首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The motility and locomotion of embryonic cells of the medaka, Oryzias latipes , were studied in situ with time-lapse cinematography.
In the early morula (128-cell stage), the surface of the blastomeres begins to undulate gently. By the early blastula stage, these undulations increase gradually in amplitude, and blebs appear. These blebs protrude and retract rapidly. In the mid-blastula stage they are found in most of the blastomeres. Some are found adhering to the surfaces of other cells. Blebs often expand into elongate lobopodia. Cell locomotion is first evident in the mid-blastula stage and continues throughout gastrulation and afterward. The cells move in the direction of the protrusion. In the late blastula a number of blastomeres locomote in random directions. In the thickening stage, when blastoderm epiboly begins, the cells with lamellipodia or elongate filopodia increase gradually in number, and in the early gastrula most cells change into this form. The motility, rate of movement, and mode of locomotion of embryonic cells during early development are described in detail.  相似文献   

2.
It is proposed that patching, capping and endocytosis, and cell locomotion are manifestations of a single process whereby the cell discards foreign materials. Capping results from the binding to the cell surface of particulate (or molecular) objects which cannot function as immovable substratum. This might be described as unsuccessful or abortive cell adhesion in that the particles adhere to the cell rather than the cell adhering to the substratum. Lateral particle movements on the cell surface membrane are effected by the submembranous microfilament-microtubule system, resulting in capping without displacement of the cell. Successful adhesion of the cell to a substratum renders capping and endocytosis impossible and the cell attempts to discard the substratum by mechanisms analogous to capping. The cell achieves this by lateral movement and detachment of the trailing edge.The concept of abortive adhesion leading to capping has been amplified by the development of molecular models of normal and neoplastic cell adhesion in vitro in the presence and absence of serum. In these models, the normal cells have molecule A (adhesion sites) on their surface; they can spread on the substratum in the absence of serum. In the presence of serum, the A molecules on the normal cell surface bind with B molecules in serum, which may be substratum-bound or free in suspension. Binding of free B molecules with cell surface A molecules results in blockage of adhesion sites; these are cleared via capping. New adhesion sites (A molecules) are produced at the active edges of the cell. Binding of cell surface A molecules with the substratum bound B molecules results in cell adhesion. Transformed cells do not have A molecules on their surface; they cannot spread in the absence of serum. The transformed cells may recruit A molecules from the serum to attain deformability and spreading.These models also relate to capping of gold or resin particles, cell locomotion and regulation of cell division, and lectin-induced agglutination of transformed cells.  相似文献   

3.
Contact angle measurements have been used to correlate surface hydrophobicity of a supporting substratum with adhesion and locomotion of polymorphonuclear leukocytes. The binding of human serum albumin, a well-known chemokinetic substance, to hydrophilic glass slides gave rise to hydrophobic surfaces with adhesive properties conducive, to cell polarization thus allowing cell locomotion. Parallel contact angle and cell adhesion measurements suggested that albumin modified the cellsubstratum interaction by increasing the van der Waals forces of attraction and reducing the electrostatic forces. By allowing cells to adhere to a hydrophobic surface (siliconized glass), it was found that protein could be omitted from in vitro test systems for leukocyte locomotion. It is suggested that quantitatively equal cell adhesion values may, depending on the type of attraction forces working in adhesion to the substratum, result in different locomotion patterns.  相似文献   

4.
C Dahlgren 《Cell biophysics》1982,4(2-3):133-141
Contact angle measurements have been used to correlate surface hydrophobicity of a supporting substratum with adhesion and locomotion of polymorphonuclear leukocytes. The binding of human serum albumin, a well-known chemokinetic substance, to hydrophilic glass slides gave rise to hydrophobic surfaces with adhesive properties conductive to cell polarization, thus allowing cell locomotion. Parallel contact angle and cell adhesion measurements suggested that albumin modified the cell-substratum interaction by increasing the van der Waals forces of attraction and reducing the electrostatic forces. By allowing cells to adhere to a hydrophobic surface (siliconized glass), it was found that protein could be omitted from in vitro test systems for leukocyte locomotion. It is suggested that quantitatively equal cell adhesion values may, depending on the type of attraction forces working in adhesion to the substratum, result in different locomotion patterns.  相似文献   

5.
Freeze-fracturing and surface labelling of embryonic neural retina cells   总被引:1,自引:0,他引:1  
Freeze-fracturing of dissociated and aggregating neural retina cells from 7-day chick embryos revealed on the inner faces (PF) of the cell membrane numerous particles 6–20 nm in size. In contrast, the PF faces of blebs and some of the lobopodia that project from the cell surface were practically devoid of such particles. However, the elongated filopodia that abound on these cells showed numerous particles on their PF faces. These regional differences in the distribution of particles on PF faces of these cells are interpreted as reflecting membrane activity that leads to the formation of blebs and lobopodia. The frequent presence of “pits” at the basis of blebs and lobopodia is described. It is suggested that the “pits” are associated with the formation of these membrane projections; they may represent anchoring sites for microfilaments and for microtubules involved in the dynamic structure of the cell surface. ConA-binding sites on these cells were studied by scanning electron microscopy, using labeling with hemocyanin. The distribution of these sites on different regions of the cell surface coincided with the regional differences in the distribution of the inner membrane particles.  相似文献   

6.
Summary When HeLa cells are detached from their support by trypsin, trypsin-EDTA, or by mechanical means large zeiotic blebs are formed. After reseeding the cells onto glass these blebs shrink. Those blebs near the support collapse completely to form lobes in the neighborhood of lobopodia. By scanning and transmission electron microscopy we could show the transformation of these zeiotic blebs into true lobopodia. This implies a repair of cell surface structures and components as well as of the subcortical cytoskeleton.  相似文献   

7.
N Paweletz  E M Finze 《In vitro》1984,20(2):103-108
When HeLa cells are detached from their support by trypsin, trypsin-EDTA, or by mechanical means large zeiotic blebs are formed. After reseeding the cells onto glass these blebs shrink. Those blebs near the support collapse completely to form lobes in the neighborhood of lobopodia. By scanning and transmission electron microscopy we could show the transformation of these zeiotic blebs into true lobopodia. This implies a repair of cell surface structures and components as well as of the subcortical cytoskeleton.  相似文献   

8.
The adhesive specificity of embryonic sea urchin cells from two species, and the two hybrid crosses between these species was examined by a cell-aggregate collection assay. Cells of normal Lytechinus or Tripneustes embryos were found to adhere to homospecific cell aggregates at a much higher rate than they would adhere to heterospecific aggregates. Hybrid cells adhered to collecting aggregates at an intermediate rate. The observed pattern of hybrid cell adhesion suggested that paternal gene products are capable of modifying cell surface adhesive sites as early as the mesenchyme blastula stage.  相似文献   

9.
The dissociated early embryonic cells of the fresh water fish, Oryzias latipes, protrude hyaline lobopodia, which tend to rotate around the cell circumference in a propagating wave. Cells from late blastula or gastrula continuously show this "circus movement", while most cells up to early blastula are rounded. The linear velocity of the lobopodium was estimated by means of time-lapse cinemicrography. The velocity increases slightly as cell diameter increases. The effects of pH, temperature and osmotic pressure of the immersion media on the movement were also quantitatively investigated. Cells become rounded and do not form lobopodial blebs when immersed in media below pH 5. The velocity is reduced by decreasing temperature, but the movement continues even at 5 degrees C. Cells placed in hypertonic salt solutions become crenated and do not continuously demonstrate the circus movement.  相似文献   

10.
Summary The ventral surface ofHolothuria forskali (Holothuroida, Aspidochirotida) is almost completely covered by small-sized podia that are locomotory. Each podium consists of a stem that allows the podium to lengthen, to flex, and to retract, and this is topped by a disc that allows the podium to adhere to the substratum during locomotion. Podia ofH. forskali do not end in a sucker and their adhesion to the substratum thus relies entirely on the disc epidermal secretions. The disc epidermis is made of five cell types: non-ciliated secretory cells of two different types that contain granules whose content is either mucopolysaccharidic (NCS1 cells) or mucopolysaccharidic and proteinic in nature (NCS2 cells), ciliated secretory cells containing small granules of unknown nature (CS cells), cilitated nonsecretory cells (CNS cells), and support cells. The cilia ofCS cells are subcuticular whereas those ofCNS cells, although also short and rigid, traverse the cuticle and protrude in the outer medium. During locomotion, epidermal cells of the podial disc are presumably involved in an adhesive/de-adhesive process functioning as a duogland adhesive system. Adhesive secretions would be produced byNCS1 andNCS2 cells and de-adhesive secretion byCS cells. All these secretions would be controlled by stimulations of the two types of ciliated cells (receptor cells) which presumably interact with the secretory cells by way of the nerve plexus. The lack of suckers and the coexistence of two adhesive cell types in the disc epidermis give the locomotory podia ofH. forskali a compromise structure which would perhaps explain their ability to move as efficiently along soft and hard substrata.  相似文献   

11.
Using the scanning electron microscope we have examined the appearance, in situ, of the migrating cells of the presumptive corneal endothelium in the chick embryo. The primary stroma, a collagenous layer which serves as a major substrate for the migration of the cells, was found to have many deep folds and ridges. The collagen fibrils of the stroma, as seen on its posterior surface, appear arranged more or less isotropically. Areas of orthogonal packing are small and relatively sparse. While the cells make contact with this substratum they do not seem to be guided by its topographic features. The migrating endothelial cells lack well developed ruffles, supporting the increasing prevalent idea that the pattern of cell surface activity observed in vitro during cellular locomotion, is not an absolute prerequisite for cell movement.  相似文献   

12.
Sun H  Zusman DR  Shi W 《Current biology : CB》2000,10(18):1143-1146
Although flagella are the best-understood means of locomotion in bacteria [1], other bacterial motility mechanisms must exist as many diverse groups of bacteria move without the aid of flagella [2-4]. One unusual structure that may contribute to motility is the type IV pilus [5,6]. Genetic evidence indicates that type IV pili are required for social gliding motility (S-motility) in Myxococcus, and twitching motility in Pseudomonas and Neisseria [6,7]. It is thought that type IV pili may retract or rotate to bring about cellular motility [6,8], but there is no direct evidence for the role of pili in cell movements. Here, using a tethering assay, we obtained evidence that the type IV pilus of Myxococcus xanthus functions as a motility apparatus. Pili were required for M. xanthus cells to adhere to solid surfaces and to generate cellular movement using S-motility. Tethered cells were released from the surface at intervals corresponding to the reversal frequency of wild-type cells when gliding on a solid surface. Mutants defective in the control of directional movements and cellular reversals (frz mutants) showed altered patterns of adherence that correlate reversal frequencies with tethering. The behavior of the tethered cells was consistent with a model in which the pili are extruded from one cell pole, adhere to a surface, and then retract, pulling the cell in the direction of the adhering pili. Cellular reversals would result from the sites of pili extrusion switching from one cell pole to another and are controlled by the frz chemosensory system.  相似文献   

13.
Microexudates from Cells Grown in Tissue Culture   总被引:10,自引:0,他引:10       下载免费PDF全文
Cellular substrata of known molecular structure and measurable dimensions can be constructed as transferred films from Langmuir troughs or as adsorbed films. In addition, large molecules in culture media form measurable adsorbates. With the techniques of ellipsometry and surface chemistry it is possible to characterize and measure (within ± 3A) as a function of several parameters a microexudate of molecular dimensions deposited when tissue cultured cells contact certain substrata. The selective attraction of substratum and cell for microexudate has been determined, and the time course of deposition in Eagle's medium is characterized by a rapid initial accretion of material. During this period, microexudate can diffuse several cell diameters and cannot be detected in the culture medium. In Eagle's medium the cells cannot be detached from glass surfaces by versene or trypsin unless the surface of cell or substratum is coated with certain molecules. Trypsin becomes adsorbed to cell surfaces, continues to be enzymatically active on the surface, and digests protein components of microexudate and substratum. Microexudate appears to be a complex mosaic of molecules (including protein) synthesized within or on the surfaces of cells and secreted by cells or transferred from their surfaces to specific substrata. It is proposed that this mosaic plays, on the molecular level, a significant role in cell-to-cell interactions, cell locomotion and adhesion, and the selective application and spreading of cells on various surfaces.  相似文献   

14.
The cell morphology, cell-to-cell contact behavior and extracellular matrix (ECM) of inner cells (prospective endodermal cells) of newt ( Cynops pyrrhogaster ) embryos were examined from the morula to gastrula stage by light and electron microscopy. The inner cells showed increased cell-to-cell contact from the early blastula to early gastrula stage. The cells formed blebs (5–15 μm in diameter) during the blastula stage, and started to form filopodia and lamellipodia before gastrulation. Alcian blue and lanthanum nitrate treatment revealed ECM components on the cell surface in the early blastula stage and these components increased in amount from the late blastula to early gastrula stage. It is suggested that the increase in ECM components on the cell surface may have some relation with changes in cell-to-cell contact and formation of processes on the cell surface. Besides the cell surface ECM components, glycogen-like granules were observed in intercellular spaces. From the distribution of granules in gastrulae, it is suggested that these may be important in maintaining intercellular spaces for migration of invaginating cells.  相似文献   

15.
The centrohelid heliozoan Raphidocystis contractilis has hundreds of small scales on the surface of the cell body. To understand the biological functions of the scales, comparative examinations were conducted between wild-type and scale-deficient strains that has naturally lost scales after long-term cultivation. The scale-deficient strain exhibited decreased adhesion to the substratum and had a lower sedimentation rate in water than the wild-type strain, suggesting that the scale may have the ability to attach quickly and strongly to the substratum. Percoll density gradient centrifugation showed that the scale-deficient strain had a lower density than that of the wild-type strain. In the wild-type strain, more scaled cells were observed in the higher specific gravity fractions. During the long-term culture of cells, only the cells suspended in the upper area of the flask were transferred to fresh medium. By repeating this procedure, we may have selected only cells that did not possess normal scales. In the natural environment, centrohelid heliozoans are easily flushed away if they cannot adhere strongly to the bottom. These results suggest that they use scales to ensure effective adhesion to the substratum.  相似文献   

16.
Blebbistatin reversibly disrupted both stolon tip pulsations and gastrovascular flow in the colonial hydroid Podocoryna carnea. Epithelial longitudinal muscles of polyps were unaffected by blebbistatin, as polyps contracted when challenged with a pulse of KCl. Latrunculin B, which sequesters G actin preventing F actin assembly, caused stolons to retract, exposing focal adhesions where the tip epithelial cells adhere to the substratum. These results are consistent with earlier suggestions that non-muscle myosin II provides the motive force for stolon tip pulsations and further suggest that tip oscillations are functionally coupled to hydrorhizal axial muscle contraction.  相似文献   

17.
The ability of thioglycollate (TG)-elicited mouse peritoneal macrophages to adhere to a laminin substratum has been studied. These cells do not adhere to laminin-coated (20 micrograms/ml) surfaces, but the addition of phorbol myristate acetate (PMA; 50 ng/ml) results in their rapid adherence and spreading on this substratum. TG-elicited and PMA-activated macrophages, however, can bind soluble laminin. Macrophages adhere to fibronectin-coated surfaces and tissue culture plastic without PMA stimulation, and PMA does not increase the number of cells that adhere to these surfaces. The predominant surface proteins that bind specifically to laminin-Sepharose exhibit an Mr of 67 and 36 kD, but the expression of these proteins does not increase after PMA stimulation. Laminin receptor antibodies immunoprecipitate the 67-kD protein from radiolabled surface lysates and are capable of blocking macrophage adherence to a laminin substratum. Indirect immunofluorescence microscopy indicates that PMA stimulation does not increase receptor expression, but that it may induce the aggregation of the receptor on the cell surface. PMA stimulation also promotes macrophage spreading and induces a reorganization of the actin cytoskeleton. Taken together, these data indicate the mechanism by which PMA promotes macrophage adherence to laminin does not involve increased 67-kD receptor surface expression, but that it is related to the changes in cytoskeletal and receptor surface organization that occur in response to PMA stimulation.  相似文献   

18.
The development of cell surface activity and adhesiveness was examined in relation to cleavage number in early embryos of the newt, Cynops pyrrhogaster. Both large hyaline bleb formation and surface adhesiveness to substratum were manifested in presumptive ectodermal cells isolated from embryos after the eleventh cleavage (mid-blastula stage). Scanning electron microscopy of the inner surface of the blastocoelic wall (presumptive ectodermal cell layer) revealed the formation of large blebs after the eleventh cleavage. Treatment with alcian blue and lanthanum nitrate demonstrated the accumulation of an extracellular matrix (ECM) on the surface of large blebs.  相似文献   

19.
Summary Migration of bilayered epidermal cell sheets out of explants of tadpole tails (Xenopus laevis) were investigated with time-lapse cinemicrography using reflection-contrast optics. Cell-sheet formation begins beneath the explant in a region where it is closely attached to the coverslip. A single basal cell extends a lamellipodium through the outer (surface) epidermal layer and starts moving in a direction free of attached cells. This cell remains connected to the following basal cell, which the also extends a lamellipodium onto the glass. The cell sheet develops as increasingly more adjacent basal cells start to migrate. Surface cells do not actively locomote but they remain attached to the basal cells and to adjacent surface cells. Thus, they are transported as an intact cell layer, and consequently the in situ arrangement of the tadpole epidermis is largely preserved in the cell sheet, i.e., basal cells adhere to the substratum and are covered by outer cells (surface cells) which face the culture medium. Basal cells extend lamellae beneath the rear end of the preceding cell, which is slightly fifted off the substratum. The direction of locomotion is determined by the frontal cells. Cell-sheet enlargement and locomotion cease when all the epidermal cells facing the coverslip have left the explant, and the cell sheet and epidermis covering the explant form a continuous layer.  相似文献   

20.
Cell locomotion, nerve elongation, and microfilaments   总被引:16,自引:0,他引:16  
A basic difference in locomotion between migratory cells and nerves correlates with a difference in distribution of certain microfilament systems. Lattice filaments are present where extension and movement of cell surface occur in both cell types. Bundles of sheath filaments which bind heavy meromyosin, are present in migratory cells, where displacement of the cell soma over the substratum occurs, but absent from nerves, where the cell body and axon remain fixed upon the substratum and “locomotion” is restricted to the axonal tip. It is proposed that the microfilament lattice is involved in the extension phase of locomotion, and the microfilament sheath in the contractile phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号