首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hodgins KA  Barrett SC 《Heredity》2006,96(3):262-270
Mating patterns in plant populations are influenced by interactions between reproductive traits and ecological conditions, both factors that are likely to vary geographically. Narcissus triandrus, a wide-ranging heterostylous herb, exhibits populations with either two (dimorphic) or three (trimorphic) style morphs and displays substantial geographical variation in demographic attributes and floral morphology. Here, we investigate this variation to determine if demography, morphology, and mating system differ between the two sexual systems. Our surveys in Portugal and NW Spain indicated that dimorphic populations were less dense, of smaller size, and had larger plants and flowers compared to trimorphic populations. Outcrossing rates estimated using allozyme markers revealed similar outcrossing rates in dimorphic and trimorphic populations (t(m) dimorphic=0.759; t(m) trimorphic=0.710). All populations experienced significant inbreeding in progeny (mean F=0.143). In contrast, parental estimates of inbreeding were not significantly different from zero (mean F=0.062), implying that few inbred offspring survive to reproductive maturity due to inbreeding depression. Although the majority of inbreeding results from selfing, significant levels of biparental inbreeding were also detected in eight of the nine populations (mean s(s)-s(m)=0.081). Density was negatively associated with levels of selfing but positively associated with biparental inbreeding. Population size was positively associated with outcrossing but not biparental inbreeding. There were no consistent differences among the style morphs in outcrossing or biparental inbreeding indicating that the maintenance of trimorphism vs dimorphism is unlikely to be associated with inbreeding of maternal parents.  相似文献   

3.
The effect of biparental inbreeding on the conditions governing the evolution of selfing is examined using recursions in mating-type frequencies. Sibmating in combination with random outcrossing influences two key determinants of the adaptive value of selfing: 1) the meiotic cost of biparental reproduction and 2) the level of inbreeding depression due to deleterious mutations. Biparental inbreeding serves to maintain biparental reproduction by increasing relatedness between parents and their biparentally derived offspring and introduces the possibility of an optimal mating system that incorporates both modes of reproduction. Biparental inbreeding serves to promote uniparental reproduction by reducing the relative inbreeding depression suffered by uniparental offspring. The net effect of these two antagonistic trends depends upon the extent to which mutational load accounts for differences in the numbers of the two types of offspring. A brief summary of the empirical literature suggests that: 1) biparental inbreeding may occur in populations exhibiting mixed mating systems; 2) while inbreeding depression represents an important factor, it does not account entirely for differences in offspring number between the two modes of reproduction.  相似文献   

4.
Meta‐studies on hermaphrodites have found a negative relationship between primary selfing rates and levels of inbreeding depression (ID) and, thus, generally support purging in inbred systems. However, in plants, high among‐taxa variance in ID results in no difference in the mean ID between outcrossing and mixed‐mating taxa. Selective interference likely explains high ID among mixed‐mating taxa, whereas low levels of ID among mixed‐mating taxa are not as stressed. Among animal hermaphrodites, primarily molluscs, there are little data on mixed‐mating systems. To fill a taxonomic and mating system gap, we tested for ID in a mixed‐mating tapeworm, Oochoristica javaensis. We provide a direct estimate of ID across infection of an intermediate host by comparing selfing rates at two life history stages. We found little to no evidence for ID, and the level of ID falls in line with what is reported for highly selfing species even though O. javaensis has mixed mating. We discuss this result within the context of kin mating in O. javaensis. Our results emphasize that primary selfing rates alone may be insufficient to classify the inbreeding history in all species when testing for a relationship to ID. Mixed‐mating taxa, and possibly some outcrossing taxa, may exhibit low levels of ID if biparental inbreeding is also driving purging. We advocate that ID studies report estimates of inbreeding history (e.g. FIS or identity disequilibrium) from nature‐derived adult samples to provide context rather than relying on primary selfing rates alone.  相似文献   

5.
Experimental analysis of biparental inbreeding in a self-fertilizing plant   总被引:2,自引:0,他引:2  
Abstract.— Localized dispersal and mating may genetically structure plant populations, resulting in matings among related individuals. This biparental inbreeding has significant consequences for the evolution of mating systems, yet is difficult to estimate in natural populations. We estimated biparental inbreeding in two populations of the largely self-fertilizing plant Aquilegia canadensis using standard inference as well as a novel experiment comparing apparent selfing between plants that were randomly relocated within populations to experimental control plants. Using two allozyme markers, biparental inbreeding ( b ) inferred from the difference between single-locus and multilocus estimates of selfing ( b = ss – sm ) was low. Less than 3% of matings involved close relatives (mean b = 0.029). In contrast, randomly relocating plants greatly reduced apparent selfing (mean ss = 0.674) compared to control plants that had been dug up and replanted in their original locations ( ss = 0.953, P = 0.002). Based on this difference in ss , we estimated that approximately 30% of all matings involved close relatives (mean b = 0.279, 95% CL = 0.072–0.428). Inference from ss – sm underestimated b in these populations by more than an order of magnitude. Biparental inbreeding is thought to influence the evolution of self-fertilization primarily through reducing the genetic cost of outcrossing. This is unlikely to be of much significance in A. canadensis because inbreeding depression (a major cost of selfing) is much stronger than the cost of outcrossing. However, biparental inbreeding combined with strong inbreeding depression may influence selection on dispersal.  相似文献   

6.
Inbreeding is a major component of the mating system in populations of many plants and animals, particularly hermaphroditic species. In flowering plants, inbreeding can occur through self-pollination within flowers (autogamy), self-pollination between flowers on the same plant (geitonogamy), or cross-pollination between closely related individuals (biparental inbreeding). We performed a floral emasculation experiment in 10 populations of Aquilegia canadensis (Ranunculaceae) and used allozyme markers to estimate the relative contribution of each mode of inbreeding to the mating system. We also examined how these modes of inbreeding were influenced by aspects of population structure and floral morphology and display predicted to affect the mating system. All populations engaged in substantial inbreeding. On average, only 25% of seed was produced by outcrossing (range among populations = 9-37%), which correlated positively with both population size (r = +0.61) and density (r = +0.64). Inbreeding occurred through autogamy and biparental inbreeding, and the relative contribution of each was highly variable among populations. Estimates of geitonogamy were not significantly greater than zero in any population. We detected substantial biparental inbreeding (mean = 14% of seeds, range = 4-24%) by estimating apparent selfing in emasculated plants with no opportunity for true selfing. This mode of inbreeding correlated negatively with population size (r = -0.87) and positively with canopy cover (r = +0.90), suggesting that population characteristics that increase outcross pollen transfer reduce biparental inbreeding. Autogamy was the largest component of the mating system in all populations (mean = 58%, range = 37-84%) and, as expected, was lowest in populations with the most herkogamous flowers (r = -0.59). Although autogamy provides reproductive assurance in natural populations of A. canadensis, it discounts ovules from making superior outcrossed seed. Hence, high autogamy in these populations seems disadvantageous, and therefore it is difficult to explain the extensive variation in herkogamy observed both among and especially within populations.  相似文献   

7.
We model the evolution of plant mating systems under the joint effects of pollen discounting and pollen limitation, using a dynamic model of inbreeding depression, allowing for partial purging of recessive lethal mutations by selfing. Stable mixed mating systems occur for a wide range of parameter values with pollen discounting alone. However, when typical levels of pollen limitation are combined with pollen discounting, stable selfing rates are always high but less than 1 (0.9相似文献   

8.
Gynodioecy, the co-occurrence of female and hermaphroditic individuals within a population, is an important intermediate in the evolution of separate sexes. The first step, female maintenance, requires females to have higher seed fitness compared with hermaphrodites. A common mechanism thought to increase relative female fitness is inbreeding depression avoidance, the magnitude of which depends on hermaphroditic selfing rates and the strength of inbreeding depression. Less well studied is the effect of biparental inbreeding on female fitness. Biparental inbreeding can affect relative female fitness only if its consequence or frequency differs between sexes, which could occur if sex structure and genetic structure both occur within populations. To determine whether inbreeding avoidance and/or biparental inbreeding can account for female persistence in Geranium maculatum, we measured selfing and biparental inbreeding rates in four populations and the spatial genetic structure in six populations. Selfing rates of hermaphrodites were low and did not differ significantly from zero in any population, leading to females gaining at most a 1–14% increase in seed fitness from inbreeding avoidance. Additionally, although significant spatial genetic structure was found in all populations, biparental inbreeding rates were low and only differed between sexes in one population, thereby having little influence on female fitness. A review of the literature revealed few sexual differences in biparental inbreeding among other gynodioecious species. Our results show that mating system differences may not fully account for female maintenance in this species, suggesting other mechanisms may be involved.  相似文献   

9.
There is a long-recognized association in plants between small stature and selfing, and large stature and outcrossing. Inbreeding depression is central to several hypotheses for this association, but differences in the evolutionary dynamics of inbreeding depression associated with differences in stature are rarely considered. Here, we propose and test the Phi model of plant mating system evolution, which assumes that the per-generation mutation rate of a plant is a function of the number of mitoses (Phi) that occur from zygote to gamete, and predicts fundamental differences between low-Phi (small-statured) and high-Phi (large-statured) plants in the outcomes of the joint evolution of outcrossing rate and inbreeding depression. Using a large dataset of published population genetic studies of angiosperms and conifers, we compute fitted values of inbreeding depression and deleterious mutation rates for small- and large-statured plants. Consistent with our Phi model, we find that populations of small-statured plants exhibit a range of mating systems, significantly lower mutation rates, and intermediate inbreeding depression, while large-statured plants exhibit very high mutation rates and the maximum inbreeding depression of unity. These results indicate that (i) inbred progeny typically observed in large-statured plant populations are completely lost prior to maturity in nearly all populations; (ii) evolutionary shifts from outcrossing to selfing are generally not possible in large-statured species, rather, large-statured species are more likely to evolve mating systems that avoid selfing such as self-incompatibility and dioecy; (iii) destabilization of the mating system-high selfing rate with high-inbreeding depression-might be a common occurrence in large-statured species; and (iv) large-statured species in fragmented populations might be at higher risk of extinction than previously thought. Our results help to unify and simplify a large and diverse field of research, and serve to emphasize the importance that developmental and genetic constraints play in the evolution of plant mating systems.  相似文献   

10.
Recent works have shown that mixed mating systems often evolve despite strong inbreeding depression and reproductive assurance, which is one of the widely accepted explanations for the evolution of selfing. However, there have been few empirical studies on the relationship between mixed mating and reproductive assurance in perennial plants. In the herbaceous perennial, Kosteletzkya virginica, delayed selfing induced from context-dependent style curvature offers reproductive assurance, and adverse weather conditions significantly reduce pollinator visitation rates. In this study, our goals were (i) to experimentally evaluate pollinator failure rate, reproductive assurance, selfing rate and the relationships between them, and (ii) to measure inbreeding depression across multiple growth seasons. Results indicate that both population selfing rates and reproductive assurance are significantly and positively correlated with field estimates of pollinator failure rates, and there is a strong relationship between selfing rates and reproductive assurance. Inbreeding depression across multiple growth seasons ranged from 0.621 to 0.665, and there were no significant differences among different seasons. Our data demonstrates that a mixed mating system is beneficial because frequent pollinator failure has allowed reproductive assurance to evolve through delayed selfing which minimizes the risk of seed discounting and is still advantageous despite high inbreeding depression.  相似文献   

11.
Self-fertilization is a key difference of adaptive significance between species with combined versus separate sexes. In haploid-dominant species such as mosses and ferns, species with either combined or separate sexes (monoicous and dioicous, respectively) have the potential to self-fertilize (intergametophytic selfing), but being monoicous allows an additional mode of selfing (intragametophytic selfing). We used allozyme electrophoresis to estimate deviations from expected levels of heterozygosity under Hardy-Weinberg equilibrium to infer selfing rates in 10 moss species from 36 New Zealand populations. We found that while there were deficiencies of heterozygotes compared to expectation in both monoicous and dioicous mosses, monoicous species had significantly higher levels of heterozygote deficiency than dioicous species (F(IS)=0.89+/-0.12 and 0.41+/-0.11, respectively). Estimated selfing rates suggest that selfing occurs frequently in monoicous populations, and rarely in dioicous populations. However, in two dioicous species (Polytrichadelphus magellanicus and Breutelia pendula), we found significant indications of mixed mating or biparental inbreeding in a handful of populations. These data provide the first analysis of heterozygote deficiency and selfing among haploid-dominant species with breeding system variation, and we discuss our results with respect to the consequences of inbreeding depression and the evolution of breeding systems.  相似文献   

12.
Abstract An extensive allozyme survey was conducted within a natural "meta" population of the native North American annual legume, Chamaecrista fasciculata (Leguminosae) to quantify genetic structure at different spatial scales. Gene flow was then estimated by a recently developed indirect method based on a continuous population model, using pairwise kinship coefficients between individuals. The indirect estimates of gene flow, quantified in terms of neighborhood size, with an average value on the order of 150 individuals, were concordant among different spatial scales (subpopulation, population, metapopulation). This gene-flow value lies within the range of direct estimates previously documented from observations of pollen and seed dispersal for the same metapopulation. Monte Carlo simulations using the direct measures of gene flow as parameters further demonstrated that the observed spatial pattern of allozyme variation was congruent with a model of isolation by distance. Combining previously published estimates of pollen dispersal distances with kinship coefficients from this study, we quantified biparental inbreeding relative to either a single subpopulation or the whole metapopulation. At the level of a neighborhood, little biparental inbreeding was observed and most departure from Hardy-Weinberg genotypic proportions was explained by self-fertilization, whereas both selfing and biparental inbreeding contributed to nonrandom mating at the metapopulation level. Gene flow was also estimated from indirect methods based on a discontinuous population structure model. We discuss these results with respect to the effect of a patchy population structure on estimation of gene flow.  相似文献   

13.
Most models of mating system evolution predict mixed mating to be unstable, although it is commonly reported from nature. Ecological interactions with mutualistic pollinators can help account for this discrepancy, but antagonists such as herbivores are also likely to play a role. In addition, inbreeding can alter ecological interactions and directly affect selfing rates, which may also contribute to maintaining mating system variation. We explored herbivore and inbreeding effects on pollinator behavior and selfing rates in Mimulus guttatus. First, individual spittlebug (Philaenus spumarius) herbivores were applied to native plants in two populations. Spittlebugs reduced flower size, increased anther-stigma distance, and increased selfing rates. A second experiment factorially crossed spittlebug treatment with inbreeding history (self- vs. cross-fertilized), using potted plants in arrays. Spittlebugs did not affect pollinator behavior, but they reduced flower size and nearly doubled the selfing rate. Inbreeding reduced the frequency of pollinator visits and increased flower-handling time, and this may be the first report that inbreeding affects pollinator behavior. Selfing rates of inbred plants were reduced by one half, which may reflect early inbreeding depression or altered pollinator behavior. The contrasting effects of herbivory and inbreeding on selfing rates may help maintain mating system variation in M. guttatus.  相似文献   

14.
Even though parasitic flatworms are one of the most species‐rich groups of hermaphroditic organisms, we know virtually nothing of their mating systems (selfing or kin‐mating rates) in nature. Hence, we lack an understanding of the role of inbreeding in parasite evolution. The natural mating systems of parasitic flatworms have remained elusive due to the inherent difficulty in generating progeny‐array data in many parasite systems. New developments in pedigree reconstruction allow direct inference of realized selfing rates in nature by simply using a sample of genotyped individuals. We built upon this advancement by utilizing the closed mating systems, that is, individual hosts, of endoparasites. In particular, we created a novel means to use pedigree reconstruction data to estimate potential kin‐mating rates. With data from natural populations of a tapeworm, we demonstrated how our newly developed methods can be used to test for cosibling transmission and inbreeding depression. We then showed how independent estimates of the two mating system components, selfing and kin‐mating rates, account for the observed levels of inbreeding in the populations. Thus, our results suggest that these natural parasite populations are in inbreeding equilibrium. Pedigree reconstruction analyses along with the new companion methods we developed will be broadly applicable across a myriad of parasite species. As such, we foresee that a new frontier will emerge wherein the diverse life histories of flatworm parasites could be utilized in comparative evolutionary studies to broadly address ecological factors or life history traits that drive mating systems and hence inbreeding in natural populations.  相似文献   

15.
We inferred Lloyd's modes of selfing in a natural population of the common monkeyflower, Mimulus guttatus. Estimates were obtained using floral manipulations combined with seed counts and isozyme analyses of selfing rates. Of the 25% selfing estimated from isozyme markers, about one-half was competing, about one-third was geitonogamous, and at least one-fifth (perhaps twice this) was due to biparental inbreeding. Estimates of prior and delayed selfing were small and did not significantly differ from zero. These results were obtained using plants with the characteristic pair of open flowers at an inflorescence node. The second-opening flower showed twice the rate of selfing, presumably because of protogynous-based geitonogamy differences. Solitary-flowered plants, which have smaller flowers but no geitonogamy, showed about 50% selfing, consisting of about equal components of competing selfing and biparental inbreeding. While geitonogamy and biparental inbreeding might be unavoidable by-products of adaptations for outcrossing, competing selfing is subject to more direct natural selection and warrants adaptive explanations.  相似文献   

16.
Jarne P  David P 《Heredity》2008,100(4):431-439
We review molecular methods for estimating selfing rates and inbreeding in populations. Two main approaches are available: the population structure approach (PSA) and progeny-array approach (PAA). The PSA approach relies on single-generation samples and produces estimates that integrate the inbreeding history over several generations, but is based on strong assumptions (for example, inbreeding equilibrium). The PSA has classically relied on single-locus inbreeding coefficients averaged over loci. Unfortunately PSA estimates are very sensitive to technical problems such as the occurrence of null alleles at one or more of the loci. Consequently inbreeding might be substantially overestimated, especially in outbred populations. However, the robustness of the PSA has recently been greatly improved by the development of multilocus methods free of such bias. The PAA, on the other hand, is based on the comparison between offspring and mother genotypes. As a consequence, PAA estimates do not reflect long-term inbreeding history but only recent mating events of the maternal individuals studied ('here and now' selfing). In addition to selfing rates, the PAA allows estimating other mating system parameters, including biparental inbreeding and the correlation of selfing among sibs. Although PAA estimates could also be biased by technical problems, incompatibilities between the mother's genotype and her offspring allow the identification and correction of such bias. For all methods, we provide guidelines on the required number of loci and sample sizes. We conclude that the PSA and PAA are equally robust, provided multilocus information is used. Although experimental constraints may make the PAA more demanding, especially in animals, the two methods provide complementary information, and can fruitfully be conducted together.  相似文献   

17.
Wright's gene fixation index F and two single-locus effective selfing rates—the selfing rate at loci with fixed alleles, and the selfing rate at loci without fixed alleles—were estimated in five populations of Mimulus guttatus. These two effective selfing rates describe the inbreeding observed at a single locus when both uniparental and biparental inbreeding are practiced. Estimates were made using progeny arrays assayed for six allozyme loci and two morphological loci exhibiting dominance. The average of the two selfing rates computed for subpopulations (ca. 10 m diameter) ranged from 24% to 59%, with a mean of 37%. When computed for populations (ca. 1 km diameter), average selfing rates were about 10% higher. In four populations, the selfing rate at loci with fixed alleles was higher than the selfing rate at loci without fixed alleles. Thus, the covariance of selfing with parental gene fixation was positive. In one of the populations, estimates for individual plants sampled along a transect gave positive correlations for selfing rates and for gene-fixation indices between adjacent plants. A highly positive correlation between selfing rate and gene fixation of individual plants was also observed. In another population, the covariance of selfing with gene fixation was higher for a locus causing leaf spots than for allozyme loci. This covariance is partially caused by 1) variation in homozygosity among neighborhoods and 2) biparental inbreeding within neighborhoods. The consequences of this covariance are discussed.  相似文献   

18.
Mutational variability at microsatellite loci is shaped by both population history and the mating system. In turn, alternate mating systems in flowering plants can resolve aspects of microsatellite loci evolution. Five species of yellow monkeyflowers (Mimulus sect. Simiolis) differing for historical rates of inbreeding were surveyed for variation at six microsatellite loci. High levels of diversity at these loci were found in both outcrossing and selfing taxa. In line with allozyme studies, inbreeders showed more partitioning of diversity among populations, and diversity in selfing taxa was lower than expected from reductions in effective population size due to selfing alone, suggesting the presence of either population bottlenecks or background selection in selfers. Evaluation of the stepwise mutation model (a model of DNA replication slippage) suggests that these loci evolve in a stepwise fashion. Inferred coalescent times of microsatellite alleles indicate that past bottlenecks of population size or colonization events were important in reducing diversity in the inbreeding taxon.   相似文献   

19.
Reproductive compensation, the replacement of dead embryos by potentially viable ones, is known to play a major role in the maintenance of deleterious mutations in mammalian populations. However, it has received little attention in plant evolution. Here we model the joint evolution of mating system and inbreeding depression with reproductive compensation. We used a dynamic model of inbreeding depression, allowing for partial purging of recessive lethal mutations by selfing. We showed that reproductive compensation tended to increase the mean number of lethals in a population, but favored self-fertilization by effectively decreasing early inbreeding depression. When compensation depended on the selfing rate, stable mixed mating systems can occur, with low to intermediate selfing rates. Experimental evidence of reproductive compensation is required to confirm its potential importance in the evolution of plant mating systems. We suggest experimental methods to detect reproductive compensation.  相似文献   

20.
Mutations that alter the morphology of floral displays (e.g., flower size) or plant development can change multiple functions simultaneously, such as pollen export and selfing rate. Given the effect of these various traits on fitness, pleiotropy may alter the evolution of both mating systems and floral displays, two characters with high diversity among angiosperms. The influence of viability selection on mating system evolution has not been studied theoretically. We model plant mating system evolution when a single locus simultaneously affects the selfing rate, pollen export, and viability. We assume frequency-independent mating, so our model characterizes prior selfing. Pleiotropy between increased viability and selfing rate reduces opportunities for the evolution of pure outcrossing, can favor complete selfing despite high inbreeding depression, and notably, can cause the evolution of mixed mating despite very high inbreeding depression. These results highlight the importance of pleiotropy for mating system evolution and suggest that selection by nonpollinating agents may help explain mixed mating, particularly in species with very high inbreeding depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号