首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Distribution of myo-Inositol in the Cat Cochlear Nucleus   总被引:3,自引:3,他引:0  
Abstract: The distribution of myo -inositol, a substance that has been implicated in synaptic transmission, has been mapped within sections of the cat cochlear nucleus as well as some nearby regions. Highest values in the cochlear nucleus were found in regions of granule cells along the periphery of the anteroventral subdivision of the nucleus. Highest values overall were found in the molecular layer of the cerebellar flocculus. A fairly good correlation was found between myo -inositol levels and activities of the enzymes of acetyl-choline metabolism in the cat cochlear nucleus, supporting the possibility that myo -inositol may be involved in cholinergic synaptic transmission. No positive correlation was found between myo -inositol levels and the levels of glutamate, aspartate, glycine, or γ-aminobutyric acid (GABA). The most striking gradient of myo -inositol levels within a region was found in the auditory nerve, where different myo -inositol levels might be related to nerve fibers innervating different parts of the cochlea. The distribution of scyllo -inositol, a stereoisomer of myo -inositol, was also examined, and found to parallel closely the distribution of myo -inositol, with levels 4–5% as high.  相似文献   

2.
Abstract: The uptake of myo -[3H]inositol into neurones from Lymnaea stagnalis has been demonstrated to be a sodium-dependent process, saturable with a K m of approximately 50 μ M and shown to be linear with time for at least 120 min. The rate of transport of myo -inositol into the cell appears to influence directly its incorporation into neuronal lipids. Using anion-exchange high-performance liquid chromatography, we have demonstrated a high rate of breakdown of phosphatidylinositol 4,5–bisphosphate in Lymnaea nerve under basal conditions. Stimulation with carbamylcholine enhanced production of inositol 1–phosphate, inositol bisphosphate, inositol 1,4,5–trisphosphate, and inositol 1,3,4–trisphosphate. Formation of inositol tetrakisphosphate was not detected. Electrical stimulation also caused an increased formation of inositol phosphates. These results provide evidence for an active myo -inositol transport system in molluscan neurones and suggest that the hydrolysis of inositol lipids may play a role as an intracellular signalling system in this tissue.  相似文献   

3.
Reduction of d -fructose to d -mannitol by whole-cell biotransformation with recombinant resting cells of Corynebacterium glutamicum ATCC13032 requires the coexpression of mdh and fdh , which encode mannitol and formate dehydrogenases, respectively. However, d -mannitol formation is limited by the uptake of d -fructose in its unphosphorylated form, because additional expression of the sugar facilitator from Zymomonas mobilis resulted in a significantly increased productivity. Here we identified similarities of the myo -inositol transporters IolT1 and IolT2 of C. glutamicum to the sugar facilitator of Z. mobilis . The myo -inositol transporter genes were both individually overexpressed and deleted in recombinants expressing mdh and fdh . Biotransformation experiments showed that the presence and absence, respectively, of IolT1 and IolT2 significantly influenced d -mannitol formation, indicating a d -fructose transport capability of these transporters. For further evidence, a C. glutamicum Δ ptsF mutant unable to grow with d -fructose was complemented with a heterologous fructokinase gene. This resulted in restoration of growth with d -fructose. Using overexpressed iolT1, mdh and fdh , d -mannitol formation obtained with C. glutamicum was 34.2 g L−1, as opposed to 16 g L−1 formed by the strain overexpressing only mdh and fdh , showing the suitability of myo -inositol transporters for d -fructose uptake to obtain d -mannitol formation by whole-cell biotransformation with C. glutamicum .  相似文献   

4.
Abstract: The effect of long-term (2 weeks) exposure to 0–50 m M glucose and 0–1 m M sorbitol on myo -inositol metabolism was studied in cultured rat Schwann cells. Experiments were carried out to determine the effect of sorbinil and ascorbic acid on myo -inositol uptake in rat Schwann cells cultured in the presence of increased extracellular glucose or sorbitol. myo -Inositol uptake and its incorporation into phospholipids decreased significantly when cells were grown in ≥30 m M glucose for a period of 2 weeks. This inhibitory effect was partly blocked by sorbinil, an aldose reductase inhibitor, in a dose-dependent fashion. Significant prevention was achieved with 0.5 and 1 m M sorbinil. Ascorbic acid also prevented the reduction in myo -inositol uptake due to excess extracellular glucose, at 3 and 30 µ M concentrations, but not at 300 µ M . Neither sorbinil nor ascorbic acid could prevent the alterations in myo -inositol transport in cells exposed to high sorbitol levels for the same period of time. These data suggest that glucose-induced alteration of myo -inositol transport in Schwann cells is mediated, at least in part, via sorbitol accumulation. This myo -inositol transport impairment is prevented by sorbinil and also by ascorbic acid. Ascorbic acid may hold a fresh promise for the treatment/prevention of diabetic neuropathy/complications, at least as an adjunct therapy along with known aldose reductase inhibitors.  相似文献   

5.
1- O -(indole-3-acetyl)- β - d -glucose: myo -inositol indoleacetyl transferase (IA- myo -inositol synthase) is an important enzyme in IAA metabolism. This enzyme catalyses the transfer of the indole acetyl (IA) moiety from 1- O -(indole-3-acetyl)- β - d -glucose to myo -inositol to form IA- myo- inositol and glucose. IA- myo -inositol synthase was purified to an electrophoretically homogenous state from maize liquid endosperm by fractionation with ammonium sulphate, anion-exchange, adsorption on hydroxylapatite, affinity chromatography on ConA-Sepharose, preparative PAGE and isoelectric focusing. We thus obtained two enzyme preparations which differ in their R f on 8% polyacrylamide gel. The preparation of R f 0.36 contained a single 56.4 kDa polypeptide, whereas the preparation of R f 0.39 consisted of two polypeptides of 56.4 and 53.5 kDa. Both purified preparations of IAInos synthase also exhibited the activity of an IAInos hydrolase, showing that the dual activity was associated with a single protein. Results of gel filtration and analytical SDS-PAGE suggest that the native enzyme exists as both a monomeric (65 kDa) and homo- or heterodimeric form (110–130 kDa). Analysis of peptide maps and amino acid sequences of two 21 amino-acid peptides showed that polypeptides of 56.4 and 53.5 kDa have the same primary structure and that the 3 kDa difference in molecular mass is probably caused by different glycosylation levels. Comparison of this partial and internal amino acid sequence with sequences of other plant acyltransferases indicated similarity to several proteins which belonged to the serine carboxypeptidase-like (SCPL) acyltransferase family.  相似文献   

6.
7.
Metabolic responses to water deficit that lead to an accumulation of cyclitols, have been examined in rice bean ( Vigna umbellata [Thunb.] Ohwi et Ohashi). Imposition of drought stress by withholding water from the soil for 9 days led to an accumulation of D-ononitol (lD-4- O -methyl- myo -inositol) which was most pronounced in leaves (from 33 to 88 umol g−1 dry mass). However, the activity of the enzyme myo-inositol 6-O -methyltransferase (m6OMT, EC 2.1.1.X), which catalyzes the synthesis of ononitol from myo -inositol and S -adenosyl-L-methionine (AdoMet), increased in stems but not in leaves during the drought stress experiment. Detailed analysis of different plant parts revealed that the accumulation of ononitol in leaves was linearly related to stem m6OMT activity during drought stress, indicating that m6OMT may control the in vivo biosynthetic rate of this cyclitol. The availability of myo -inositol, required for enhanced rates of ononitol synthesis by m6OMT, increased during the stress experiment, while the capacity to synthezise AdoMet by S -adenosyl-L-methionine synthetase (SMS, EC 2.5.1.6) decreased. However, the high capacity for degradation of S -adenosyl-L-homocysteine (AdoHcy; a potent competitive inhibitor of m6OMT) by the enzyme S -adenosyl-L-homocysteine hydrolase (SHH, EC 3.3.1.1) provided favourable conditions for ononitol biosynthesis during the whole stress treatment.  相似文献   

8.
Abstract: This study examined the effect of streptozotocin diabetes of 5 weeks duration on the profile of slow orthogradely transported radiolabelled protein in rat sciatic motoneurones. The diabetic rats showed a retardation of the tail of the slow-component profile. This selective retardation was unaffected by treatment with an aldose reductase inhibitor, although this treatment reduced the accumulation of sorbitol and prevented the depletion of myo -inositol in the sciatic nerves of the treated diabetic rats. Other groups, treated with myo -inositol, had normal or elevated sciatic nerve myo -inositol levels in the presence of accumulated sorbitol. The axonal transport profiles from both control and diabetic myo-inositol-treated groups gave normal tail velocities but an altered shape such that retardation of the tail of the profile may have been present in both. The study concludes that rats with 5 weeks streptozotocin diabetes show retardation of the velocity of the most slowly transported proteins in sciatic motoneurones, and that this defect is not linked to the polyol pathway.  相似文献   

9.
Cyclitol production in transgenic tobacco   总被引:11,自引:0,他引:11  
High levels of cyclic sugar alcohols (cyclitols) correlate with tolerance to osmotic stress in a number of plant species. A gene encoding a cyclitol biosynthesis enzyme from a halophyte, Mesembryanthemum crystallinum has been introduced into tobacco. The gene, lmt1 , encodes a myo -inositol O -methyl transferase that, in M. crystallinum , catalyzes the first step in the stress-induced accumulation of the cyclitol pinitol. Tobacco transformed with the lmt1 cDNA under the control of the CaMV 35S promoter appeared phenotypically normal and exhibited IMT1 enzyme activity. Transformants accumulated a carbohydrate product not detectable in non-transformed control plants. This product was identified by HPLC and NMR as ononitol (1- d -4- O -methyl myo -inositol). Ononitol was a major carbohydrate constituent in leaf tissue of plants expressing the lmt1 gene, accumulating to up to 25% the level of sucrose in transformant seedlings. The identification of ononitol as the IMT1 product and the specific accumulation of this compound in transformed tobacco support a role for ononitol as a stable intermediate in pinitol biosynthesis and indicate that an epimerization activity lacking in tobacco is responsible for the conversion of ononitol to pinitol in M. crystallinum . The production of ononitol in tobacco indicates that plant carbohydrate metabolism is flexible and can accommodate the synthesis and accumulation of non-endogenous metabolites. The transgenic system described here will serve as a useful model to test the ability of cyclitols such as ononitol to confer tolerance to environmental stress in a normally glycophytic plant.  相似文献   

10.
De-N-acetylation of N-acetylglucosaminyl-phosphatidylino-sitol (GlcNAc-PI) is the second step of glycosylphosphatidylino-sitol (GPI) membrane anchor biosynthesis in eukaryotes. This step is a prerequisite for the subsequent processing of glucosaminyl-phosphatidylinositol (GlcN-PI) that leads to mature GPI membrane anchor precursors, which are transferred to certain proteins in the endoplasmic reticulum. In this article, we used a direct de-N-acetylase assay, based on the release of [14C]acetate from synthetic GlcN[14C]Ac-PI and analogues thereof, and an indirect assay, based on the mannosylation of GlcNAc-PI analogues, to study the substrate specificities of the GlcNAc-PI de-N-acetylase activities of African trypanosomes and human (HeLa) cells. The HeLa enzyme was found to be more fastidious than the trypanosomal enzyme such that, unlike the trypanosomal enzyme, it was unable to act on a GlcNAc-PI analogue containing 2-O-octyl-d- myo -inositol or on the GlcNAc-PI diastereoisomer containing l- myo -inositol (GlcNAc-P(l)I). These results suggest thatselective inhibition of the trypanosomal de-N-acetylase may be possible and that this enzyme should be considered as a possible therapeutic target. The lack of strict stereospecificity of the trypanosomal de-N-acetylase for the d- myo -inositol component was also seen for the trypanosomal GPI alpha-manno-syltransferases when GlcNAc-P(l)I was added to the trypanosome cell-free system, but not when GlcN-P(l)I was used. In an attempt to rationalize these data, we modeled the structure and dynamics of d-GlcNAcalpha1-6d- myo -inositol-1-HPO4-( sn )-3-glycerol and its diastereoisomer d-GlcNAcalpha1-6l- myo -inositol-1-HPO4-( sn )-3-glycerol. These studies indicate that the latter compound visits two energy minima, one of which resembles the low-energy conformer of former compound. Thus, it is conceivable that the trypanosomal de-N-acetylase acts on GlcNAc-P(l)I when it occupies a GlcNAc-PI-likeconformation and that GlcN-P(l)I emerging from the de-N-acetylase may be channeled to the alpha-mannosyltransferases in this conformation.  相似文献   

11.
Myo -inositol is a precursor of many plant metabolites, including polyols, cell wall components and phosphoinositides. The first committed step in the de novo myo -inositol synthetic pathway is catalysed by the enzyme 1D- myo -inositol 3-phosphate synthase (MIPS; EC 5.5.1.4 ), which converts D-glucose 6-phosphate to 1D- myo -inositol 3-phosphate. Suppression of MIPS activity by an antisense RNA approach in transgenic potato ( Solanum tuberosum L.) plants to below 20% of the wild-type level in leaves resulted in strongly reduced levels of inositol, galactinol and raffinose (approximately 7%, 5% and 12%, respectively, of wild-type values). In contrast, increases were observed for concentrations of hexose phosphates (up to 1.7-fold), sucrose (twofold) and starch (two- to fourfold). Transgenic plants exhibited reduced apical dominance, altered leaf morphology, precocious leaf senescence and a decrease in overall tuber yield. These observations indicate a crucial role for myo -inositol in plant physiology and development.  相似文献   

12.
Abstract: Phosphatidylinositol bisphosphate hydrolysis, leading to the production of myo -inositol trisphosphate and diacylglycerol, may play a significant role in the pathogenesis of hypoxic-ischemic brain injury. We used tritiated myo -inositol phosphate (3H-IP) accumulation as a means to quantitate phosphoinositide hydrolysis in prelabeled astroglial cultures subjected to combined glucose-oxygen deprivation. Astroglial cultures exposed to combined glucose-oxygen deprivation had significantly greater 3H-IP accumulation compared with cultures exposed to control conditions. To delineate the role of the metabotropic glutamate receptor in astroglial phosphoinositide hydrolysis during combined glucose-oxygen deprivation, we studied the effects of two metabotropic glutamate receptor antagonists, 2-amino-3-phosphonopropionic acid and (+)-methyl-4-carboxyphenylglycine. 2-Amino-3-phosphonopropionic acid attenuated the accumulation of 3H-IP during combined glucose-oxygen deprivation but acted as an agonist under control conditions. (+)-Methyl-4-carboxyphenylglycine had no effect on 3H-IP accumulation during combined glucose-oxygen deprivation or under control conditions. These results suggest that activation of astroglial phosphoinositide hydrolysis during combined glucose-oxygen deprivation may be mediated, at least in part, by the metabotropic glutamate receptor.  相似文献   

13.
The ER fraction from red beet taproot was purified on sucrose gradient and giant liposomes, suitable for patch clamping, were formed by dehydration–rehydration of the lipid film. Single-channel recordings on excised and attached patches revealed a large conductance (165 pS) cation (PCl−/PK+ < 0.03) channel with equal conductance and relative permeability for Na+ and K+. This non-selective cation channel was also highly permeable for Ca2+. We failed to detect any single-channel currents activated by a direct application of d - myo -inositol 1,4,5 trisphosphate, despite the fact that the ER membranes were native.  相似文献   

14.
15.
P Zeitler  Y Q Wu  S Handwerger 《Life sciences》1991,48(21):2089-2095
Previous investigations from this laboratory have implicated both phospholipase A2 and phospholipase C in the regulation of human placental lactogen release from human trophoblast. To study further the role of endogenous phospholipase A2 and the relationship between phospholipase A2 activation and phosphoinositide metabolism, we examined hPL and [3H]-inositol release from trophoblast cells in response to agents that stimulate or inhibit the endogenous enzyme. Melittin (0.5-2.0 micrograms/ml) stimulated rapid, dose-dependent, and reversible increases in the release of hPL, prostaglandin E, and [3H]-inositol. Mepacrine (0.1-0.25 mM) inhibited this stimulation. However, mepacrine had no effect on the stimulation of hPL and [3H]-inositol release by exogenous arachidonic acid (AA). These results indicate that the stimulation by melittin of phosphoinositide metabolism and hPL release is mediated by initial activation of phospholipase A2. Furthermore, the results support the possibility that AA, released as a consequence of phospholipase A2 activation, can act as a second messenger linking the two phospholipase pathways.  相似文献   

16.
17.
Abstract: The ability of lithium to potentiate muscarinic cholinoceptor-stimulated CMP-phosphatidate (CMP.PA) accumulation has been examined in various cells in which muscarinic cholinoceptor agonists evoke a phosphoinositide response. Cell types examined include rat cerebellar granule cells, Chinese hamster ovary cells transfected to express the human muscarinic M3 receptor (CHO-M3 cells), and SH-SY5Y neuroblastoma cells. Neither carbachol (1 m M ) nor lithium (10 m M ) caused significant increases in CMP.PA accumulation in rat cerebellar granule cells; however, when added together for 20 min a linear 17-fold increase over basal levels was observed. The increase was dependent on the concentration of carbachol and lithium present, and the effect could be reversed by addition of exogenous myo -inositol (10 m M ). Addition of carbachol alone to CHO-M3 cells caused a five-fold increase in CMP.PA accumulation. In the presence of lithium, a 70-fold increase was observed at 20 min after carbachol plus lithium addition. This latter response was concentration dependent and could be abolished by preincubation in the presence of 10 m M myo -inositol. In contrast, whereas carbachol elicited a three-fold increase in CMP.PA accumulation in SH-SY5Y neuroblastoma cells, which reached a plateau 10 min after agonist addition, the response could neither be augmented by addition of lithium nor inhibited by addition of myo -inositol. These results emphasise that the ability of lithium to affect agonist-stimulated CMP.PA accumulation is not simply a function of stimulus strength, but is also crucially dependent on the intracellular concentration of inositol.  相似文献   

18.
Abstract: The ability of lithium to interfere with the metabolism of inositol phosphates in brain may underlie its therapeutic action in manic-depressive illness. In these experiments, lithium, at therapeutic concentrations, enhanced the accumulation of [3H]inpsitol monophosphate but suppressed the accumulation of the putative second messengers [3H]inositol 1,4,5-trisphosphate ([3H]Ins(1,4,5)P3) and f3H]inositol 1,3,4,5-tetrakisphosphate following stimulation of cerebral cortex slices with carbachol. Mass measurements of Ins(1,4,5)P3showed similar inhibitory effects, which could be prevented by preincubation with myo -inositol. These data may reveal the mechanism by which lithium can reduce polyphosphoinositide-midiated neurotransmission in brain.  相似文献   

19.
Feeding of protein deficient diet is known to alter the transmembrane signalling in brain of rat by reducing total protein kinase C (PKC) activity. Phospholipid metabolism regulates the activation of PKC through generation of second messengers and the extent of PKC activation accordingly influences the magnitude of phosphorylation of its endogenous substrate proteins. Thus it was speculated that ingestion of protein deficient diet may modify the turnover rate of membrane phospholipids and magnitude of phosphorylation of endogenous substrate proteins of PKC. The experiments were conducted on rats fed on three different types of laboratory prepared diets viz. casein (20% casein), deficient (4% protein, rice flour as source of protein) and supplemented (deficient diet supplemented with L-lysine and DL-threonine) for 28 days. The metabolism of phosphoinositides (PIs) and phosphatidyl choline (PC) was studied by equilibrium labeling with [3H] myo inositol and [14C methyl] choline chloride respectively. The phosphorylation of endogenous substrate proteins of PKC was studied by using 32P-gamma-ATP followed by SDS-PAGE and autoradiography. The results suggest that in deficient group, there is an increased incorporation of [3H] myo inositol in PIs and inositol phosphate pool in comparison to the casein group. The phosphatidyl inositol (PI) turnover reduced, although there was a marginal increase in the phosphatidyl inositol monophosphate (PIP) and phosphatidyl inositol bis phosphate (PIP2). Supplementation of diet showed a reversal of the pattern towards control to a considerable extent. In the deficient group, PC metabolism showed an increased incorporation of [14C methyl] choline in choline phospholipids but decreased incorporation in phosphoryl choline in comparison with the casein group. The increase in total PC contents was significant but marginal in residue contents. The turnover rate of PC increased only marginally and that of residue declined. Supplementation of diet reduced the total contents of PC and residue, but the turnover rate of PC and residue remained still higher. Phosphorylation of endogenous proteins showed four different proteins of 78, 46, 33 and 16 kDa to be the substrates of PKC in casein group. In deficient group, phosphorylation of these proteins increased markedly while supplementation of diet had a reversing effect rendering the values to be intermediate between casein and the supplemented group. The changes in phospholipid metabolism and in phosphorylation of endogenous substrate proteins of PKC suggest that dietary protein deficiency causes alterations in transmembrane signalling mechanism in rat brain. These effects are partially reversed by improving the quality of proteins in the diet.  相似文献   

20.
Abstract: Quantitative proton and quantitative proton-decoupled 31P magnetic resonance spectroscopy (MRS) of the brain was performed in 16 patients with liver disease (10 with and six without chronic hepatic encephalopathy) and four patients with hyponatremia, as well as 20 age-matched normal subjects. Patients with hepatic encephalopathy were distinguished from controls by significant reduction in levels of cerebral nucleoside triphosphate (2.45 ± 0.20 vs. 2.91 ± 0.21 mmol/kg of brain; p < 0.0003), inorganic phosphate ( p < 0.03), and phosphocreatine ( p < 0.04). In addition of increased levels of cerebral glutamate plus glutamine and decreased concentrations of myo -inositol, patients with hepatic encephalopathy showed a reduction of total visible choline and of glycerophosphoryl-choline (0.67 ± 0.13 vs. 0.92 ± 0.20 mmol/kg of brain in controls; p < 0.005) in 1H MRS, and of glycerophosphoryl-ethanolamine (0.40 ± 0.12 vs. 0.68 ± 0.12 mmol/kg of brain in controls; p < 0.0003) in proton-decoupled 31P MRS. Of the reduction of "total choline," 61% was accounted for by glycerophosphorylcholine, a cerebral osmolyte. Similar metabolic abnormalities were seen in hyponatremic patients. The results are consistent with disturbances of cerebral osmoregulation and energy metabolism in patients with chronic hepatic encephalopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号