共查询到20条相似文献,搜索用时 7 毫秒
1.
The interaction between human plasma lipoproteins and connective tissue glycosaminoglycans 总被引:29,自引:0,他引:29
P H Iverius 《The Journal of biological chemistry》1972,247(8):2607-2613
2.
L. D. Bergelson 《Bioscience reports》1989,9(1):27-40
Using high density and low density lipoproteins (HDL and LDL) labeled with fluorescent analogues of phosphatidylcholine or sphingomyelin it was found that low amounts (10–12 M) of prostaglandins E1 and F2 induced different structural rearrangements of the lipoprotein surface, whereas prostaglandins E2 and F1 had no effect. The effects of prostaglandin E1 on HDL were largely paralled by those of this prostaglandin on synthetic recombinants prepared from pure apolipoprotein A1, phospholipids and cholesterol and were demonstrated to be caused by prostaglandin-apolipoprotein interaction. The interaction resembled that of a ligand with a specific receptor protein because it was specific, reversible, concentration and temperature dependent and saturable. However the retaining capacity of HDL or LDL for prostaglandin E1 as determined by equilibrium dialysis was very low and a single prostaglandin E1 molecule was able to induce structural changes in large numbers of discrete lipoprotein particles. To explain this remarkable fact a non-equilibrium model of ligand-receptor interaction is proposed. According to that model in open systems characterized by weak ligand-receptor binding, high diffusion rate of the ligand and long relaxation times which exceed the interval between two successive receptor occupations, the ligand-induced changes will accumulate, resulting in transformation of the system into a new state which may be far away from equilibrium. It is emphasized that the low mobility of lipids constituting the environment of the receptor protein plays a critcal role in this type of signal amplification.It was further demonstrated that the PGE1-induced changes of the lipoprotein surface resulted in an enhancement of LDL-to-HDL transfer of cholesterol esters and phosphatidylcholine especially in the presence of serum lipid transfer proteins. The acceleration of the interlipoprotein transfer caused by prostaglandin E1 in turn increases the rate of cholesterol esterification in serum. It is suggested that in such a way prostaglandin E1 may influence the homeostasis of cholesterol.Abbreviations LDL
low density lioproteins
- HDL
high density lipoproteins
- PG
prostaglandin
- ASM
anthrylvinyl-labeled sphingomyelin (N-12-(9-anthryl)-11-trans-dodecanoylsphingosin-1-phosphocholine
- APC
anthrylvinylphosphatidylcholine (1-radyl-2-[(9-anthryl)-11-transdodecanoyl)-sn-glycerophosphocholine
- NAP-SM
nitroazidophenyl labeled sphingomyelin (N-[N-(2-nitro-4azidophenyl)-12-aminododecanoyl]-sphingosin-1-phosphocholine)
- NAP-PC
adizophenyl labeled phosphatidylcholine (1-radyl-2-[N-(2-nitro-4azidophenyl)-12-aminododecanoyl]-sn-glycero-3-phosphocholine
- DPPC
dipalmitoylphosphatidylcholine
- P
fluorescence polarization
- E
parameter of tryptophanyl to ASM resonance energy transfer
- LEP
lipid-exchange protein 相似文献
3.
This study characterizes the physical-chemical interactions of heparin with human plasma low-density lipoproteins (LDL). A high reactive heparin (HRH) specific for the surface determinants of LDL was isolated by chromatography of commercial bovine lung heparin on LDL immobilized to AffiGel-10. HRH was derivatized with fluoresceinamine and repurified by affinity chromatography, and its interaction with LDL in solution was monitored by steady-state fluorescence polarization. Binding of LDL to fluoresceinamine-labeled HRH (FL . HRH) was saturable, reversible, and specific; HRH stoichiometrically displaced FL . HRH from the soluble complex, and acetylation of lysine residues on LDL blocked heparin binding. Titration of FL.HRH with excess LDL yielded soluble complexes with two LDL molecules per heparin chain (Mr 13,000) characterized by an apparent Kd of 1 microM. Titration of LDL with excess HRH resulted in two classes of heparin binding with two and five heparin molecules bound per LDL and apparent Kd values of 1 and 10 microM, respectively. At physiological pH and ionic strength, the soluble HRH-LDL complexes were maximally precipitated with 20-50 mM Ca2+. Insoluble complexes contained 2-10 HRH molecules per LDL with the final product stoichiometry dependent on the ratio of the reactants. The affinity of HRH for LDL in the insoluble complexes was estimated between 1 and 10 microM. Insoluble LDL-heparin complexes were readily dissociated with 1.0 M NaCl, and their formation was prevented by acetylation of the lysine residues on LDL. 相似文献
4.
The binding of chlorinated hydrocarbon, carbamate and organophosphate insecticides to human low density plasma lipoproteins (LDL) and high density plasma lipoproteins (HDL) was studied at pH 7.0 and 16°C and 26°C by equilibrium dialysis, difference spectra and fluorescence. The results suggest interaction to be a partitioning rather than a stoichiometric binding process. Distribution is related to lipid content and composition of the lipoproteins. The K-values vary from 3 × 105 M?1 for 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) to less than 10 M?1 for nicotine and aldicarb, and ΔGtr° is in the range of 7400 cal for DDT to less than 1000 cal for aldicarb and nicotine. The K and ΔGtr° are inversely related to the water solubility of the insecticides. A significant role of plasma lipoproteins in the transport of slightly water soluble insecticides is suggested. 相似文献
5.
6.
A D Cardin R L Jackson B Elledge D Feldhake 《International journal of biological macromolecules》1989,11(1):59-62
Successive rechromatography of commercial bovine lung heparin on human plasma low density lipoproteins (LDL) immobilized to AffiGel-10 yielded four high reactive heparin (HRH-I to IV) fractions and an unreactive fraction (URH). HRH-I was the most sulphated HRH fraction whereas URH had the least sulphation. In the presence of 10 mM Ca2+, LDL were precipitated by these heparins in the following order: HRH-II greater than HRH-III greater than HRH-IV greater than HRH-I greater than URH. The average molecular weight of HRH-I to IV was 8600, 11400, 10,100, and 10,000, respectively. A plot of log molecular weight versus the concentration of HRH required to give half-maximal precipitation of LDL showed a negative correlation (r = -0.880). These results indicate that heparin chain length is an important determinant of heparin binding to LDL in solution and may have relevance to the binding and precipitation of LDL in the arterial wall. 相似文献
7.
8.
The effect of plasma components on the particle size distribution and chemical composition of human plasma low-density lipoproteins (LDL) during interaction with discoidal complexes of human apolipoprotein A-I and phosphatidylcholine (PC) was investigated. Incubation (37 degrees C, 1 h and 6 h) of LDL with discoidal complexes in the presence of the plasma ultracentrifugal d greater than 1.20 g/ml fraction (activity of lecithin-cholesterol acyltransferase inhibited) produces an increase in LDL apparent particle diameter two-to six-fold greater than that observed in the absence of the plasma d greater than 1.20 g/ml fraction. In incubation mixtures of LDL and discoidal complexes, both in the presence and absence of the plasma d greater than 1.20 g/ml fraction, the extent of LDL apparent particle diameter increase is: (1) approximately three-fold greater at 6 h than at 1 h, and (2) markedly greater for LDL with initially small (22.4-24.0 nm) major components than for LDL with initially large (26.2-26.8 nm) major components. The facilitation factor in the plasma d greater than 1.20 g/ml fraction is not plasma phospholipid transfer protein. Purified human serum albumin produces an apparent particle diameter increase comparable to the plasma d greater than 1.20 g/ml fraction. The discoidal complex-induced increase in LDL apparent particle diameter value by albumin is associated with an increase in phospholipid uptake by LDL and a decreased loss of LDL unesterified cholesterol. In preliminary experiments, high-density lipoproteins (HDL) reverse the apparent particle diameter increase originally induced by discoidal complexes. The presence of HDL (HDL phospholipid/LDL phospholipid molar ratio of 10:1) in the incubation (6 h) mixture of LDL and discoidal complexes also attenuates LDL apparent particle diameter increase. In vivo, the plasma LDL/HDL ratio may be a controlling factor in determining the extent to which phospholipid uptake and the associated change in LDL particle size distribution occurs. 相似文献
9.
10.
1. During in vitro incubation of liposomes or unilamellar vesicles prepared from egg-yolk or rat-liver phosphatidylcholine with human, monkey or rat plasma the phospholipid becomes associated with a high molecular weight protein-containing component. 2. The phosphatidylcholine . protein complex thus formed co-chromatographs with high-density lipoprotein on Ultrogel AcA34 and has the same immunoelectrophoretic properties as this lipoprotein. 3. Release of the phosphatidylcholine from liposomes was also observed when liposomes were incubated with pure monkey high-density lipoproteins. Under those conditions some transfer of protein from the lipoprotein to the liposomes was observed as well. 4. The observed release of phospholipid from the liposomes is a one-way process, as the specific radioactivity of liposome-associated phosphatidylcholine remained constant during incubation with plasma. 5. It is concluded that either the lipoprotein particle takes up additional phospholipid or that a new complex is formed from protein constituents of the lipoprotein and the liposomal phosphatidylcholine. 6. Massive release of entrapped 125I-labeled albumin from the liposome during incubation with plasma suggests that the observed release of phosphatidylcholine from the liposomes has a highly destructive influence on the liposomal structure. 7. Our results are discussed with special reference to the use of liposomes as intravenous carriers of drugs and enzymes. 相似文献
11.
Partition coefficient analysis, equilibrium dialysis, and computer simulation were used to evaluate associations of twelve steroid hormones (androstanediol, androstenediol, androstenedione, androsterone, dehydroepiandrosterone, dihydrotestosterone, estradiol, estriol, estrone, hydroxyprogesterone, progesterone, and testosterone) with human plasma high density lipoproteins (HDL), low density lipoproteins (LDL), and very low density lipoproteins (VLDL). It was determined that partitioning of steroid hormones (SH) between the aqueous medium and the surfaces of lipoproteins (LP) was the initial (first order) SH-LP interaction. For some SH, especially dehydroepiandrosterone, significant second order interactions, which may involve chemical conversions, were detected. The first order binding values of the twelve SH with three LP were combined with the corresponding binding values of SH with sex hormone-binding globulin, corticosteroid-binding globulin, and albumin in a 6 X 12 matrix. The computer program TRANSPORT was used to analyze the matrix and determine the distribution of each SH among six different binding agents in the "normal" male. It was concluded that LP are important vehicles for SH conveyance in plasma and may also be important for SH entry into cells. 相似文献
12.
13.
Up-to-date information on the structural organization of basic blood plasma lipoproteins and their interaction with a cell is presented. Different types of lipoprotein modifications which make changes in lipoprotein interactions with the receptors of macrophages, fibroblasts and other cells are shown. The participation of different types of receptors in the process of interaction with native and modified lipoproteins is emphasized. 相似文献
14.
15.
E M Manevich M A Martynova G I Muzya E L Vodovozova J G Molotkovsky L D Bergelson 《Biochimica et biophysica acta》1988,963(2):302-310
The interaction of human serum low-density lipoproteins (LDL) with various types of prostaglandins (PG) was studied using equilibrium dialysis, steady-state fluorescence polarization spectroscopy and photolabeling methods. Low concentrations (10(-13)-10(-9) M) of PGE1 and PGF2 alpha were shown to induce specific rearrangements of the lipids on the LDL surface, whereas the closely related PGE2 and PGF1 alpha had no effect. With fluorescent labeled LDL, the PGE1-induced changes of the steady-state fluorescence polarization (P) were shown to be time- and concentration-dependent, saturable and reversible. However, equilibrium dialysis revealed a very low binding capacity of LDL for PGE1 (approx. 1 prostaglandin molecule per 600 LDL particles). Approximately the same PGE1 concentration was sufficient to cause maximal changes of P, to enhance the binding to apolipoprotein B of a photoreactive sphingomyelin analogue inserted into the LDL surface and to alter the thermal phase behavior of the LDL surface lipids. It is proposed that the LDL surface rearrangement caused by prostaglandins is due to the interaction of prostaglandins with apolipoprotein B, resulting in formation of short-lived complexes. The mechanism of this interaction is discussed in terms of the non-equilibrium ligand-receptor interaction model proposed earlier to explain the interaction of prostaglandins with high-density lipoproteins (Bergelson, L.D. et al. (1987) Biochim. Biophys. Acta 921, 182-190). It is suggested that direct prostaglandin-lipoprotein interactions may play a role in the homeostasis of cholesterol. 相似文献
16.
Recent studies have suggested that ibuprofen inhibits low-density lipoprotein oxidation in a high dose-dependent manner and is a promising drug for treatment of the conditions associated with atherosclerosis. In this article, we present the NMR spectroscopic evidence for the interaction between ibuprofen and phospholipids in lipoprotein particles in intact human plasma. Ibuprofen caused chemical shift upfield drifts for the protons of -N(+)(CH(3))(3) moieties of phosphatidylcholine and sphingomyelin, olefinic chains (-CH[double bond]CH[bond], [bond]CH[triple bond]CHCH(2)CH[triple bond]CH[bond], [bond](CH(2))(n)CH(2)CH[double bond]), and (CH(2))(n) and CH(3) groups, from unsaturated lipids in lipoprotein particles. The ibuprofen may interact directly with the above-mentioned groups of phospholipids or induce structural changes in the lipoproteins. This may shed light on the mechanism by which the drug protects against oxidative modification of lipoproteins. 相似文献
17.
18.
J B Marsh 《The Biochemical journal》1971,123(4):18P-19P
19.
20.
W L Stone 《The Journal of biological chemistry》1975,250(11):4368-4370
Human serum lipoproteins and egg yolk lecithin liposomes are able to solubilize large amounts of n-hexane and n-octane. At the maximum water solubility of n-octane the mole ratio of alkane to lipoprotein was 65 for high density lipoprotein (holo-HDL) and 900 for low density lipoprotein (holo-LDL). Alkane binding to lipid-free apo-HDL is negligible compared to alkane solubility in holo-HDL. Alkane solubility in the lipoproteins and liposomes is thermodynamically consistent with the simple soution of hydrocarbon in the hydrophobic regions of these particles. The unitary free energies of alkane transfer are similar to values previously observed for detergent micelles but are less favorable by 0.8 kcal/mol from the free energy of transfer to liquid hydrocarbon. It is concluded that the thermodynamics of alkane transfer to the lipoproteins resembles that found for detergent micelles or liposomes rather than that anticipated for an "oil drop" (i.e. liquid hydrocarbon). 相似文献