首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The doubly labelled water method involves the administration of water enriched in 2H and 18O followed by determination of the turnover rates of these isotopes. Since 18O is eliminated from the body as both CO2 and water, while 2H leaves only as water, the difference between the two turnover rates provides a measure of CO2 production and hence energy expenditure. Isotopic analysis by conventional stable isotope ratio analysis (SIRA) is labour intensive and time consuming, as it requires off-line conversion of water samples to gases (H2 and CO2) followed by sequential analysis for each of the two isotopes using the mass spectrometer. Lack of suitable automated instrumentation with the ability to process large numbers of samples has prevented routine application of the method. We describe here an automated technique in which body water samples (urine, saliva, breath water or milk) are analysed simultaneously for 2H and 18O. The single bench system comprises two mass spectrometer analysers, one for measuring 2H from H2 gas, the other for measuring 18O from the water vapour (masses 18, 20). Both analysers share a common heated inlet system into which microlitre quantities of the body fluids are injected from an autosampler (102 samples). The water vapour flows both directly to one analyser for 18O measurement and into a uranium reduction furnace for conversion to H2, prior to 2H measurement by the second analyser. Both analysers also share vacuum and electronic components, enabling savings in both space and cost. In this paper we present results illustrating performance characteristics and procedures for routine application to human subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The doubly labeled water (DLW) method is an isotope-based technique for the estimation of the CO(2) production, and hence energy expenditure, of free-living animals and humans. Several methods are available for the calculation of CO(2) production from the isotope fluxes, depending on different assumptions about the behavior of isotopes during the elimination process. We used the DLW method to estimate the daily energy expenditures (DEE) of 55 field voles (Microtus agrestis) held in a captive facility at 8 degrees C. We calculated DEE using both plateau and intercept approaches for estimating the sizes of the isotope dilution spaces, three different assumptions about fractionation processes, and two ways of treating the different dilution spaces of the oxygen and hydrogen isotopes. We compared the resultant DEE estimates with metabolizable energy intake (MEI) measured during a 3-d feeding trial immediately before the DLW measurements, during which the animals were in energy balance. By making different assumptions about the apparent energy absorption efficiency, we generated a range of direct estimates of MEI. When we compared DEE and MEI, we found that the two-pool model formulations consistently underestimated energy demands by up to 29.8%, depending on the assumptions made in the reference calculation. However, while our data suggest that some correction for fractionation is necessary, with the present data we were unable to separate the two most common treatments of fractionation. These data strongly support the previous suggestion that for small mammals single-pool models provide more accurate estimates of energy demands than two-pool formulation of the DLW method.  相似文献   

3.
The basis of the doubly labeled water method is measurement of the differential rates of disappearance of two isotopes of water (H2 18O and either 2H2O or 3H2O, administered at the start of the study) from body water. Published studies indicate that, in its current forms, this technique can be used to provide accurate and reasonably precise information on carbon dioxide production, total body water, and water intake in free-living humans and many small animals. Total energy expenditure can be calculated from carbon dioxide production with little loss of precision. Metabolizable energy intake can also be predicted, as the sum of total energy expenditure plus an estimate for the change in body energy stores during the measurement, but this prediction is unlikely to be accurate and precise unless the subject is in approximate energy balance.  相似文献   

4.
The doubly labeled water (DLW) method was validated against respiration gas analysis in growing precocial chicks of the black-tailed godwit (Limosa limosa) and the northern lapwing (Vanellus vanellus). To calculate the rate of CO2 production from DLW measurements, Lifson and McClintock's equations (6) and (35) were employed, as well as Speakman's equation (7.17) (all single-pool models). The average errors obtained with the first two equations (+7.2% and -11.6%, respectively) differed significantly from zero but not the error obtained with Speakman's equation (average: -2.9%). The latter error could be reduced by taking a fractional evaporative water loss of 0.13, instead of the value of 0. 25 recommended by Speakman. Application of different two-pool models resulted in relative errors of the DLW method of -15.9% or more. After employing the single-pool model with a fractional evaporative water loss value of 0.13, it was found that there was no relationship between the relative growth rate of the chick and the relative error of the DLW method. Recalculation of previously published results on Arctic tern (Sterna paradisaea) chicks revealed that the fit of the validation experiment could be considerably improved by employing a single-pool model and assuming a fractional evaporative water loss of 0.20 instead of the value of 0.50 taken originally. After employing the value of 0.20, it was found that there was no relationship between the relative growth rate of the chick and the relative error of the DLW method. This suggests that isotope incorporation into new body substances does not cause a detectable error. Thus, the DLW method seems to be applicable in young birds growing as fast as 20% d-1, after making adjustments for the fractional evaporative water loss. We recommend Speakman's equation (7.17) for general use in growing birds when evaporation is unknown.  相似文献   

5.
 A simple model was developed to describe the transport of water vapour from subjects working in hot environments while wearing chemical-protective clothing. The goal of the modelling was to obtain a better estimate of evaporative cooling of the subjects, as it was hypothesised that calculations of evaporative heat loss based on changes in dressed weight over-estimate the actual benefit experienced by the subjects. The model employed measured values of vapour pressure within the clothing ensemble to estimate the skin vapour pressure. The resistance of the clothing ensemble to water vapour transport was calculated from measurements of the physical properties of the materials in conjunction with estimates of the resistance of air layers between the clothing layers. The model predicts mean evaporation rates from the skin that are approximately 60% of those calculated from measured changes in dressed weight. Error analysis failed to account for the magnitude of this difference and possible explanations for the difference are advanced. A brief examination of the effect of wicking suggests that some of the difference results from a reduction of the resistance of the garment to water vapour due to wicking of liquid sweat through fabric layers. Received: 4 June 1997 / Accepted: 21 October 1997  相似文献   

6.
The present study was undertaken to study different methodological aspects of quantifying CO2 production and milk intake of suckling piglets using the doubly labelled water (DLW) technique. In total, 37 piglets were enriched intraperitoneally with DLW to study equilibration time of 18O (n = 3), to validate the estimation of milk intake and CO2 production (n = 10) of piglets fed milk replacer and to quantify milk intake and CO2 production of piglets nursed ordinarily by sows (n = 24). Enrichment of 18O in expired air was analysed without any sample preparation, whereas enrichment of 18O in serum was analysed after a minimum step of sample preparation, which included pipetting of the sample, blowing gaseous CO2 into the vial for 3 s and equilibrating for 24 h. The 18O enrichment of CO2 in expired air was constant within 30-40 min of intraperitoneal injection, suggesting that DLW was equilibrated within the body water by that time. For piglets fed milk replacer, the estimation of the daily CO2 production by the DLW method (64.0 ± 2.7 l CO2/day) was in agreement with that obtained by respiration trials (64.7 ± 1.8 l CO2/day). Furthermore, the intake of milk replacer (891 ± 63 g/day) determined by deuterium oxide (D2O) dilution was similar in magnitude to that found by weighing the milk disappearance (910 ± 58 g/day). The milk intake of piglets fed milk replacer was comparable with that of sucking piglets, but sucking piglets had a remarkably higher CO2 production than artificially reared piglets, which likely was caused by a higher intake of milk solids and a higher activity level. For sucking piglets, the daily CO2 production increased curvilinearly with increasing live weight (LW) in kg: piglet CO2 production (l/day) = 25.75 × LW - 1.01 × LW2. In conclusion, 18O equilibrates fast within the body water pool when administered intraperitoneally, and the accuracy of assessing milk intake and rate of CO2 production using the DLW technique is promising. Assessment of excess enrichment of 18O in serum proved to be robust. Finally, the CO2 production of piglets fed milk replacer differs considerably from that of sucking piglets.  相似文献   

7.
Abstract Maintaining appropriate water balance is a constant challenge for terrestrial mammals, and this problem can be exacerbated in desiccating environments. It has been proposed that natural selection has provided desert-dwelling mammals physiological mechanisms to reduce rates of total evaporative water loss. In this study, we evaluated the relationship between total evaporative water loss and body mass in mammals by using a recent phylogenetic hypothesis. We compared total evaporative water loss in 80 species of arid-zone mammals to that in 56 species that inhabit mesic regions, ranging in size from 4 g to 3,500 kg, to test the hypothesis that mammals from arid environments have lower rates of total evaporative water loss than mammals from mesic environments once phylogeny is taken into account. We found that arid species had lower rates of total evaporative water loss than mesic species when using a dichotomous variable to describe habitat (arid or mesic). We also found that total evaporative water loss was negatively correlated with the average maximum and minimum environmental temperature as well as the maximum vapor pressure deficit of the environment. Annual precipitation and the variable Q (a measure of habitat aridity) were positively correlated with total evaporative water loss. These results support the hypothesis that desert-dwelling mammals have lower rates of total evaporative water loss than mesic species after controlling for body mass and evolutionary relatedness regardless of whether categorical or continuous variables are used to describe habitat.  相似文献   

8.
This study is the first validation of the doubly‐labeled water (DLW) method on birds (1) to evaluate the accuracy of 2 points versus multiple points for computing fractional isotopic washout rates (k) and CO2 production (rCO2), (2) to measure CO2 production and water flux each day over a 4‐day period, (3) to compare measured fractional evaporative water loss (rG) with assumed values that provide DLW estimates of rCO2 with zero error, and (4) to measure the effect of assumed rG on the error of estimating water influx and efflux. Percent error of CO2 production of six growing poultry chicks estimated by the DLW method was not correlated with mean daily relative growth rates of up to 5% nor with daily rates of energy retained in growth of up to 320 kJ/day/kg, nor was it significantly reduced by using multiple points (5 points) rather than 2 points to compute fractional isotopic washout rates (k) and isotope pool sizes. Its seems clear from our study and the previous 5 validations on growing birds that average relative daily growth rates of up to about 20% do not increase the error of estimating rCO2 by the DLW method. Arithmetic error was significantly less when using one isotopic pool, rather than two pools, to compute rCO2 and was less when using an assumed fractional evaporative water loss (rG) of 0.45 rather than an assumed rG of 0.25 or 0.5 (the two values used predominantly in previous DLW studies). Our study supports Speakman's (1997) suggestion that the one‐pool model is more appropriate than the two‐pool model for birds weighing<1 kg. We recommend using an assumed rG of 0.45 to compute rCO2 of poultry, which is a compromise between the two schools of rG useage, i.e., rG=0.25 or 0.5, however we hesitate to recommend 0.45 for all birds in all settings. Close agreement between measured rG and an assumed rG that produced zero rCO2 error supports the validity of using the pooled fractionation correction factors (fpool) of 0.0339 for tritiated water and 0.0249 for deuterated water. Absolute error decreased with the percent washout of during measurement periods of 1 to 4 days. Accuracy of estimating rCO2 was not significantly different for durations of 2, 3, and 4 days using either tritiated or deuterated water. The arithmetic error of estimating rCO2 using a one isotopic pool model, 2 points, an rG of 0.5, and tritiated water was ?1.9% (SD=13.5) for the first day of a 4‐day period and ?4.0% (SD=8.9) for the entire period. Percent arithmetic error of water influx (rH2Oinf) and efflux (rH2Oeff) estimated for day 1 from tritiated water washout and an assumed rG of 0.5 was ?0.5 (SD=6.4) and 0.1% (SD=11.1), respectively. An rG of 0.5 produced significantly less arithmetic error than an rG of 0.25 or an rG of zero (i.e., no fractionation correction), and less absolute error in rH2Oinf. Errors were slightly more negative (underestimates) with an rG of 0.25, i.e., ?2.2 and ?2.0%, respectively and even more negative with no correction for isotopic fractionation (i.e., an assumed rG of zero). Tritiated water estimates of water influx and efflux during the first day had no error when using an rG of 0.57 and 0.48, respectively. With assumed rGs of 0.25 and 0.5, the errors of water influx were ?7.8 and ?5.9%, and the errors of water efflux were 3.4 and 5.6%, respectively, over 4 days. We recommend using an assumed rG of 0.45 to compute rH2Oeff for poultry. The error of rCO2 was about 3 to 4 times more sensitive to values of assumed rG than the error of water flux.  相似文献   

9.
Small animals need efficient water conservation mechanisms for survival and reproduction, which is relevant for the spiders that have large book lungs with large respiratory surface. If lung evaporation is relevant to limit water loss, adjustments of the spiracle opening to metabolic demands should be expected. In this study, we measured the metabolic rate and total evaporative water loss mediated by the opening of the spiracles in the migalomorph spider Paraphysa parvula, a resident of fluctuating Mediterranean environments of the mountains of central Chile. We found that the metabolism of P. parvula was similar to other Theraphosidae and low compared to other arthropods. Carbon dioxide production and evaporative water loss increased with temperature, particularly at 40 °C. The total evaporative water loss at 40 °C increased dramatically to about 10 times that found with the lower temperatures. Thus, 40 °C will be the limit temperature for this species after which evaporative water loss starts to become damaging, so it has to avoid it. The exposition to hypercapnic environments had as a consequence an increase in evaporative water loss and the involvement of the book lungs in this loss was about 60%. The possibility of losing water could condition this species to seek temperate and oxygenated shelters under rocks.  相似文献   

10.
The metabolic and water evaporation strategies in spiders may be part of a set of physiological adaptations to tolerate low or unpredictable food availability, buffering spiders against environmental fluctuations such as those of the high mountains of the central Andes.The aim of this study is to analyze experimentally the variations in metabolic rate and the rate of evaporative water with food and/or water restriction in a high mountain mygalomorph spider population (Paraphysa sp.).We found that the low metabolism of this spider was not affected by water restriction, but its metabolism was depressed after 3 weeks of food deprivation. The spider did not show seasonal metabolic changes but it presented seasonal changes in the rate of evaporative water loss at high temperatures.Females with egg sacs reduced their metabolic rate and evaporative water at high temperatures.These findings constitute a set of possible adaptations to a highly fluctuating Mediterranean environment, which is completely covered with snow for many months and then progresses rapidly to a very dry climate with high temperatures.  相似文献   

11.
1. Time and energy are key currencies in animal ecology, and judicious management of these is a primary focus for natural selection. At present, however, there are only two main methods for estimation of rate of energy expenditure in the field, heart rate and doubly labelled water, both of which have been used with success; but both also have their limitations. 2. The deployment of data loggers that measure acceleration is emerging as a powerful tool for quantifying the behaviour of free-living animals. Given that animal movement requires the use of energy, the accelerometry technique potentially has application in the quantification of rate of energy expenditure during activity. 3. In the present study, we test the hypothesis that acceleration can serve as a proxy for rate of energy expenditure in free-living animals. We measured rate of energy expenditure as rates of O2 consumption (VO2) and CO2 production (VCO2) in great cormorants (Phalacrocorax carbo) at rest and during pedestrian exercise. VO2 and VCO2 were then related to overall dynamic body acceleration (ODBA) measured with an externally attached three-axis accelerometer. 4. Both VO2 and VCO2 were significantly positively associated with ODBA in great cormorants. This suggests that accelerometric measurements of ODBA can be used to estimate VO2 and VCO2 and, with some additional assumptions regarding metabolic substrate use and the energy equivalence of O2 and CO2, that ODBA can be used to estimate the activity specific rate of energy expenditure of free-living cormorants. 5. To verify that the approach identifies expected trends in from situations with variable power requirements, we measured ODBA in free-living imperial cormorants (Phalacrocorax atriceps) during foraging trips. We compared ODBA during return and outward foraging flights, when birds are expected to be laden and not laden with captured fish, respectively. We also examined changes in ODBA during the descent phase of diving, when power requirements are predicted to decrease with depth due to changes in buoyancy associated with compression of plumage and respiratory air. 6. In free-living imperial cormorants, ODBA, and hence estimated VO2, was higher during the return flight of a foraging bout, and decreased with depth during the descent phase of a dive, supporting the use of accelerometry for the determination of activity-specific rate of energy expenditure.  相似文献   

12.
Recent applications of the doubly labeled water technique to the study of human metabolism have employed multiple sampling of body water over protracted periods, rather than the more traditional method of taking only an initial and final sample for isotopic analysis. In addition fractional turnovers of the body pools have been estimated by fitting curves to the sequential log-converted isotope enrichment against time. By manipulation of data collected in the field in a study of metabolism of vespertilionid bats, it is shown the curve-fitting technique results in an accurate estimate of CO2 production only when the rate of CO2 production is constant. Biologically realistic nonsteady-state conditions result in errors in estimates of CO2 production of up to 30%. In conditions where CO2 production is known to be temporally variable, the more traditional two-sample method may provide a more accurate estimate of CO2 production.  相似文献   

13.
Two techniques for bleeding small mammals have been used in doubly-labeled water (DLW) studies, including vena puncture and the use of starved nymphal stages of hematophagous reduviid bugs (Reduviidae, Hemiptera). In this study, we tested the validity of using reduviid bugs in doubly-labeled water experiments. We found that the isotope enrichment in initial blood samples collected with bugs was significantly lower compared to isotope enrichment in blood samples obtained using vena puncture. We therefore used the desiccation method for estimating total body water (TBW) in DLW experiments because TBW calculated using the isotope dilution method was overestimated when blood samples were collected using reduviid bugs. In our validation experiment with nectar-feeding bats (Glossophaga soricina), we compared estimates of daily energy expenditure (DEE) using DLW with those derived from the energy balance method. We considered Speakman's equation (controlling for 25% fractionated water loss) as the most appropriate for our study animal and calculated DEE accordingly. On average, DEE estimated with DLW was not significantly different from the mean value obtained with the energy balance method (mean deviation 1.2%). We conclude that although bug hemolymph or intestinal liquids most likely contaminate the samples, estimates of DEE are still valid because the DLW method does not depend on absolute isotope enrichments but on the rate of isotope decrease over time. However, dilution of blood with intestinal liquids or hemolymph from a bug may lead to larger variation in DEE estimates. We also tested how the relative error of DLW estimates changed with varying assumptions about fractionation. We used three additional equations for calculating DEE in DLW experiments. The basic equation for DLW experiments published by Lifson and McClintock (LM-6) assumes no fractionation, resulted in an overestimate of DEE by 10%. Nagy's equation (N-2) controls for changes in body mass but not for fractionation. Using Nagy's equation, DEE was overestimated by 8%. Under the assumption that 50% of total water flux fractionates, the alternative equation by Lifson and McClintock (LM-35) DEE was underestimated by 5%. The best fit between estimates of DEE based on DLW and energy balance measurements was derived by assuming that 32% of total water flux (TWF) is fractionated. We conclude that the outcome of DLW experiments is sensitive to assumptions regarding evaporative water loss, and thus recommend Speakman's equation 7.17 for use with bats.  相似文献   

14.
生态系统水分利用效率研究进展   总被引:56,自引:15,他引:41  
水分利用效率(WUE)是反映生态系统水碳循环相互关系的重要指标,开展生态系统水平WUE的时空变异性的研究有助于预测气候变化对生态系统水碳过程的影响.目前不同研究常常基于不同的算法估算生态系统WUE,一方面不同算法因包含了不同复杂程度的水过程而有着不同的内涵,另一方面各种算法又因包含了相同的核心过程而有着密切的联系.长期以来人们通过传统的生物量动态调查和生态系统水文过程的测定来估算生态系统的WUE,但该方法大大限制了在短时间尺度上对生态系统WUE进行分析,近年来发展起来的以涡度相关为代表的新技术的应用使得研究生态系统WUE在多个时空尺度上的变异特征取得了突破性的进展.生态系统WUE的主要影响因子与叶片尺度相似,主要有空气饱和水气压差(VPD)、土壤水分、大气CO2浓度、Ci/Ca等,另外,生态系统水分平衡特征也有着重要影响.比较分析表明,森林与草地生态系统WUE的日变化和季节变化存在显著的差异,同时森林和农田生态系统的WUE整体高于草地、荒漠和冻原.当前生态系统WUE的研究尚处于初始阶段,许多工作仍需深入开展,其中,多时间尺度以及生态系统间WUE的时空变异特征及机理的对比研究可能是未来工作的热点.  相似文献   

15.
In terrestrial endotherms, evaporation is a significant mechanism of water loss in hot environments. Although water is passively lost by evaporation, individuals can regulate it at different levels. Inhabiting a relatively stable environment characterized by mild ambient temperature (Ta) and high humidity can ensure a balanced water budget. Many fossorial rodents are well adapted to live in such conditions. In this study, evaporative water loss (EWL) of fossorial rodent species with different degree of adaptations to underground life (from strictly subterranean to those with regular surface activity) was evaluated. By measuring EWL, the specific contribution of either evaporative or non-evaporative components of heat loss can be determined. With the exception of the silvery mole-rat (Heliophobius argenteocinereus), in all tested rodents EWL is relatively stable below and within the thermoneutral zone (TNZ). As Tas increase above TNZ, EWL increases as does total thermal conductance, but conductance increases several times more than EWL. In addition, non-evaporative routes seem to be more important than evaporative heat loss in the analyzed species. No clear pattern of EWL in relation to a species degree of fossoriality or sociality was detected. In this context, atmosphere of burrows could affect EWL, since the high humidity found inside tunnels can establish limits on evaporation to favor water rather than thermal balance.  相似文献   

16.
In Japanese quail (Coturnix c. japonica; n = 9), the doubly labeled water (DLW) method ((2)H, (18)O) for estimation of CO(2) production (l/day) was validated. To evaluate its sensitivity to water efflux levels (r(H(2))O(e); g/day) and to assumptions of fractional evaporative water loss (x; dimensionless), animals were repeatedly fed a dry pellet diet (average r(H(2))O(e) of 34.8 g/day) or a wet mash diet (95.8 g/day). We simultaneously compared the novel infrared laser spectrometry (LS) with isotope ratio mass spectrometry. At low r(H(2))O(e), calculated CO(2) production rate exhibited little sensitivity to assumptions concerning x, with the best fit being found at 0.51, and only little error was made employing an x value of 0.25. In contrast, at high r(H(2))O(e), sensitivities were much higher with the best fit at x = 0.32. Conclusions derived from isotope ratio mass spectrometry and LS were similar, proving the usefulness of LS. Within a threefold range of r(H(2))O(e), little error in the DLW method is made when assuming one single x value of 0.25 (recommended by Speakman JR, Doubly Labelled Water. Theory and Practice. London: Chapman & Hall, 1997), indicating its robustness in comparative studies.  相似文献   

17.
Water movement between cells in a plant body is the basic phenomenon of plant solute transport; however, it has not been well documented due to limitations in observational techniques. This paper reports a visualization technique to observe water movement among plant cells in different tissues using a time of flight-secondary ion mass spectrometry (Tof-SIMS) cryo-system. The specific purpose of this study is to examine the route of water supply from xylem to stem tissues. The maximum resolution of Tof-SIMS imaging was 1.8 μm (defined as the three pixel step length), which allowed detection of water movement at the cellular level. Deuterium-labelled water was found in xylem vessels in the stem 2.5 min after the uptake of labelled water by soybean plants. The water moved from the xylem to the phloem, cambium, and cortex tissues within 30-60 min after water absorption. Deuterium ion counts in the phloem complex were slightly higher than those in the cortex and cambium tissue seen in enlarged images of stem cell tissue during high transpiration. However, deuterium ion counts in the phloem were lower than those in the cambium at night with no evaporative demand. These results indicate that the stem tissues do not receive water directly from the xylem, but rather from the phloem, during high evaporative demand. In contrast, xylem water would be directly supplied to the growing sink during the night without evaporative demand.  相似文献   

18.
It is a central paradigm of comparative physiology that the effect of humidity on evaporative water loss (EWL) is determined for most mammals and birds, in and below thermoneutrality, essentially by physics and is not under physiological regulation. Fick''s law predicts that EWL should be inversely proportional to ambient relative humidity (RH) and linearly proportional to the water vapour pressure deficit (Δwvp) between animal and air. However, we show here for a small dasyurid marsupial, the little kaluta (Dasykaluta rosamondae), that EWL is essentially independent of RH (and Δwvp) at low RH (as are metabolic rate and thermal conductance). These results suggest regulation of a constant EWL independent of RH, a hitherto unappreciated capacity of endothermic vertebrates. Independence of EWL from RH conserves water and heat at low RH, and avoids physiological adjustments to changes in evaporative heat loss such as thermoregulation. Re-evaluation of previously published data for mammals and birds suggests that a lesser dependence of EWL on RH is observed more commonly than previously thought, suggesting that physiological independence of EWL of RH is not just an unusual capacity of a few species, such as the little kaluta, but a more general capability of many mammals and birds.  相似文献   

19.
Equations for the calculation of O2 consumption, CO2 production, and water vapor production in a constant-volume, closed-system respirometer are presented. Necessary measurements include only the initial temperature, pressure, and gas volume in the respirometer chamber, and the fractional concentration of O2 in gas samples taken at the beginning and end of the period of measurement. Potential errors resulting from changes in CO2 and water vapor concentrations are identified. Ignoring CO2 effects can produce up to a 6.4% error in estimates of O2 consumption, and errors due to water vapor effects can exceed 100%. Techniques are presented for minimizing potential errors and for measuring CO2 and water vapor concentrations with an O2 analyzer so that potential errors can be eliminated.  相似文献   

20.
Abstract. A simple method is described for estimating an average of 'effective' soil water potential at the root surface for transpiring plants. The method is based on measurements of leaf water potential and leaf conductance to water vapour in stressed plants and in well-watered controls, and uses the simple Ohm's law analogue for water flow in the soil-plant system. The technique is applied to data for field-grown apple trees and to previously published data for wheat and cowpea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号