首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight elements (i.e. K, Ca, Mn, Fe, Cu, Zn, Se, and Rb) were measured in 50 different regions of 12 normal human brains by particle-induced X-ray emission (PIXE) analysis. The dry weight concentrations of K, Fe, Cu, Zn, Se, and Rb were consistently higher for gray than for white matter areas. The K, Zn and Se concentrations for the regions of mixed composition and, to some extent, also the Rb concentrations, were intermediate between the gray and white matter values, and they tended to decrease with decreasing neuron density. The mean dry weight concentrations of K, Ca, Zn, Se, and Rb in the various brain regions were highly correlated with the mean wet-to-dry weight ratios of these regions. For Mn, Fe, and Cu, however, such a correlation was not observed, and these elements exhibited elevated levels in several structures of the basal ganglia. For K, Fe, and Se the concentrations seemed to change with age. A hierarchical cluster analysis indicated that the structures clustered into two large groups, one comprising gray and mixed matter regions, the other white and mixed matter areas. Brain structures involved in the same physiological function or morphologically similar regions often conglomerated in a single subcluster.  相似文献   

2.
The abnormalities of metallochemical reactions may contribute to the pathogenesis of Amyotrophic Lateral Sclerosis (ALS). In the present work, an investigation of the elemental composition of the gray matter, nerve cells and white matter from spinal cord tissues representing three ALS cases and five non-ALS controls was performed. This was done with the use of the synchrotron microbeam X-ray fluorescence technique (micro-SRXRF). The following elements were detected in the tissue sections: P, S, Cl, K, Ca, Fe, Cu, Zn and Br. A higher accumulation of Cl, K, Ca, Zn and Br was observed in the nerve cell bodies than in the surrounding tissue. Contrary to all other elements, Zn accumulation was lower in the white matter areas than in the gray matter ones. The results of quantitative analysis showed that there were no general abnormalities in the elemental accumulation between the ALS and the control group. However, for individual ALS cases such abnormalities were observed for the nerve cells. We also demonstrated differences in the elemental accumulation between the analyzed ALS cases.  相似文献   

3.
The study of the concentrations of Cr, Zn, Cd, Pb, Ni, and Cu in soils under different land uses in rural, semi-urban, and urban zones in the Niger Delta was carried out with a view to providing information on the effects of the different land uses on the concentrations of trace elements in soils. Our results indicate significant variability in concentrations of these metals in soils under different land uses in rural, semi-urban, and urban zones. The maximum concentrations of metals in the examined soil samples were 707.5 mg.kg?1, 161.0 mg.kg?1, 2.6 mg.kg?1, 59.6 mg.kg?1, 1061.3 mg.kg?1, and 189.2 mg.kg?1 for Cr, Zn, Cd, Pb, Ni, and Cu, respectively. In the rural zone, the cassava processing mill is a potent source of Ni, Cr, Cu, and Zn while agricultural activities are a source of Cd, and automobile emissions and the use of lead oxide batteries constitute the major sources of Pb. In the urban zone, soils around the wood processing mill showed elevated concentrations of Cu, Cr, Zn, and Ni, while soils around automobile mechanic works and motor parks showed elevated levels of Pb. Elevated Cd concentrations were observed in soils under the following land uses: urban motor park, playground, welding and fabrication sheds, and metallic scrap dump. The contamination/pollution index of metals in the soil follows the order: Ni > Cd > Cr > Zn > Cu > Pb. The multiple pollution index of metals at different sites were greater than 1, indicating that these soils fit into “slight pollution” to “excessive pollution” ranges with significant contributions from Cr, Zn, Cd, Ni, and Cu.  相似文献   

4.
BackgroundAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with progressive muscle wasting, paralysis, and respiratory failure. Whereas approximately 10–15 % of ALS cases are familial, the etiology of the remaining, sporadic ALS cases remains largely unknown. Environmental exposures have been suggested as causative factors for decades, and previous studies have found elevated concentrations of metals in ALS patients.PurposeThis meta-analysis aims to assess metal concentrations in body fluids and tissues of ALS patients.MethodsWe searched the MEDLINE and EMBASE databases on December 7th, 2022 for cross-sectional, case-control, and cohort studies which measure metal concentrations in whole blood, blood plasma, blood serum, cerebrospinal fluid (CSF), urine, erythrocytes, nail, and hair samples of ALS patients. Meta-analysis was then performed when three or more articles existed for a comparison.FindingsTwenty-nine studies measuring 23 metals were included and 13 meta-analyses were performed from 4234 screened entries. The meta-analysis results showed elevated concentrations of lead and selenium. Lead, measured in whole blood in 6 studies, was significantly elevated by 2.88 µg/L (95 % CI: 0.83–4.93, p = 0.006) and lead, measured in CSF in 4 studies, was significantly elevated by 0.21 µg/L (95 % CI: 0.01 – 0.41, p = 0.04) in ALS patients when compared to controls. Selenium, measured in serum/plasma in 4 studies, was significantly elevated by 4.26 µg/L (95% CI: 0.73 – 7.79, p = 0.02) when compared to controls.Analyses of other metal concentrations showed no statistically significant difference between the groups.ConclusionLead has been discussed as a possible causative agent in ALS since 1850. Lead has been found in the spinal cord of ALS patients, and occupational exposure to lead is more common in ALS patients than in controls. Selenium in the form of neurotoxic selenite has been shown to geochemically correlate to ALS occurrence in Italy. Although no causal relationship can be established from the results of this meta-analysis, the findings suggest an involvement of lead and selenium in the pathophysiology of ALS. After a thorough meta-analysis of published studies on metal concentrations in ALS it can only be concluded that lead and selenium are elevated in ALS.  相似文献   

5.
A mass spectrometry based high throughput approach was employed to profile white and gray matter lipid levels in the prefrontal cortex (Brodmann area 9) of 45 subjects including 15 schizophrenia and 15 bipolar disorder patients as well as 15 controls samples. We found statistically significant alterations in levels of free fatty acids and phosphatidylcholine in gray and white matter of both schizophrenia and bipolar disorder samples compared to controls. Also, ceramides were identified to be significantly increased in white matter of both neuropsychiatric disorders as compared to control levels. The patient cohort investigated in this study includes a number of drug naive as well as untreated patients, allowing the assessment of drug effects on lipid levels. Our findings indicate that while gray matter phosphatidylcholine levels were influenced by antipsychotic medication, this was not the case for phosphatidylcholine levels in white matter. Changes in free fatty acids or ceramides in either white or gray matter also did not appear to be influenced by antipsychotic treatment. To assess lipid profiles in the living patient, we also profiled lipids of 40 red blood cell samples, including 7 samples from drug naive first onset patients. We found significant alterations in the concentrations of free fatty acids as well as ceramide. Overall, our findings suggest that lipid abnormalities may be a disease intrinsic feature of both schizophrenia and bipolar disorder reflected by significant changes in the central nervous system as well as peripheral tissues.  相似文献   

6.
Heavy metals (Cd, Ni, Cu, Pb, and Zn) and total sulfur (TS) in both surficial sediments and adjacent floodplain topsoils of the Lean River catchment are investigated to comprehend the effects of flooding on heavy metals in soils, the evolution of the quality of sediments, and transfer of sediment metals. The results show that concentrations of metals except for Ni in soils are significantly correlated with those in sediments. At most upstream or downstream locations, sediment metal concentrations are found comparable to those in soils (sed/soil≈1). For Cu at locations close to the Dexing Copper Mine (DCM), flooding brought Cu-poor clays into the floodplain soil system and this leads to sed/soil<1, while at locations adjacent to the Yinshan Lead-zinc Mine (YLM), suspended solids containing high concentrations of iron and magnesium oxide absorb large quantities of dissolved Cd, Pb, and Zn and deposit on the floodplain during flooding (sed/soil>1). In spite of an elevated Cu production of the DCM, a significant decrease in sediment Cu concentrations is found as compared to those 10 years ago. The decrease may be due to the elevated Cu ore utilizing efficiency and the use of a new modern tailing pool. At the location closest to the Yinshan Lead-zinc Mine (YLM), Pb and Zn concentrations increased in recent sediments. In the Lean River, metal contamination in sediments cannot reach the location 60 km downstream of their sources in 2005.  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder disease. Ten percent of the ALS patients are congenital (familial ALS), and the other 90% are sporadic ALS (SALS). It has been shown that mutations found in the Cu,Zn-SOD cause 20% of the familial ALS due to its low enzyme activity. We hypothesized that heavy metals may interfere the structure of Cu,Zn-SOD protein to suppress its activity in some of the SALS. In this study, we expressed and characterized the recombinant human Cu,Zn-SOD under various concentrations of Cu(2+), Zn(2+), and Cd(2+). By atomic absorption spectrophotometry, we demonstrated that adding of cadmium significantly increased the content of cadmium ion, but reduced its Zn(2+) content and enzyme activity of the Cu,Zn-SOD protein. The data of circular dichroism spectra demonstrated that the secondary structure of Cu,Zn-SOD/Cd is different from Cu,Zn-SOD, but close to apo-SOD. In addition to the effect of cadmium on Cu,Zn-SOD, cadmium was also shown to induce neural cell apoptosis. To further investigate the mechanism of neural cell apoptosis induced by cadmium, we used proteomics to analyze the altered protein expressions in neural cells treated with cadmium. The altered proteins include cellular structural proteins, stress-related and chaperone proteins, proteins involved in reactive oxygen species (ROS), enzyme proteins, and proteins that mediated cell death and survival signaling. Taken together, in this paper, we demonstrate that cadmium decreases the content of Zn(2+), changes the conformation of Cu,Zn-SOD protein to decrease its enzyme activity, and causes oxidative stress-induced neural cell apoptosis.  相似文献   

8.
In the present work the extent and variation of Zn, Cd, Pb, Cu, and Hg loading in undisturbed surface soil (0–5 cm) and the vertical transport of the metals in soil profiles are studied in the vicinity of a zinc smelter in Norway. Three major controlling factors on the metal concentrations in soil have been assessed: 1) distance from the anthropogenic point source; 2) organic matter content (O.M.); and 3) the prevailing wind directions. Moreover metal distributions in proximal soil profiles in 1972 and 2003 are compared. Current concentrations of Zn, Cd, Pb, Cu, and Hg in surface soil reach 14000, 60, 980, 430, and 7.0 mg·kg ? 1 , respectively, near the smelter and decrease regularly with distance in the northerly direction according to the regression model (y = ax? b ). The Zn concentrations are significantly different from the background range up to 30 km from the smelter, whereas the other metals approach background at only 10 km distance. Subsurface concentration peaks of Pb, Cu, and Hg are found at greater depth in soil profiles than peaks of Zn and Cd. Levels of Zn, Cd, and Pb in surface soil seem to have decreased from 1972 to 2003, whereas for Cu the levels appear not to be significantly different.  相似文献   

9.
The input of heavy metals by atmospheric deposition to forested watersheds substantially decreased during the last decades in many areas. The goal of our study was to identify the present sinks and sources of metals and factors influencing metal mobility at the catchment and soil profile scale. We determined concentrations and fluxes of Cd, Zn, Cu, Cr and Ni in precipitation, litterfall, soil solutions (Oi, Oe, Oa horizon percolates, 20 and 90?cm soil depth) and runoff in a forest ecosystem in NE-Bavaria, Germany for 1?year. The metal concentrations in solutions were mostly <10???g?l?1 beside Zn (<1200???g?l?1). The present total deposition was estimated at 1.0, 560, 30, 1.2 and 10.4?g?ha?1?year?1 for Cd, Zn, Cu, Cr and Ni, respectively. The mass balance (total deposition minus runoff) at the catchment scale indicated actual retention of Zn, Cu and Ni, but an almost balanced budget for Cr and Cd. Considering the soil profile scale, the Oi horizon still acted as a sink, whereas the Oe and Oa horizons were presently sources for all metals. The solid?Csolution partitioning coefficients indicated higher mobility of Cd and Zn than of Cu, Cr and Ni in forest soils. In the mineral soil horizons, Kd values derived from field measurements were substantially larger than those predicted with empirical regression equations from Sauv?? et al. (Environ Sci Technol 34:1125?C1131, 2000; Environ Sci Technol 37:5191?C5196, 2003). The mineral soil acted as a sink for all metals beside Cd. Dissolved organic C and pH influenced the metal mobility, as indicated by significant correlations to metal concentrations in Oa percolates and runoff. The solid?Csolution partitioning coefficients indicated higher mobility of Cd and Zn than of Cu, Cr and Ni in forest soils. Overall, the decreased deposition rates have obviously induced a source function of the Oe and Oa horizon for metals. Consequently, mobilization of metals from forest floor during heavy rain events and near surface flow conditions may lead to elevated concentrations in runoff.  相似文献   

10.
In this work we have studied the accumulation of heavy metals in two brown trout (Salmo trutta) populations in their natural environment and the participation of metal binding to metallothionein (MT) in this process. Cd, Cu and Zn concentrations, total MT (including Cu MT) and Cd/Zn MT were measured in the gills, liver and kidney of trout inhabiting two rivers, one Cu-contaminated and the other Cd/Zn-contaminated, located at Røros, Central Norway. In both populations, high levels of Cu were found in the liver, whereas Cd was accumulated in liver and particularly in the kidney. The proportions of Cd/Zn MT and Cu MT in liver and kidney, but not in gills, reflected the accumulated and the environmental concentrations of these metals. The total Cu MT concentrations in the investigated tissues, however, were highest in trout from the river with the lowest ambient Cu concentration. It is suggested that MTs are of less importance in Cu-acclimated trout. The data also suggest that acclimation to a Cu-rich environment involves reduced Cu accumulation or increased Cu elimination. In trout from the Cd-rich environment, this metal was mainly bound to MT, whereas in trout from the Cu-rich environment Cd was also associated with non-MT proteins. These findings emphasize the importance to determine both Cd/Zn MT and Cu MT levels, when the participation of this protein in metal handling in trout tissues is investigated.  相似文献   

11.
珠江三角洲马尾松年轮重金属含量年代变化   总被引:6,自引:0,他引:6  
采用树木年轮化学分析手段,探讨了肇庆鼎湖山(相对清洁区)和南海西樵山(污染区)马尾松(Pinus massonianaL.)不同时期木质部6种重金属(Cu、Zn、Ni、Cd、Cr和Pb)含量的年代变化。结果表明:西樵山马尾松林地表层土壤Cu、Zn、Cd和Pb含量均超过其在广东省表层土壤环境背景值,鼎湖山马尾松林地表层土壤除Cd外其余重金属含量在背景值范围内;鼎湖山和西樵山马尾松木质部中Cu、Zn、Cr和Pb含量均呈现从心材到边材上升的分布格局,反映了珠江三角洲环境中可供植物利用的重金属在过去有了增加。Cu、Zn、Ni,特别是Cr和Pb的最大含量出现在1990年后形成的木质部中,两地环境(土壤和大气)中重金属含量增加是导致马尾松木质部重金属含量上升的主要原因;在相同时期形成的木质部中,西樵山马尾松木质部Cu、Cr和Pb的含量大于鼎湖山,Zn、Ni和Cd含量则小于鼎湖山,这与环境重金属含量差异有关,也与马尾松对不同重金属的富集能力有关。马尾松年轮化学分析的结果能够提供珠三角地区重金属的历史变化信息。  相似文献   

12.
Five heavy metals (Cd, Cu, Ni, Pb, and Zn) in river sediments from Abshineh River, Hamedan, western Iran, were fractionated by a sequential extraction procedure. Cu, Ni, Pb, and Zn existed in sediments mainly in residual fraction (mean 92%, 86%, 77%, and 65%, respectively), whereas Cd occurred mostly as organic matter (mean 41%) and exchangeable (mean 25%) fractions. The mean percent of mobile fraction of Cd, Cu, Ni, Pb, and Zn in contaminated sediments was 25, 13, 4, 24, and 10, respectively, which suggests that the mobility and bioavailability of the five metals in sediments probably decline in the following order: Cd = Pb > Cu > Zn > Ni. The metal levels were also evaluated according to the contamination factor, which revealed significant anthropogenic pollution of Cd and Pb.  相似文献   

13.
Concentrations of trace metals (Cu, Pb, Zn, Cd, Cr, Hg, and As) were determined for the first time in seawater, sediment, and Manila clam from Deer Island, Liaoning Province, China. The seawater, sediment, and clam samples were collected seasonally at three clam farming sites around Deer Island during 2010–2011. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the seawater samples were 4.16, 0.72, 5.88, 0.45, 2.51, 0.03, and 1.02 μg/l, respectively. The seasonal variations of trace metals in seawater showed a significant difference in the concentrations of Cu, Pb, Zn, Hg, and As among seasons. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the sediment samples were 6.43, 13.80, 53.08, 1.10, 36.40, 0.05, and 4.78 mg/kg dry weight, respectively. Trace metal concentrations in sediment seasonally varied significantly except for Cd and Hg. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the clam samples were 11.28, 0.61, 92.50, 0.58, 3.98, 0.03, and 1.98 mg/kg dry weight, respectively. Concentrations of Cu, Zn, Cd, Cr, and As in Manila clam showed marked seasonal fluctuations with significant difference. Cu and Zn were the metals with the highest mean biosediment accumulation factor values in Manila clam. Besides, significant correlations for the concentrations of Cu and Zn relative to their concentrations in sediment were also found. Such differences in regression analyzes may be explained by differential bioaccumulation of essential and xenobiotic metals. Concentrations of trace metals in Manila clam did not exceed the maximum established regulatory concentrations for human consumption. Moreover, the calculations revealed that the estimated daily intake values for the examined clam samples were below the internationally accepted dietary guidelines and the calculated hazard quotient values were well less than 1, thus strongly indicating that health risk associated with the intake studied metals through the consumption of Manila clam from Deer Island was absent.  相似文献   

14.
An investigation was conducted to examine the spatial variation and fractionation of bed sediment-borne Cu, Zn, Pb, and Cd in a stream system affected by acid mine drainage. The pH had a major control on the spatial variation pattern of soluble, exchangeable, and carbonate-bound Cu, Zn, and Cd. There was a prominent concentration peak of carbonate-bound, oxide-bound, and organic-bound metals at the 29 km station, as controlled by the abundance of organic C, carbonate C, and oxides of manganese and iron. In general, the residual fraction was the dominant form for all four investigated metals. It was likely that oxide-Mn played a more important role in binding Zn and Cd than oxide-Fe did. In contrast, Cu had a higher affinity for iron hydrous oxides than for manganese oxide. Pb had a higher affinity for oxides of iron and manganese than for carbonates and organic matter. The presence of organic-bound metals in both the acidic upstream reach and non-acidic downstream reach suggests that the binding of these metals by organic matter was not markedly affected by pH, while the correspondence of organic C peak and organic-bound metal peaks at the 29 km station indicates a strong control by organic matter abundance on the quantity of organic-complexed metals.  相似文献   

15.
Sayed  W. F. 《Plant and Soil》2003,254(1):19-25
Phytoextraction of Cd by some populations of Thlaspi caerulescens which have the ability to co-hyperaccumulate Cd and Zn requires information about the distribution of both metals within the plant at the organ-level. This work was conducted to determine whether the distribution and solubility of Cd and Zn in Thlaspi caerulescens are affected by the age of plant and organ, and whether Cd and Zn have a common distribution in the plant in soils contaminated by both metals. A series of pot experiments were conducted where a Cd- and Zn-hyperaccumulating population was grown on soils contaminated by Cd and Zn. Temporal changes in metal concentration of roots and of shoots was recorded, along with the water and CaCl2 solubility of metals in the plant organs. Also, leaves were grouped according to their age and their respective content of Cd and Zn was measured. Both metals were present at higher concentrations in leaves than in roots. The whole-plant content of Zn decreased with time while that of Cd increased or remained unchanged. At harvest, young leaves exhibited higher Cd concentration than older, but the reverse was true for Zn. Both metals were more soluble in dry leaves and senescent leaves than in fresh material, and Zn was more water-soluble than Cd. In conclusion, the distribution of Cd and Zn in the hyperaccumulator T. caerulescensvaried according to the organ and plant age, and Cd and Zn were shown to have a different distribution within the plant.  相似文献   

16.
The concentrations of Cd, Cu, Pb, and Zn were determined in the abiotic and biotic components at two sites in the Fox River, Illinois. Analysis of the metals was completed on solutions of wet ashed or dry ashed samples with a single beam atomic absorption spectrophotometer. Despite different inputs of the trace metals there were no significant differences in the concentration of Cu or Zn in the biota between the two sites. This was postulated to be due to physiological control of these metals. However, Cd and Pb concentrations were higher in the biota and substrate at the high input site. No accumulation of Cd or Pb occurred at higher trophic levels. Cu and Zn concentrations were similar for all biota with the exception of crayfish and snails which had higher Cu and Zn concentrations, respectively.  相似文献   

17.
Willows (Salix spp.) can be used to phytoremediate soils contaminated by Zn and Cd under certain conditions. In this study, the ability of 14 Salix cultivars to concentrate Cd, Zn and S in leaves was measured in hydroponic culture with 10 and 200 µM Cd and Zn, respectively, in the nutrient medium. The cultivars showed a wide range of biomass yields, tolerance to metals, and foliar concentrations of Zn and Cd, with some cultivars accumulating up to 1000 mg kg?1 Zn, 70 mg kg?1 Cd and 10,000 mg kg?1 S with only mild phytotoxicity symptoms attributable to excess Zn. Cultivars with higher foliar Zn concentrations tended to have higher foliar Cd concentrations as well, and competition between Zn and Cd for uptake was observed. Exposure of Salix cultivars to Cd and Zn did not affect foliar concentrations of secondary metabolites such as polyphenols, but trace metal concentrations in leaves were significantly reduced (Fe and Cu) or increased (Mn) by exposure to excess Zn and Cd. Sulfur-XANES spectroscopy showed foliar S to be predominantly in highly oxidized (sulfate plus sulfonate) and reduced (thiol) forms, with oxidized S more prevalent in willows with the highest total S content.  相似文献   

18.
High-performance ion chromatography and inductively coupled plasma–mass spectrometry methods have been applied to estimate the content of Cd, Co, Cu, Fe, Mn, Zn, and Ni in whole blood, plasma, and urine of obese and nonobese children. The study was conducted on a group of 81 Polish children of age 6–17 years (37 males, 44 females). Obese children were defined as those with body mass index (BMI) >95th percentile in each age–gender-specific group. Statistical testing was done by the use of nonparametric tests (Kruskal–Wallis's and Mann–Whitney's U) and Spearman's correlation coefficient. Significant correlations appeared for control group in plasma (Mn–Cd, Ni–Co), urine (Cu–Co), and blood (Fe–Cu), while for obese patients in plasma (Cd–Mn, Ni–Cu, Ni–Zn) and urine (Fe–Cd, Co–Mn). Sex criteria did not influence correlations between metals' content in plasma and urine of obese patients. Metals' abundance was correlated in non-corresponding combinations of body fluids. Rare significant differences between content of metals according to sex and the type of body fluids were discovered: Zn in plasma from obese patients of both sexes, and Zn, Co, and Mn in blood, Mn in plasma from healthy subjects. Negative correlations between BMI and Zn in blood, Cu in plasma, and Fe in urine were discovered for girls (control group). Positive correlation between Co content in plasma and BMI was discovered for obese boys. The changes in metals' content in body fluids may be indicators of obesity. Content of zinc, copper, and cobalt should be monitored in children with elevated BMI to avoid deficiency problems.  相似文献   

19.
We examined the transfer of cadmium (Cd), inorganic mercury [Hg(II)], methylmercury (MeHg), and zinc (Zn) in an intertidal rocky shore food chain, namely from marine phytoplankton to suspension-feeding rock oysters (Saccostrea cucullata) and finally to predatory whelks Thais clavigera. The uptake of metals from the dissolved phase was also concurrently quantified in the oysters and the whelks. Metal uptake by the oysters was not directly proportional, whereas metal uptake by the whelks was directly proportional to metal concentration in the water. The order of uptake was MeHg>Hg(II)>Zn>Cd, and was much higher in the oysters than in the whelks. The relative uptake of Zn and Cd was comparable between oysters and whelks, whereas MeHg and Hg(II) showed disproportionally higher uptake in oysters than in whelks as compared to Zn and Cd. The assimilation efficiencies (AEs) were in the order of MeHg>Zn>Cd=Hg(II) in oysters, whereas the AEs were highest for MeHg and comparable for Zn, Cd, and Hg(II) in the whelks. Pre-exposure of the oysters to different dissolved concentrations of Cd significantly elevated the AEs of Cd and Hg(II) but not of Zn, in association with the induction of metallothioneins in the oysters. The whelks significantly assimilated Cd and Zn from various prey (barnacles, oysters, mussels, and snails) with contrasting strageties of metal sequestration and storage. There was no significant relationship between the metal AE and the metal partitioning in the soluble fraction (including metallothionein-like proteins, heat stable protein, and organelles). The insoluble fraction of metals was also available for metal assimilation. Our calculations show that the dietary uptake of metals can be dominant in the overall bioaccumulation in the oysters and whelks, and the trophic transfer factor was >1 for all metals. Thus, the four metals have a high potential of being biomagnified in the intertidal rocky shore food chain. MeHg possessed the highest and Hg(II) and Cd the lowest potential of trophic transfer among the four metals considered.  相似文献   

20.
The distribution of heavy metals (Fe, Mn, Zn, Cu, Pb, Ni and Cd) were investigated in various organs and tissues of striped dolphin, Stenella coeruleoalba. The animals were caught alive at Taiji, on the coast of Kii Peninsula, during the open season in December 1978. Determination of the metals was made by atomic absorption spectrophotometry and significant differences of metal concentration in the positions of the muscle, blubber and skin, respectively, were observed. The front ventral muscle of matured dolphins showed the highest concentrations of Zn and Cd and lowest Fe when compared to other parts of the muscle. Most of the metals recorded relatively low concentrations in melon rather than in the other lipid layers of blubber. In skin tissue, the concentrations of Fe, Mn and Zn were significantly higher in black-colored skin than in white skin. Moreover, a difference in the concentrations of metals according to bone position was observed. In general, high concentrations of most of the metals were found in liver, kidney and bone, with low concentrations in brain and the lipid layer of blubber. Furthermore, relatively high concentrations of Cu, Mn and Zn were found in skin, and for Mn, Zn, Ni and Cd it was likewise in pancreas and the reproductive organs. Based upon these results, the nature of the organ(s) of a dolphin that has to be selected for ecological and hygienic comparison was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号