polyadenylation site requires down-stream sequences different from the canonical GU or U boxes and is regulated by upstream sequence elements.  相似文献   

7.
8.
td108 , a transformation-defective (td) deletion mutant of the Schmidt-Ruppin strain of Rous sarcoma virus of subgroup A (SR-A), was molecularly cloned. Two isolates of td viruses, td108 -3b and td108 -4a, obtained by transfection of the molecularly cloned td108 DNAs into chicken embryo fibroblasts, were tested for their ability to induce tumors and generate recovered avian sarcoma viruses ( rASVs ) in chickens. Both td viruses were able to induce tumors with a latency and frequency similar to those observed previously with biologically purified td mutants of SR-A. rASVs were isolated from most of the tumors examined. The genomic RNAs of those newly obtained rASVs were analyzed by RNase T1 oligonucleotide fingerprinting. The results showed that they had regained the deleted src sequences and contained the same set of marker src oligonucleotides as those of rASVs analyzed previously. The src oligonucleotides of rASVs are distinguishable from those present in SR-A. We conclude that those rASVs must have been generated by recombination between the molecularly cloned td mutants and the c-src sequence. The deletions in the td mutants were mapped by restriction enzyme analysis and nucleotide sequencing. td108 -3b was found to contain an internal src deletion of 1,416 nucleotides and to retain 57 and 105 nucleotides of the 5' and 3' src coding sequences, respectively. td108 -4a contained a src deletion of 1,174 nucleotides and retained 180 and 225 nucleotides of the 5' and 3' src sequences, respectively. Comparison of sequences in the 5' src and its upstream region of td108 -3b with those of SR-A, rASV1441 (a td108 -derived rASV analyzed previously), and c-src suggested that the 5' recombination between td108 and c-src occurred from 7 to 20 nucleotides upstream from the beginning of the src coding sequence.  相似文献   

9.
The leucine-specific binding protein, encoded by the livK gene, is located in the periplasm of E. coli. The present study is an attempt to identify intragenic regions that determine the efficiency of its secretion into the periplasm. C-terminal deletions or fusions of the livK gene to trpA (encoding the alpha subunit of tryptophan synthetase) were secreted with little loss of efficiency [1]. A series of deletions was constructed at the unique Sphl site within livK, near the 5' end of the region coding for the mature protein. Between 16 and 113 amino acids were deleted in the amino-terminal one-third of the protein. A few of these deletions were located within a few amino acids of the signal sequence processing site. Deletions extending within thirteen residues of the processing site were processed and secreted more slowly than normal. Secondary structure predictions suggested that the alpha-helical core region of the signal sequence extends into the mature protein in the case of the slow processing mutants, perhaps interfering with the recognition site for leader peptidase or other secretory components. These results suggest that the conformation around the signal processing site may be a critical factor in determining the efficiency of secretion. During the course of this study, it was found that the difference in molecular weight between precursor and mature forms of some binding protein mutants, as judged by SDS-PAGE, was much greater than could be accounted for by processing of the signal sequence. This anomalous mobility on gels, however, could be eliminated by performing SDS-PAGE in the presence of 6 M urea.  相似文献   

10.
We have determined the nucleotide sequences of 10 intragenic human HPRT gene deletion junctions isolated from thioguanine-resistant PSV811 Werner syndrome fibroblasts or from HL60 myeloid leukemia cells. Deletion junctions were located by fine structure blot hybridization mapping and then amplified with flanking oligonucleotide primer pairs for DNA sequence analysis. The junction region sequences from these 10 HPRT mutants contained 13 deletions ranging in size from 57 bp to 19.3 kb. Three DNA inversions of 711, 368, and 20 bp were associated with tandem deletions in two mutants. Each mutant contained the deletion of one or more HPRT exon, thus explaining the thioguanine-resistant cellular phenotype. Deletion junction and donor nucleotide sequence alignments suggest that all of these HPRT gene rearrangements were generated by the nonhomologous recombination of donor DNA duplexes that share little nucleotide sequence identity. This result is surprising, given the potential for homologous recombination between copies of repeated DNA sequences that constitute approximately a third of the human HPRT locus. No difference in deletion structure or complexity was observed between deletions isolated from Werner syndrome or from HL60 mutants. This suggests that the Werner syndrome deletion mutator uses deletion mutagenesis pathway(s) that are similar or identical to those used in other human somatic cells.  相似文献   

11.
12.
13.
R Contreras  C Cole  P Berg    W Fiers 《Journal of virology》1979,29(2):789-793
Two mutants of simian virus 40, dl-1261 and dl-1262, have deletions that map between coordinated 0.90 and 0.95 (Cole et al., J. Virol 24:277--294, 1977). Both affect the structure of the two minor proteins VP2 and VP3. The precise location and size of the deletions have now been determined by nucleotide sequence analysis. Mutant dl-1261 is deleted of 54 base pairs, is temperature sensitive for the protein defined by the D complementation group, and promotes the synthesis of shorter VP2 and VP3 polypeptides. Mutant dl-1262 is viable irrespective of temperature and has a deletion of 36 base pairs, 23 of which overlap the deletion in dl-1261. Since these mutants produce normal VP1, the deleted regions probably have no function in the splicing of precursor RNA to the VP1 mRNA.  相似文献   

14.
15.
We compared the 5' termini and splices of the late 16S and 19S RNAs synthesized by wild-type simian virus 40 and five mutants containing deletions in their late leader region. All mutants produced more unspliced 19S RNA than did wild-type virus, and in two mutants, unspliced 19S RNA constituted more than 60% of the total 19S species. The other three mutants each utilized predominantly a different one of the three spliced species of 19S mRNA. All mutants also produced decreased quantities of 16S mRNA, indicating that they may be defective for splicing both late RNAs. None of the 5' termini of the 16S and 19S RNAs made by the five mutants predominated as in those made by the wild type. Some of the mutant 5' termini were the same as those used by the wild type, whereas others were different. Although present, the major 5'-end positions used by the wild type were frequently not used as major sites by the mutants. In addition, mutants with very similar deletion endpoints synthesized RNAs with different 5' ends. Thus, downstream mutations have a pronounced effect on the location of 5' ends of the late RNAs, and there is no obvious involvement of a measuring function in the placement of 5' ends. For all mutants and wild-type virus, the 5' termini used for 16S and 19S RNAs showed major differences, with some degree of correlation found between the 5' ends and the internal splices of specific mRNA species. A model for the regulation of simian virus 40 late gene expression is presented to explain these findings.  相似文献   

16.
The three cytoplasmic polyadenylated mRNA's which separately encode the three capsid proteins (VP1, VP2, and VP3) of polyoma virus were mapped on the viral genome by one- and two-dimensional gel electrophoreses of nuclease S1-resistant RNA-DNA hybrids. The mRNA's, which we designated mVP1, mVP2, and mVP3 to indicate the coding functions deduced from the cosedimentation of the RNAs and the messenger activities, comprise an overlapping set of 3'-coterminal molecules which also share a heterogeneous family of noncoding 5'-terminal regions (Flavell et al., Cell 16:357--371, 1979; Legon et al., Cell 16:373--388, 1979). The three species differ in the length of the 3' colinear coding region which is spliced to the 5' leader sequences. The common polyadenylated 3' end maps at map unit 25.3. The 5' ends of the colinear bodies of mVP1, mVP3, and mVP2 map at 48.5, 59.5, and 66.5 map units, respectively. An examination of the polyoma virus DNA sequence (Arrand et al., J. Virol. 33:606--618, 1980) in the vicinities of splicing sites approximated by the S1 gel mapping data for sequences common to the ends of known intervening sequences allowed prediction of the precise splice points in polyoma virus late mRNA's. In all three cases, the leader sequences are joined to the mRNA bodies at least 48 nucleotides before the translational initiation codon used in each particular messenger. The start signal which functions in each mRNA is the first AUG (or GUG) triplet after the splice junction.  相似文献   

17.
Several P element insertion and deletion mutations near the 5' end of Drosophila melanogaster RpII215 have been examined by nucleotide sequencing. Two different sites of P element insertion, approximately 90 nucleotides apart, have been detected in this region of the gene. Therefore, including an additional site of P element insertion within the coding region, there are at least three distinct sites of P element insertion at RpII215. Both 5' sites are within a noncoding portion of transcribed sequences. The sequences of four revertants of one P element insertion mutation (D50) indicate that the P element is either precisely deleted or internally deleted to restore RpII215 activity. Partial internal deletions of the P element result in different RpII215 activity levels, which appear to depend on the specific sequences that remain after excision.  相似文献   

18.
The deletion mutants b508 and b522 of bacteriophage lambda both end within the attachment site. The formation of such deletions is dependent upon the presence of intact integrase, and thus the deletion endpoints may be related to the normal crossover site in site-specific recombination. We have determined the DNA sequences of the attachment site regions of these deletions. Comparison of the sequences with lambda wildtype shows that both the deletions end within the central common homology region but at different positions. The consequences of these findings for current models of site-specific recombination are discussed.  相似文献   

19.
We have identified sequences that affect the efficient expression of Epstein-Barr virus nuclear antigen (EBNA 1) when the structural portion of its gene, found within the 2.9-kilobase-pair BamHI/HindIII fragment called Ilf, is expressed from a simian virus 40 vector. A set of nested deletions at the BamHI end of the fragment was constructed by using BAL 31 digestion, the addition of linkers, and ligation into pSVOd. The mutants were tested for their ability to express antigen in COS-1 monkey cells by using indirect immunofluorescence and immunoblotting. Deletion endpoints were determined by DNA sequencing of the 5' ends of the mutants. The deletion mutants could be subclassified into four groups based on their ability to express EBNA polypeptide. Mutants that retain more than 106 base pairs upstream from the start of the open reading frame in Ilf exhibit antigen expression indistinguishable from that of wild type. Mutants that invade the structural gene by 1,115 or more bases destroy antigen expression. Mutants that alter the splice acceptor site or invade the open reading frame by a short distance make antigen at a markedly lower frequency. There are three mutants, whose deletions map at -78, -70, and -44 base pairs upstream of the open reading frame, that make reduced levels of EBNA. Since these three mutants differ in the extent to which EBNA expression is impaired, the data suggest that there are several critical regions upstream of the open reading frame that regulate EBNA expression in COS-1 cells. It is not known whether these regulatory sequences, which would be located in an intron in the intact genome, play any role in the expression of EBNA in infected lymphocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号