首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Joyce EF  McKim KS 《Genetics》2009,181(1):39-51
During meiosis, programmed DNA double-strand breaks (DSBs) are repaired to create at least one crossover per chromosome arm. Crossovers mature into chiasmata, which hold and orient the homologous chromosomes on the meiotic spindle to ensure proper segregation at meiosis I. This process is usually monitored by one or more checkpoints that ensure that DSBs are repaired prior to the meiotic divisions. We show here that mutations in Drosophila genes required to process DSBs into crossovers delay two important steps in meiotic progression: a chromatin-remodeling process associated with DSB formation and the final steps of oocyte selection. Consistent with the hypothesis that a checkpoint has been activated, the delays in meiotic progression are suppressed by a mutation in the Drosophila homolog of pch2. The PCH2-dependent delays also require proteins thought to regulate the number and distribution of crossovers, suggesting that this checkpoint monitors events leading to crossover formation. Surprisingly, two lines of evidence suggest that the PCH2-dependent checkpoint does not reflect the accumulation of unprocessed recombination intermediates: the delays in meiotic progression do not depend on DSB formation or on mei-41, the Drosophila ATR homolog, which is required for the checkpoint response to unrepaired DSBs. We propose that the sites and/or conditions required to promote crossovers are established independently of DSB formation early in meiotic prophase. Furthermore, the PCH2-dependent checkpoint is activated by these events and pachytene progression is delayed until the DSB repair complexes required to generate crossovers are assembled. Interestingly, PCH2-dependent delays in prophase may allow additional crossovers to form.  相似文献   

2.
For most organisms, chromosome segregation during meiosis relies on deliberate induction of DNA double-strand breaks (DSBs) and repair of a subset of these DSBs as inter-homolog crossovers (COs). However, timing and levels of DSB formation must be tightly controlled to avoid jeopardizing genome integrity. Here we identify the DSB-2 protein, which is required for efficient DSB formation during C. elegans meiosis but is dispensable for later steps of meiotic recombination. DSB-2 localizes to chromatin during the time of DSB formation, and its disappearance coincides with a decline in RAD-51 foci marking early recombination intermediates and precedes appearance of COSA-1 foci marking CO-designated sites. These and other data suggest that DSB-2 and its paralog DSB-1 promote competence for DSB formation. Further, immunofluorescence analyses of wild-type gonads and various meiotic mutants reveal that association of DSB-2 with chromatin is coordinated with multiple distinct aspects of the meiotic program, including the phosphorylation state of nuclear envelope protein SUN-1 and dependence on RAD-50 to load the RAD-51 recombinase at DSB sites. Moreover, association of DSB-2 with chromatin is prolonged in mutants impaired for either DSB formation or formation of downstream CO intermediates. These and other data suggest that association of DSB-2 with chromatin is an indicator of competence for DSB formation, and that cells respond to a deficit of CO-competent recombination intermediates by prolonging the DSB-competent state. In the context of this model, we propose that formation of sufficient CO-competent intermediates engages a negative feedback response that leads to cessation of DSB formation as part of a major coordinated transition in meiotic prophase progression. The proposed negative feedback regulation of DSB formation simultaneously (1) ensures that sufficient DSBs are made to guarantee CO formation and (2) prevents excessive DSB levels that could have deleterious effects.  相似文献   

3.
DNA double-strand breaks (DSB) were shown to occur at the replication fork barrier in the ribosomal DNA of Saccharomyces cerevisiae using 2D-gel electrophoresis. Their origin, nature and magnitude, however, have remained elusive. We quantified these DSBs and show that a surprising 14% of replicating ribosomal DNA molecules are broken at the replication fork barrier in replicating wild-type cells. This translates into an estimated steady-state level of 7–10 DSBs per cell during S-phase. Importantly, breaks detectable in wild-type and sgs1 mutant cells differ from each other in terms of origin and repair. Breaks in wild-type, which were previously reported as DSBs, are likely an artefactual consequence of nicks nearby the rRFB. Sgs1 deficient cells, in which replication fork stability is compromised, reveal a class of DSBs that are detectable only in the presence of functional Dnl4. Under these conditions, Dnl4 also limits the formation of extrachromosomal ribosomal DNA circles. Consistently, dnl4 cells displayed altered fork structures at the replication fork barrier, leading us to propose an as yet unrecognized role for Dnl4 in the maintenance of ribosomal DNA stability.  相似文献   

4.
5.
During meiosis, self-inflicted DNA double-strand breaks (DSBs) are created by the protein Spo11 and repaired by homologous recombination leading to gene conversions and crossovers. Crossover formation is vital for the segregation of homologous chromosomes during the first meiotic division and requires the RecA orthologue, Dmc1.We analyzed repair during meiosis of site-specific DSBs created by another nuclease, VMA1-derived endonuclease (VDE), in cells lacking Dmc1 strand-exchange protein. Turnover and resection of the VDE-DSBs was assessed in two different reporter cassettes that can repair using flanking direct repeat sequences, thereby obviating the need for a Dmc1-dependent DNA strand invasion step. Access of the single-strand binding complex replication protein A, which is normally used in all modes of DSB repair, was checked in chromatin immunoprecipitation experiments, using antibody against Rfa1. Repair of the VDE-DSBs was severely inhibited in dmc1Δ cells, a defect that was associated with a reduction in the long tract resection required to initiate single-strand annealing between the flanking repeat sequences. Mutants that either reduce Spo11-DSB formation or abolish resection at Spo11-DSBs rescued the repair block. We also found that a replication protein A component, Rfa1, does not accumulate to expected levels at unrepaired single-stranded DNA (ssDNA) in dmc1Δ cells. The requirement of Dmc1 for VDE-DSB repair using flanking repeats appears to be caused by the accumulation of large quantities of ssDNA that accumulate at Spo11-DSBs when Dmc1 is absent. We propose that these resected DSBs sequester both resection machinery and ssDNA binding proteins, which in wild-type cells would normally be recycled as Spo11-DSBs repair. The implication is that repair proteins are in limited supply, and this could reflect an underlying mechanism for regulating DSB repair in wild-type cells, providing protection from potentially harmful effects of overabundant repair proteins.  相似文献   

6.
Spo11-mediated DNA double-strand breaks (DSBs) that initiate meiotic recombination are temporally and spatially controlled. The meiotic cohesin Rec8 has been implicated in regulating DSB formation, but little is known about the features of their interplay. To elucidate this point, we investigated the genome-wide localization of Spo11 in budding yeast during early meiosis by chromatin immunoprecipitation using high-density tiling arrays. We found that Spo11 is dynamically localized to meiotic chromosomes. Spo11 initially accumulated around centromeres and thereafter localized to arm regions as premeiotic S phase proceeded. During this stage, a substantial proportion of Spo11 bound to Rec8 binding sites. Eventually, some of Spo11 further bound to both DSB and Rec8 sites. We also showed that such a change in a distribution of Spo11 is affected by hydroxyurea treatment. Interestingly, deletion of REC8 influences the localization of Spo11 to centromeres and in some of the intervals of the chromosomal arms. Thus, we observed a lack of DSB formation in a region-specific manner. These observations suggest that Rec8 would prearrange the distribution of Spo11 along chromosomes and will provide clues to understanding temporal and spatial regulation of DSB formation.  相似文献   

7.
We developed a novel system to create DNA double-strand breaks (DSBs) at defined endogenous sites in the human genome, and used this system to detect protein recruitment and loss at and around these breaks by chromatin immunoprecipitation (ChIP). The detection of human ATM protein at site-specific DSBs required functional NBS1 protein, ATM kinase activity and ATM autophosphorylation on Ser 1981. DSB formation led to the localized disruption of nucleosomes, a process that depended on both functional NBS1 and ATM. These two proteins were also required for efficient recruitment of the repair cofactor XRCC4 to DSBs, and for efficient DSB repair. These results demonstrate the functional importance of ATM kinase activity and phosphorylation in the response to DSBs, and support a model in which ordered chromatin structure changes that occur after DNA breakage depend on functional NBS1 and ATM, and facilitate DNA DSB repair.  相似文献   

8.
Recruitment of RAD18 to stalled replication forks facilitates monoubiquitination of PCNA during S-phase, promoting translesion synthesis at sites of UV irradiation-induced DNA damage. In this study, we show that RAD18 is also recruited to ionizing radiation (IR)-induced sites of DNA double-strand breaks (DSBs) forming foci which are co-localized with 53BP1, NBS1, phosphorylated ATM, BRCA1 and γ-H2AX. RAD18 associates with 53BP1 and is recruited to DSB sites in a 53BP1-dependent manner specifically during G1-phase, RAD18 monoubiquitinates KBD domain of 53BP1 at lysine 1268 in vitro. A monoubiquitination-resistant 53BP1 mutant harboring a substitution at lysine 1268 is not retained efficiently at the chromatin in the vicinity of DSBs. In Rad18-null cells, retention of 53BP1 foci, efficiency of DSB repair and post-irradiation viability are impaired compared with wild-type cells. Taken together, these results suggest that RAD18 promotes 53BP1-directed DSB repair by enhancing retention of 53BP1, possibly through an interaction between RAD18 and 53BP1 and the modification of 53BP1.  相似文献   

9.
Accurate repair of DNA double-strand breaks (DSBs) is crucial for cell survival and genome integrity. In Escherichia coli, DSBs are repaired by homologous recombination (HR), using an undamaged sister chromosome as template. The DNA intermediates of this pathway are expected to be branched molecules that may include 4-way structures termed Holliday junctions (HJs), and 3-way structures such as D-loops and repair forks. Using a tool creating a site-specific, repairable DSB on only one of a pair of replicating sister chromosomes, we have determined how these branched DNA intermediates are distributed across a DNA region that is undergoing DSB repair. In cells, where branch migration and cleavage of HJs are limited by inactivation of the RuvABC complex, HJs and repair forks are principally accumulated within a distance of 12 kb from sites of recombination initiation, known as Chi, on each side of the engineered DSB. These branched DNA structures can even be detected in the region of DNA between the Chi sites flanking the DSB, a DNA segment not expected to be engaged in recombination initiation, and potentially degraded by RecBCD nuclease action. This is observed even in the absence of the branch migration and helicase activities of RuvAB, RadA, RecG, RecQ and PriA. The detection of full-length DNA fragments containing HJs in this central region implies that DSB repair can restore the two intact chromosomes, into which HJs can relocate prior to their resolution. The distribution of recombination intermediates across the 12kb region beyond Chi is altered in xonA, recJ and recQ mutants suggesting that, in the RecBCD pathway of DSB repair, exonuclease I stimulates the formation of repair forks and that RecJQ promotes strand-invasion at a distance from the recombination initiation sites.  相似文献   

10.
Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs). The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the role of DNA damage checkpoint mechanisms in the control of meiotic DSB formation using budding yeast. By using recombination defective mutants in which meiotic DSBs are not repaired, the effect of DNA damage checkpoint mutations on DSB formation was evaluated. The Tel1 (ATM) pathway mainly responds to unresected DSB ends, thus the sae2 mutant background in which DSB ends remain intact was employed. On the other hand, the Mec1 (ATR) pathway is primarily used when DSB ends are resected, thus the rad51 dmc1 double mutant background was employed in which highly resected DSBs accumulate. In order to separate the effect caused by unscheduled cell cycle progression, which is often associated with DNA damage checkpoint defects, we also employed the ndt80 mutation which permanently arrests the meiotic cell cycle at prophase I. In the absence of Tel1, DSB formation was reduced in larger chromosomes (IV, VII, II and XI) whereas no significant reduction was found in smaller chromosomes (III and VI). On the other hand, the absence of Rad17 (a critical component of the ATR pathway) lead to an increase in DSB formation (chromosomes VII and II were tested). We propose that, within prophase I, the Tel1 pathway facilitates DSB formation, especially in bigger chromosomes, while the Mec1 pathway negatively regulates DSB formation. We also identified prophase I exit, which is under the control of the DNA damage checkpoint machinery, to be a critical event associated with down-regulating meiotic DSB formation.  相似文献   

11.
When cells are exposed to radiation serious lesions are introduced into the DNA including double strand breaks (DSBs), single strand breaks (SSBs), base modifications and clustered damage sites (a specific feature of ionizing radiation induced DNA damage). Radiation induced DNA damage has the potential to initiate events that can lead ultimately to mutations and the onset of cancer and therefore understanding the cellular responses to DNA lesions is of particular importance. Using γH2AX as a marker for DSB formation and RAD51 as a marker of homologous recombination (HR) which is recruited in the processing of frank DSBs or DSBs arising from stalled replication forks, we have investigated the contribution of SSBs and non-DSB DNA damage to the induction of DSBs in mammalian cells by ionizing radiation during the cell cycle. V79-4 cells and human HF19 fibroblast cells have been either irradiated with 0–20 Gy of γ radiation or, for comparison, treated with a low concentration of hydrogen peroxide, which is known to induce SSBs but not DSBs. Inhibition of the repair of oxidative DNA lesions by poly(ADP ribose) polymerase (PARP) inhibitor leads to an increase in radiation induced γH2AX and RAD51 foci which we propose is due to these lesions colliding with replication forks forming replication induced DSBs. It was confirmed that DSBs are not induced in G1 phase cells by treatment with hydrogen peroxide but treatment does lead to DSB induction, specifically in S phase cells. We therefore suggest that radiation induced SSBs and non-DSB DNA damage contribute to the formation of replication induced DSBs, detected as RAD51 foci.  相似文献   

12.
Peciña A  Smith KN  Mézard C  Murakami H  Ohta K  Nicolas A 《Cell》2002,111(2):173-184
Meiotic recombination in Saccharomyces cerevisiae is initiated by programmed DNA double-strand breaks (DSBs), a process that requires the Spo11 protein. DSBs usually occur in intergenic regions that display open chromatin accessibility, but other determinants that control their frequencies and non-random chromosomal distribution remain obscure. We report that a Spo11 construct bearing the Gal4 DNA binding domain not only rescues spo11Delta spore inviability and catalyzes DSB formation at natural sites but also strongly stimulates DSB formation near Gal4 binding sites. At GAL2, a naturally DSB-cold locus, Gal4BD-Spo11 creates a recombinational hotspot that depends on all the other DSB gene functions, showing that the targeting of Spo11 to a specific site is sufficient to stimulate meiotic recombination that is under normal physiological control.  相似文献   

13.
Mutations in RecQL4 are a causative factor in Rothmund–Thomson syndrome, a human autosomal recessive disorder characterized by premature aging. To study the role of RecQL4, we employed a cell-free experimental system consisting of Xenopus egg extracts. RecQL4 loading onto chromatin was observed regardless of the presence or absence of EcoRI. However, in the absence of EcoRI, RecQL4 loading was suppressed by geminin, an inhibitor of pre-replicative complex formation, while in the presence of EcoRI, it was not affected. These results suggest that under the former condition, RecQL4-loading depended on DNA replication, while under the latter, the interaction occurred in response to double-stranded DNA breaks (DSBs) induced by EcoRI. DSB-induced RecQL4 loading depended on the function of the ataxia-telangiectasia mutated protein, DNA-dependent protein kinase (DNA-PK), and replication protein A, while there were only minor changes in DNA replication-associated RecQL4 loading upon suppression of these proteins. Furthermore, analyses using a chromatin-immunoprecipitation assay and quantification of γH2AX after induction of DSBs suggested that RecQL4 is loaded adjacent to Ku heterodimer-binding sites on damaged chromatin, and functions in the repair of DSBs.  相似文献   

14.
The repair of DNA double-strand breaks (DSBs) requires the activity of the Mre11/Rad50/Xrs2(Nbs1) complex. In Saccharomyces cerevisiae, this complex is required for both the initiation of meiotic recombination by Spo11p-catalyzed programmed DSBs and for break end resection, which is necessary for repair by homologous recombination. We report that Mre11p transiently associates with the chromatin of Spo11-dependent DSB regions throughout the genome. Mutant analyses show that Mre11p binding requires the function of all genes required for DSB formation, with the exception of RAD50. However, Mre11p binding does not require DSB formation itself, since Mre11p transiently associates with DSB regions in the catalysis-negative mutant spo11-Y135F. Mre11p release from chromatin is blocked in mutants that accumulate unresected DSBs. We propose that Mre11p is a component of a pre-DSB complex that assembles on the DSB sites, thus ensuring a tight coupling between DSB formation by Spo11p and the processing of break ends.  相似文献   

15.
T. C. Wu  M. Lichten 《Genetics》1995,140(1):55-66
Double-strand DNA breaks (DSBs) initiate meiotic recombination in Saccharomyces cerevisiae. DSBs occur at sites that are hypersensitive in nuclease digests of chromatin, suggesting a role for chromatin structure in determining DSB location. We show here that the frequency of DSBs at a site is not determined simply by DNA sequence or by features of chromatin structure. An arg4-containing plasmid was inserted at several different locations in the yeast genome. Meiosis-induced DSBs occurred at similar sites in pBR322-derived portions of the construct at all insert loci, and the frequency of these breaks varied in a manner that mirrored the frequency of meiotic recombination in the arg4 portion of the insert. However, DSBs did not occur in the insert-borne arg4 gene at a site that is frequently broken at the normal ARG4 locus, even though the insert-borne arg4 gene and the normal ARG4 locus displayed similar DNase I hypersensitivity patterns. Deletions that removed active DSB sites from an insert at HIS4 restored breaks to the insert-borne arg4 gene and to a DSB site in flanking chromosomal sequences. We conclude that the frequency of DSB at a site can be affected by sequences several thousands nucleotides away and suggest that this is because of competition between DSB sites for locally limited factors.  相似文献   

16.
In Saccharomyces cerevisiae, DNA double-strand breaks (DSBs) initiate meiotic recombination at open sites in chromatin, which display a meiosis-specific increase in micrococcal nuclease (MNase) sensitivity. The arg4 promoter contains such a DSB site. When arg4 sequences are placed in a pBR322-derived insert at HIS4 (his4 :: arg4 ), the presence of strong DSB sites in pBR322 sequences leads to an almost complete loss of breaks from the insert-borne arg4 promoter region. Most of the MNase-sensitive sites occurred at similar positions in insert-borne and in normal ARG4 sequences, indicating that hotspot inactivation is not a consequence of changes in nucleosome positioning. However, a meiosis-specific increase in MNase hypersensitivity was no longer detected at the inactive insert-borne arg4 DSB site. Elimination of pBR322 sequences restored DSBs to the insert-borne arg4 promoter region and also restored the meiotic induction of MNase hypersensitivity. Thus, the meiotic induction of MNase hypersensitivity at the DSB sites is suppressed and activated in parallel to DSBs themselves, without changes in the underlying DNA sequence or nucleosome positioning. We suggest that meiosis-specific changes in chromatin at a DSB site are a signal reflecting a pivotal step in DSB formation.  相似文献   

17.
During the DNA damage response (DDR), chromatin modifications contribute to localization of 53BP1 to sites of DNA double-strand breaks (DSBs). 53BP1 is phosphorylated during the DDR, but it is unclear whether phosphorylation is directly coupled to chromatin binding. In this study, we used human diploid fibroblasts and HCT116 tumor cells to study 53BP1 phosphorylation at Serine-25 and Serine-1778 during endogenous and exogenous DSBs (DNA replication and whole-cell or sub-nuclear microbeam irradiation, respectively). In non-stressed conditions, endogenous DSBs in S-phase cells led to accumulation of 53BP1 and γH2AX into discrete nuclear foci. Only the frank collapse of DNA replication forks following hydroxyurea treatment initiated 53BP1Ser25 and 53BP1Ser1778 phosphorylation. In response to exogenous DSBs, 53BP1Ser25 and 53BP1Ser1778 phosphoforms localized to sites of initial DSBs in a cell cycle-independent manner. 53BP1 phosphoforms also localized to late residual foci and associated with PML-NBs during IR-induced senescence. Using isogenic cell lines and small-molecule inhibitors, we observed that DDR-induced 53BP1 phosphorylation was dependent on ATM and DNA-PKcs kinase activity but independent of MRE11 sensing or RNF168 chromatin remodeling. However, loss of RNF168 blocked recruitment of phosphorylated 53BP1 to sites of DNA damage. Our results uncouple 53BP1 phosphorylation from DSB localization and support parallel pathways for 53BP1 biology during the DDR. As relative 53BP1 expression may be a biomarker of DNA repair capacity in solid tumors, the tracking of 53BP1 phosphoforms in situ may give unique information regarding different cancer phenotypes or response to cancer treatment.  相似文献   

18.
19.
DNA double-strand breaks (DSBs) arise through both replication errors and from exogenous events such as exposure to ionizing radiation. DSBs are potentially lethal, and cells have evolved a highly conserved mechanism to detect and repair these lesions. This mechanism involves phosphorylation of histone H2AX (γH2AX) and the loading of DNA repair proteins onto the chromatin adjacent to the DSB. It is now clear that the chromatin architecture in the region surrounding the DSB has a critical impact on the ability of cells to mount an effective DNA damage response. DSBs promote the formation of open, relaxed chromatin domains which are spatially confined to the area surrounding the break. These relaxed chromatin structures are created through the coupled action of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. The resulting destabilization of nucleosomes at the DSB by Tip60 and p400 is required for ubiquitination of the chromatin by the RNF8 ubiquitin ligase, and for the subsequent recruitment of the brca1 complex. Chromatin dynamics at DSBs can therefore exert a powerful influence on the process of DSB repair. Further, there is emerging evidence that the different chromatin structures in the cell, such as heterochromatin and euchromatin, utilize distinct remodeling complexes and pathways to facilitate DSB. The processing and repair of DSB is therefore critically influenced by the nuclear architecture in which the lesion arises.Key words: p400, chromatin remodeling, DNA repair, NuA4, H2AX, acetylation, nucleosome, tip60Damage to cellular DNA can occur through multiple pathways, including exposure to genotoxic agents, the production of endogenous reactive oxygen species or errors which arise during DNA replication. To combat this continuous assault on the genome, mammalian cells have evolved multiple DNA repair pathways. The most challenging lesions to repair are DSBs, which physically cleave the DNA strand. DSBs can occur through exposure to IR, the collapse of replication forks or during the processing of certain types of DNA damage. Over the last 20 years, a clear picture of how the cell detects and repairs DSBs has emerged.1,2 The earliest event in the cell''s response to DSBs is the rapid recruitment of the ATM kinase, followed by the phosphorylation of histone H2AX (termed γH2AX) on large chromatin domains which extend for 100''s of kilobases on either side of the DSB.3 The mdc1 scaffold protein is then recruited to γH2AX,4 providing a docking platform for the recruitment and retention of additional DNA repair proteins, including the MRN complex, the RNF8 ubiquitin ligase and the brca1 and 53BP1 proteins, onto the chromatin at DSBs.57 Eventually, this spreading of DNA repair proteins along the chromatin from the DSB leads to the formation of IRIF, which can be visualized by immunofluorescent techniques. DSBs are then repaired by NHEJ, in which broken DNA ends are directly religated, or by HR, using the undamaged sister chromatid (present during S-phase) as a template. A defining characteristic of DSB repair is the dominant role that chromatin structure plays in the detection and repair of these lesions. In this review, we will examine recent work exploring how remodeling of the chromatin structure adjacent to DSBs plays a key role in the repair of DSBs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号