首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grape juice contains about equal amounts of glucose and fructose, but wine strains of Saccharomyces cerevisiae ferment glucose slightly faster than fructose, leading to fructose concentrations that exceed glucose concentrations in the fermenting must. A high fructose/glucose ratio may contribute to sluggish and stuck fermentations, a major problem in the global wine industry. We evaluated wine yeast strains with different glucose and fructose consumption rates to show that a lower glucose preference correlates with a higher fructose/glucose phosphorylation ratio in cell extracts and a lower K m for both sugars. Hxk1 has a threefold higher V max with fructose than with glucose, whereas Hxk2 has only a slightly higher V max with glucose than with fructose. Overexpression of HXK1 in a laboratory strain of S. cerevisiae (W303–1A) accelerated fructose consumption more than glucose consumption, but overexpression in a wine yeast strain (VIN13) reduced fructose consumption less than glucose consumption. Results with laboratory strains expressing a single kinase showed that total hexokinase activity is inversely correlated with the glucose/fructose (G/F) discrepancy. The latter has been defined as the difference between the rate of glucose and fructose fermentation. We conclude that the G/F discrepancy in wine yeast strains correlates with the kinetic properties of hexokinase-mediated sugar phosphorylation. A higher fructose/glucose phosphorylation ratio and a lower K m might serve as markers in selection and breeding of wine yeast strains with a lower tendency for sluggish fructose fermentation.  相似文献   

2.
Two new effective microbial producers of inulinases were isolated from Jerusalem artichoke tubers grown in Thailand and identified as Aspergillus niger TISTR 3570 and Candida guilliermondii TISTR 5844. The inulinases produced by both these microorganisms were appropriate for hydrolysing inulin to fructose as the principal product. An initial inulin concentration of ∼100 g l−1 and the enzyme concentration of 0.2 U g−1 of substrate, yielded 37.5 g l−1 of fructose in 20 h at 40°C when A. niger TISTR 3570 inulinase was the biocatalyst. The yield of fructose on inulin was 0.39 g g−1. Under identical conditions, the yeast inulinase afforded 35.3 g l−1 of fructose in 25 h. The fructose yield was 0.35 g g−1 of substrate. The fructose productivities were 1.9 g l−1 h−1 and 1.4 g l−1 h−1 for the mold and yeast enzymes, respectively. After 20 h of reaction, the mold enzyme hydrolysate contained 53% fructose and more than 41% of initial inulin had been hydrolysed. Using the yeast enzymes, the hydrolysate contained nearly 38% fructose at 25 h and nearly 36% of initial inulin had been hydrolysed. The A. niger TISTR 3570 inulinases exhibited both endo-inulinase and exo-inulinase activities. In contrast, the yeast inulinases displayed mainly exo-inulinase activity. The mold and yeast crude inulinases mixed in the activity ratio of 5:1 proved superior to individual crude inulinases in hydrolysing inulin to fructose. The enzyme mixture provided a better combination of endo- and exo-inulinase activities than did the crude extracts of either the mold or the yeast individually.  相似文献   

3.
The aim of this study was to evaluate the MPK1 (SLT2) gene deletion upon filamentous growth induced by isoamyl alcohol (IAA) in two haploid industrial strains of Saccharomyces cerevisiae using oligonucleotides especially designed for a laboratory S. cerevisiae strain. The gene deletion was performed by replacing part of the open reading frames from the target gene with the KanMX gene. The recombinant strains were selected by their resistance to G418, and after deletion confirmation by polymerase chain reaction, they were cultivated in a yeast extract peptone dextrose medium + 0.5% IAA to evaluate the filamentous growth in comparison to wild strains. Mpk1 derivatives were obtained for both industrial yeasts showing the feasibility of the oligonucleotides especially designed for a laboratory strain (Σ1278b) by Martinez-Anaya et al. (In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results from the operation of the morphogenesis checkpoint. J Cell Sci 116:3423–3431, 2003). The filamentation rate in these derivatives was significantly lower for both strains, as induced by IAA. This drastic reduction in the filamentation ability in the deleted strains suggests that the gene MPK1 is required for IAA-induced filamentation response. The growth curves of wild and derivative strains did not differ substantially. It is not known yet whether the switch to filamentous growth affects the fermentative characteristics of the yeast or other physiological traits. A genetically modified strain for nonfilamentous growth would be useful for these studies, and the gene MPK1 could be a target gene. The feasibility of designed oligonucleotides for this deletion in industrial yeast strains is shown.  相似文献   

4.
In this study, a characterization of cell wall polysaccharide composition of three yeasts involved in the production of agave distilled beverages was performed. The three yeast strains were isolated from different media (tequila, mezcal and bakery) and were evaluated for the β(1,3)-glucanase lytic activity and the β-glucan/mannan ratio during the fermentation of Agave tequilana juice and in YPD media (control). Fermentations were performed in shake flasks with 30 g l−1 sugar concentration of A. tequilana juice and with the control YPD using 30 g l−1 of glucose. The three yeasts strains showed different levels of β-glucan and mannan when they were grown in A. tequilana juice in comparison to the YPD media. The maximum rate of cell wall lyses was 50% lower in fermentations with A. tequilana juice for yeasts isolated from tequila and mezcal than compared to the bakery yeast.  相似文献   

5.
The spontaneous alcoholic fermentation of grape must is a complex microbiological process involving a large number of various yeast species, to which the flavour of every traditional wine is largely attributed. Whilst Saccharomyces cerevisiae is primarily responsible for the conversion of sugar to alcohol, the activities of various non-Saccharomyces species enhance wine flavour. In this study, indigenous yeast strains belonging to Metschnikowia pulcherrima var. zitsae as well as Saccharomyces cerevisiae were isolated and characterized from Debina must (Zitsa, Epirus, Greece). In addition, these strains were examined for their effect on the outcome of the wine fermentation process when used sequentially as starter cultures. The resulting wine, as analyzed over three consecutive years, was observed to possess a richer, more aromatic bouquet than wine from a commercial starter culture. These results emphasize the potential of employing indigenous yeast strains for the production of traditional wines with improved flavour.  相似文献   

6.
Twenty six Rhizobium strains isolated from root nodules of Sesbania sesban were studied for chitinase activity on chitin agar plates. Among them, only 12 strains showed chitinase activity. The strain showing the highest chitinase activity was selected based on maximum clear zone/colony size ratio on chitin agar plates and chitinase activity in culture filtrate. The strain was identified as Rhizobium sp. which showed a high degree of similarity with Rhizobium radiobacter (= Agrobacterium radiobacter). The cultural and nutritional conditions were optimized for maximum chitinase activity. The Rhizobium sp. exhibited maximum chitinase activity after 36 h of incubation, at neutral pH. Among the different nutritional sources, arabinose and yeast extract were found to be good inducers for chitinase activity. Rhizobium sp. could degrade and utilize dead mycelia of Aspergillus flavus, Aspergillus niger, Curvularia lunata, Fusarium oxysporum and Fusarium udum.  相似文献   

7.
This work assessed the effect of the overexpression of ADH1 and HXT1 genes in the Saccharomyces cerevisiae AR5 strain during fermentation of Agave tequilana Weber blue variety must. Both genes were cloned individually and simultaneously into a yeast centromere plasmid. Two transformant strains overexpressing ADH1 and HXT1 individually and one strain overexpressing both genes were randomly selected and named A1, A3 and A5 respectively. Overexpression effect on growth and ethanol production of the A1, A3 and A5 strains was evaluated in fermentative conditions in A. tequilana Weber blue variety must and YPD medium. During growth in YPD and Agave media, all the recombinant strains showed lower cell mass formation than the wild type AR5 strain. Adh enzymatic activity in the recombinant strains A1 and A5 cultivated in A. tequilana and YPD medium was higher than in the wild type. The overexpression of both genes individually and simultaneously had no significant effect on ethanol formation; however, the fermentative efficiency of the A5 strain increased from 80.33% to 84.57% and 89.40% to 94.29% in YPD and Agave medium respectively.  相似文献   

8.
The effect of seven important pollutants and three representative organic solvents on growth of Thauera aromatica K172, as reference strain for nitrate-reducing anaerobic bacteria, was investigated. Toxicity in form of the effective concentrations (EC50) that led to 50% growth inhibition of potential organic pollutants such as BTEX (benzene, toluene, ethylbenzene, and xylene), chlorinated phenols and aliphatic alcohols on cells was tested under various anaerobic conditions. Similar results were obtained for Geobacter sulfurreducens and Desulfococcus multivorans as representative for Fe3+-reducing and sulphate-reducing bacteria, respectively, leading to a conclusion that anaerobic bacteria are far more sensitive to organic pollutants than aerobic ones. Like for previous studies for aerobic bacteria, yeast and animal cell cultures, a correlation between toxicity and hydrophobicity (log P values) of organic compounds for different anaerobic bacteria was ascertained. However, compared to aerobic bacteria, all three tested anaerobic bacteria were shown to be about three times more sensitive to the tested substances.  相似文献   

9.
10.
Carotenoids represent a group of valuable molecules for the pharmaceutical, chemical, food and feed industries, not only because they can act as vitamin A precursors, but also for their coloring, antioxidant and possible tumor-inhibiting activity. Animals cannot synthesize carotenoids, and these pigments must therefore be added to the feeds of farmed species. The synthesis of different natural commercially important carotenoids (β-carotene, torulene, torularhodin and astaxanthin) by several yeast species belonging to the genera Rhodotorula and Phaffia has led to consider these microorganisms as a potential pigment sources. In this review, we discuss the biosynthesis, factors affecting carotenogenesis in Rhodotorula and Phaffia strains, strategies for improving the production properties of the strains and directions for potential utility of carotenoid-synthesizing yeast as a alternative source of natural carotenoid pigments.  相似文献   

11.
As a byproduct of yeast valine metabolism during fermentation, diacetyl can produce a buttery aroma in wine. However, high diacetyl concentrations generate an aromatic off-flavor and poor quality in wine. 2,3-Butanediol dehydrogenase encoded by BDH1 can catalyze the two reactions of acetoin from diacetyl and 2,3-butanediol from acetoin. BDH2 is a gene adjacent to BDH1, and these genes are regulated reciprocally. In this study, BDH1 and BDH2 were overexpressed in Saccharomyces uvarum to reduce the diacetyl production of wine either individually or in combination. Compared with those in the host strain WY1, the diacetyl concentrations in the recombinant strains WY1-1 with overexpressed BDH1, WY1-2 with overexpressed BDH2 alone, and WY1-12 with co-overexpressed BDH1 and BDH2 were decreased by 39.87, 33.42, and 46.71%, respectively. BDH2 was only responsible for converting diacetyl into acetoin, but not for the metabolic pathway of acetoin to 2,3-butanediol in S. uvarum. This study provided valuable insights into diacetyl reduction in wine.  相似文献   

12.
In vitro propagation of Rhododendron ponticum L. subsp. baeticum, an endangered species present in limited and vulnerable populations as a Tertiary relict in the southern Iberian Peninsula, was attained. Several cytokinin:IAA ratios and a range of zeatin concentrations were evaluated for their effect on shoot multiplication from apical shoots and nodal segments. The type of cytokinin and the origin of the explant were the most important factors affecting shoot multiplication. The highest shoot multiplication rate was obtained from single-nodal explants on medium supplemented with zeatin. Increasing zeatin concentration promotes shoot multiplication independently of explant type, although this effect tends to decrease with higher zeatin concentration. Shoot growth was higher in apical shoots and it was not stimulated by the presence of auxin. A number of experiments were conducted to identify suitable procedures for rooting of in vitro produced shoots. The best results in terms of in vitro rooting were obtained with Andersons modified medium with macrosalts reduced to one-half, regardless of the auxin or its concentration in the medium. Although rooting frequency rose to 97% by basal immersion of shoots in auxin concentrated solution followed by in vitro culture on an auxin-free medium, the survival of the plants after 6 months of acclimatization was poor (50%). Best results (100% rooting and survival) were observed for ex vitro rooting. The micropropagated plants from this study were successfully reintroduced into their natural habitat (87% of survival after 8 months).  相似文献   

13.
The yeast Yarrowia lipolytica secretes high amounts of various organic acids, like citric (CA) and isocitric (ICA) acids, triggered by growth limitation caused by different factors and an excess of carbon source. Depending on the carbon source used, Y. lipolytica strains produce a mixture of CA and ICA in a characteristic ratio. To examine whether the CA/ICA product ratio can be influenced by gene-dose-dependent overexpression or by disruption of the isocitrate lyase (ICL)-encoding gene ICL1, recombinant Y. lipolytica strains were constructed, which harbour multiple ICL1 copies or a defective icl1 allele. The high-level expression of ICL in ICL1 multicopy integrative transformants resulted in a strong shift of the CA/ICA ratio into direction of CA. On glycerol, glucose and sucrose, the ICA proportion decreased from 10–12% to 3–6%, on sunflower oil or hexadecane even from 37–45% to 4–7% without influencing the total amount of acids (CA and ICA) produced. In contrast, the loss of ICL activity in icl1-defective strains resulted in a moderate 2–5% increase in the ICA proportion compared to ICL wild-type strains on glucose or glycerol.  相似文献   

14.
Suillus and Boletinus were studied using Ohta medium. In media with glucose or trehalose, all tested strains grew well. With mannose and cellobiose, strains generally grew well, except for one strain of Suillus. Utilization of dextrin and soluble starch differed with each strain, and that of sucrose and glycerol was low for all strains. Utilization of four amino acids, arginine, glutamic acid, aspartic acid, and alanine, was similar to that of ammonium tartrate for Suillus strains, but mycelial growth with amino acids was clearly lower than with ammonium tartrate for the Boletinus strain. The effect of glucose and ammonium tartrate concentrations for nine strains of the genera Suillus and Boletinus was studied with ranges for glucose of 1–100 and 200g/l, respectively, and for ammonium tartrate of 0.2–5 and 20g/l, respectively. Six strains showed maximal growth at a glucose concentration greater than 25g/l, and one strain showed maximal growth at 70g/l. The results indicate that these fungi are adapted to relatively high concentrations of carbon sources. In general, glucose concentration at mycelial growth maximum decreased as ammonium tartrate concentration increased, and at higher concentrations of glucose, mycelial growth decreased more rapidly in higher concentrations of ammonium tartrate.  相似文献   

15.
Occurrence of widespread epizootics among larval and cultured shrimp has put on viable preventive approaches such as application of probiotics on a high priority in aquaculture. In the present study, four probiotics bacteria were isolated from marine fish and shrimp intestine based on the antagonistic activity and nonpathogenic to the host. The isolates of probiotics strains Streptococcus phocae PI80, Enterococcus faecium MC13, Lactococcus garvieae LC149, B49 and one commercial probiotics (ECOFORCE) were fed to post larvae of Penaeus monodon obtained from two different hatcheries to analyze the growth and protection against Vibrio harveyi and V. parahaemolyticus. Growth of P. monodon post larvae fed with probiotic strain S. phocae PI80 was significantly (P < 0.001) higher when compared with control and other three strains in both experiments. The treatment of post larvae with B49 reduced the growth as well as Specific growth rate. Among the three probiotic strains S. phocae PI80 and E. faecium MC13 have effectively inhibited the pathogens. In experiment I high survival (92%) were observed in S. phocae PI80 treated post larvae when challenged with Vibrio harveyi followed by E. faecium MC13 (84%), B49 (76%) and ECOFORCE (68%) but PI80 did not protect the post larvae in the same experiment when they were exposed to V. parahaemolyticus. The probiotic isolate of MC13 has protected the post larvae against V. parahaemolyticus when compared to other probiotics and control. Similarly in the second experiment feeding of S. phocae enhanced the survival of larvae when challenged with V. harveyi. The laboratory studies proved that bacterial probionts S. phocae and E. faecium isolated from shrimp and brackishwater fish has potential applications for controlling pathogenic vibriosis in shrimp culture.  相似文献   

16.
In industry, fosfomycin is mainly prepared via chemical epoxidation of cis-propenylphosphonic acid (cPPA). The conversion yield of fosfomycin is less than 50% in the whole process and a large quantity of waste is produced. Biotransformation by microorganisms is an alternative method of preparation. This kind of conversion is more delicate, environmentally friendly, and the conversion yield of fosfomycin would be higher. In this work, an aerobic bacterium capable of transforming cPPA to fosfomycin was isolated. The organism, designated as strain S101, was identified as Bacillus simplex by morphological and physiological characteristics as well as by analysis of the gene encoding the 16S rRNA. Fosfomycin was assayed by two means, bioassay and gas chromatography (GC). Glycerol was a good carbon source for growth and cPPA conversion of strain S101. When cPPA was used as the sole carbon source, neither growth nor conversion to fosfomycin occurred. The optimum cPPA concentration in the conversion medium was 2,000 μg ml−1. After 6 days of incubation, the concentration of fosfomycin reached its maximum level (1,838.2 μg ml−1), with a conversion ratio of 81.3%. Air was indispensable for the growth but not for the conversion to fosfomycin. Furthermore, vanadium ions were found to be essential for the conversion. High concentrations of cPPA had fewer inhibitory effects on the growth of strain S101.  相似文献   

17.
The control of grapevine pathogens is a rising concern in Vitis vinifera culture. The current international trend is toward banning chemicals that are highly toxic to the environment and human workers, and adopting tighter regulations. We evaluated the impact of saponins on three kinds of organisms found in grapevine culture. The ectoparasitic nematode Xiphinema index, the parasitic fungus Botrytis cinerea and various yeast strains representative of the must fermentation population were incubated on synthetic media supplemented with variable concentrations of Quillaja saponaria saponins. Saponins induced reduction in the growth of B. cinerea and showed nematicide effects on X. index. The control of X. index and Botrytis cinerea is discussed in the context of the potential use of these chemicals as environmentally-friendly grapevine treatments. With Saccharomyces cerevisiae and other yeasts, saponins showed higher toxicity against S. cerevisiae strains isolated from wine or palm wine whereas laboratory strains or strains isolated from oak exhibited better resistance. This indicates that Q. saponaria saponins effects against yeast microflora should be assessed in the field before they can be considered an environmentally-safe new molecule against B. cinerea and X. index.  相似文献   

18.
Nisin production in continuous cultures of bioengineered Lactococcus lactis strains that incorporate additional immunity and regulation genes was studied. Highest nisin activities were observed at 0.2 h–1 dilution rate and 12.5 g l–1 fructose concentration for all strains. Recombinant strains were able to produce greater amounts of nisin at dilution rates below 0.3 h−1 compared to the control strain. However, this significant difference disappeared at dilution rates of 0.4 and 0.5 h–1. For the strains LL27, LAC338, LAC339, and LAC340, optimum conditions for nisin production were determined to be at 0.29, 0.26, 0.27, and 0.27 h–1 dilution rates and 11.95, 12.01, 11.63, and 12.50 g l–1 fructose concentrations, respectively. The highest nisin productivity, 496 IU ml–1 h–1, was achieved with LAC339. The results of this study suggest that low dilution rates stabilize the high specific nisin productivity of the bioengineered strains in continuous fermentation. Moreover, response surface methodology analysis showed that regulation genes yielded high nisin productivity at wide ranges of dilution rates and fructose concentrations.  相似文献   

19.
Over the past decades there has been a significant increase in fungal infections caused by Candida species, and continues to be common in immunocompromised individuals infected with the human immunodeficiency virus (HIV). Although Candida albicans remains the fungal species most frequently isolated as an opportunistic oral pathogen, other non-albicans are often identified in this cohort of patients, including C. dubliniensis. This yeast is closely related to and shares many phenotypic characteristics with C. albicans. Colonies of these two species appear morphologically identical when not grown on special media. The shared phenotypic characteristics of C. dubliniensis and C. albicans suggest that many C. dubliniensis isolates may have been misidentified as C. albicans in the past. The present studies aim is to recover and identify C. dubliniensis, and presumptive clinical C. albicans, from the oral cavities of HIV-seropositive individuals, comparing conventional media to obtain a simple, low-cost and reliable identification system for C. dubliniensis. A total of 16 isolates (3,98%) had been obtained from 402 HIV infected individuals with recurrent oropharyngitis and were identified as C. dubliniensis. Out of these C. dubliniensis isolates 19% were resistant, with MICs above 64 μg/ml to fluconazole. This constitutes, to the authors knowledge the first recovery of this organism in Venezuela.  相似文献   

20.
A newly isolated Zygosaccharomyces rouxii NRRL 27,624 produced d-arabitol as the main metabolic product from glucose. In addition, it also produced ethanol and glycerol. The optimal conditions were temperature 30°C, pH 5.0, 350 rpm, and 5% inoculum. The yeast produced 83.4 ± 1.1 g d-arabitol from 175 ± 1.1 g glucose per liter at pH 5.0, 30°C, and 350 rpm in 240 h with a yield of 0.48 g/g glucose. It also produced d-arabitol from fructose, galactose, and mannose. The yeast produced d-arabitol and xylitol from xylose and also from a mixture of xylose and xylulose. Resting yeast cells produced 63.6 ± 1.9 g d-arabitol from 175 ± 1.8 g glucose per liter in 210 h at pH 5.0, 30°C and 350 rpm with a yield of 0.36 g/g glucose. The yeast has potential to be used for production of xylitol from glucose via d-arabitol route. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. department of Agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号