首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulation of PAG by ammonia in whole brain (Sprague-Dawley) and regional (Fischer-344) synaptosomal preparations from adult and aged animals was assessed. Whole brain synaptosomal preparations from both age groups displayed a significant decrease in PAG activity with increasing ammonium chloride concentrations, however, the aged rats exhibited a significant attenuation in ammonia-induced PAG inhibition. PAG activity measured in synaptosomes prepared from the striatum (STR), temporal cortex (TCX) and hippocampus (HIPP) was also inhibited by ammonium chloride. The STR showed the greatest degree of ammonia-induced PAG inhibition (55%) followed by the HIPP (30–35%) and the TCX (25–30%). This reduction in PAG activity was significantly attenuated in STR from aged rats at ammonium chloride concentrations greater than 50 M and in the TCX, PAG activity was significantly attenuated in the aged rats at ammonia concentrations of 0.5 and 1.0 mM. Ammonia regulation of PAG activity in the HIPP appeared to be unaffected by age. Ammonium chloride concentrations up to 5 mM had no effect on GLU release from cortical slices, although GLN efflux was significantly enhanced. These findings suggest that isozymes of PAG may exist in different brain regions based on their differential sensitivity to ammonia. The attenuation of ammonia-induced PAG inhibition seen in aged rats may have deleterious effects in the aged brain.Abbreviations PAG phosphate-activated glutaminase: L-glutamine amidohydrolase; EC 3.5.1.2 - STR striatum - TCX temporal cortex - HIPP hippocampus  相似文献   

2.
Phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase (GAD) were assayed in homogenates and synaptosomes obtained from starved (48 hr or 120 hr) and diabetic (streptozotocin) rat brain cortex. Glutamine synthetase (GS) was assayed in homogenates, microsomal and soluble fractions, from brain cortex of similarly treated rats.l-Glutamate uptake and exit rates were determined in cortex slices and synaptosomes under the same conditions. The specific activity (s.a.) of PAG, a glutamate producing enzyme, decreased (50%) in the homogenate after 120-hr starvation. In synaptosomes it decreased (25%) only after 48-hr starvation. The s.a of GAD and GS, which are glutamate-consuming enzymes, were progressively increased with time of starvation, reaching 39% and 55% respectively after 120 hr. GS in the microsomes or the soluble fraction and GAD in the synaptosomes showed no change in s.a. under these conditions. Diabetes increased (40%) microsomal GS s.a. and decreased GAD s.a. (18%) in the homogenate. Thel-glutamate uptake rate was decreased (48%) by diabetes in slices but not in synaptosomes. It is suggested that a) enzymes of the glutamate system respond differently in different subcellular fractions towards diabetes or deprivation of food and b) diabetes may affect the uptake system in glial cells but not in neurons.Abbreviations used AET 2-aminoethylisourethonium bromide - GAD glutamic acid decarboxylase - GS glutamine synthetase - GSH glutathione - PAG phosphate-activated glutaminase - PLP pyridoxal phosphate - r.c.f. relative centrifugal force - s.a. specific activity  相似文献   

3.
Phosphate activated glutaminase (PAG) was assayed in whole homogenate and synaptosomes of cerebral cortex from normal or fasted for 120 h rats. The specific activity (s.a.) of PAG was found diminished by 25% in the whole homogenate from the fasted animals compared to the normal. On the contrary, fasting did not affect PAG s.a. of the synaptosomal fraction. Reconstitution experiments showed that when the deproteinized supernatant of the 12,500g centrifugation from the fasted rats was added to the synaptosomes from either fed or fasted animals the PAG activity was diminished but there was no change when the corresponding supernatant from the fed animals was added to the synaptosomes from both conditions. When leucine at 5mM was added to the homogenate or to synaptosomes from fed or fasted animals the s.a. of PAG was significantly decreased. Even in the presence of aminooxyacetate the effect of leucine was observed. Branched chain amino acids i.e. leucine, isoleucine and valine at 0.5 mM each added to synaptosomes again decreased PAG activity. The addition of ketone bodies had no effect. It is suggested that leucine, because PAG has been implicated in the supply of transmitter glutamate, might be an important regulator of the pool of this neurotransmitter.  相似文献   

4.
Phosphate-activated glutaminase was isolated from synaptosomes from three areas of rat brain. Glutamine utilization phosphate activation and inhibition by glutamate or ammonia were assessed in the absence or presence of haloperidol, chlorpromazine, or clozapine. All three drugs (at 1 micromolar concentration) elevated theK m for glutamine using preparations from the amygdala, hippocampus, or striatum. They interfered with phosphate activation only in the amygdala preparation. No drug affected end-product inhibition. The data suggest that neuroleptics may depress the release of glutamic acid from synaptosomes by interfering with the activation of glutaminase by phosphate.  相似文献   

5.
The effect of chronic administration of lithium on the concentration of biogenic amines and some of their metabolites in striatum, hippocampus, hypothalamus, pons-medulla and parietal cortex of rat were studied. Longterm lithium treatment modifies significantly the content of indoleamines in striatum and hypothalamus with minor changes in other structures. Catecholamine levels change after the treatment in striatum, hypothalamus, pons-medulla and parietal cortex. These results indicate that lithium treatment at therapeutic doses selectively modifies the catecholamine and indoleamine contents in discrete areas of the brain.  相似文献   

6.
The Ca(2+)-ATPase activity of rat brain microsomes was studied in streptozotocin (STZ)-induced diabetes. Male rats, 200-250 g, were rendered diabetic by injection of STZ (45 mg kg(-1) body weight) via the teil vein. Brain tissues were collected at 1, 4 and 10 weeks after diabetes was induced for determination of Ca(2+)-ATPase activity, lipid peroxidation and tissue calcium levels. Diabetic rats had significantly elevated blood glucose levels compared to controls. Blood glucose levels were 92.92 +/- 1.22 mg dl(-1) (mean +/- SEM) for the control group, 362.50 +/- 9.61 mg dl(-1) at 1 week and >500 mg dl(-1) at 4, 8 and 10 weeks for the diabetics. Enzyme activities were significantly decreased at 1, 4, 8 and 10 weeks of diabetes relative to the control group (p < 0.001). Ca(2+)-ATPase activity was 0.084 +/- 0.008 U l(-1), 0.029 +/- 0.005 U l(-1), 0.029 +/- 0.006 U l(-1), 0.033 +/- 0.003 U l(-1) and 0.058 +/- 0.006 U l(-1) (mean +/- SEM) at control, 1, 4, 8 and 10 week of diabetes respectively. The change in calcium levels in diabetic rat brain at 8 and 10 weeks of diabetes was significantly higher than that of the control group (p < 0.05). On the other hand lipid peroxidation measured as TBARS (thiobarbituric acid reactive substances) was significantly higher at 8 and 10 weeks of diabetes (p < 0.05). The increase in lipid peroxidation observed in diabetic rat brain may be partly responsible for the decrease in calcium ATPase activity.  相似文献   

7.
BackgroundIodine is a key component of the thyroid hormones thyroxine (T4) and triiodothyronine (T3), which are crucial for proper growth and development of the human body. In particular, a great body of literature has been published on the link between thyroid hormones and brain development and functioning. However, there is a lack of knowledge on the iodine levels in the human brain. The aim of this work was to determine the brain iodine levels and to contribute to the establishment of “reference” levels for iodine in the different anatomical and functional regions of normal (i.e., subjects without neurological or psychiatric diseases) human brain.MethodsThe iodine levels were determined in 14 brain regions of 52 dead subjects without evidence of neurological or psychiatric disease (n = 728 samples). Iodine was extracted from brain samples using a standard procedure and determined by inductively coupled plasma – mass spectrometry (ICP-MS).ResultsFour subjects presented abnormally high brain iodine levels (26.0 ± 14.2 μg/g) and were excluded from the overall data analysis. The average brain iodine levels for the remaining 48 subjects was 0.14 ± 0.13 μg/g dry weight. Iodine showed very heterogeneous distribution across the different brain regions, with the frontal cortex, caudate nucleus and putamen showing the highest levels. Interestingly, these brain regions are closely related to cognitive function. Iodine levels also showed a tendency to increase with age. The high levels observed in four subjects seemed to be related to previous exposure to iodine-based contrast agents widely used in radiology and computed tomography exams.ConclusionsThis paper provides important data on iodine levels at different brain regions in “normal” people, which can be used to interpret eventual imbalances in subjects with mental disorders and neurodegenerative diseases.  相似文献   

8.
9.
In vivo protein synthesis rates in various brain regions (cerebral cortex, cerebellum, hippocampus, hypothalamus, and striatum) of 4-, 12-, and 24-month-old rats were examined after injection of a flooding dose of labeled valine. The incorporation of labeled valine into proteins of mitochondrial, microsomal, and cytosolic fractions from cerebral cortex and cerebellum was also measured. At all ages examined, the incorporation rate was 0.5% per hour in cerebral cortex, cerebellum, hippocampus, and hypothalamus and 0.4% per hour in striatum. Of the subcellular fractions examined, the microsomal proteins were synthesized at the highest rate, followed by cytosolic and mitochondrial proteins. The results obtained indicate that the average synthesis rate of proteins in the various brain regions and subcellular fractions examined is fairly constant and is not significantly altered in the 4 to 24-month period of life of rats.A preliminary report of these results was previously presented at: WFN-ESN Joint Meeting on: Cerebral Metabolism in Aging and Neurological Disorders, Baden, August 28–31, 1986.  相似文献   

10.
In animal models of diabetes mellitus, such as the streptozotocin-diabetic rat (STZ-rat), spatial learning impairments develop in parallel with a reduced expression of long-term potentiation (LTP) and enhanced expression of long-term depression (LTD) in the hippocampus. This study examined the time course of the effects of STZ-diabetes and insulin treatment on the hippocampal post-synaptic glutamate N-methyl-D-aspartate (NMDA) receptor complex and other key proteins regulating hippocampal synaptic transmission in the post-synaptic density (PSD) fraction. In addition, the functional properties of the NMDA-receptor complex were examined. One month of STZ-diabetes did not affect the NMDA receptor complex. In contrast, 4 months after induction of diabetes NR2B subunit immunoreactivity, CaMKII and Tyr-dependent phosphorylation of the NR2A/B subunits of the NMDA receptor were reduced and alphaCaMKII autophosphorylation and its association to the NMDA receptor complex were impaired in STZ-rats compared with age-matched controls. Likewise, NMDA currents in hippocampal pyramidal neurones measured by intracellular recording were reduced in STZ-rats. Insulin treatment prevented the reduction in kinase activities, NR2B expression levels, CaMKII-NMDA receptor association and NMDA currents. These findings strengthen the hypothesis that altered post-synaptic glutamatergic transmission is related to deficits in learning and plasticity in this animal model.  相似文献   

11.
Tetrahymena pyriformis GL was starved for 24 h and then the immunologically demonstrable insulin content and FITC-insulin binding were measured by flow cytometry and localization was studied by confocal microscopy. The amount of endogeneous insulin as well as FITC insulin binding, was highly significantly elevated. Glucose feeding for 30 min abolished the elevation of FITC-insulin binding. In starved cells, insulin-binding sites disappeared from the surface and FITC-insulin was bound inside the cells, within large food vacuoles. Endogeneous insulin was dispersed in the cytoplasm both in the control and starved cells and food vacuoles did not contain it. The results call attention to the stimulatory effect of starvation on insulin production in Tetrahymena, in parallel with the internal storage of insulin receptors, which points to an autocrine mechanism.  相似文献   

12.
Hydroxyurea, when injected intraperitoneally, exerted marked inhibition on the activity of thymidine kinase in 5 day old postnatal cerebellum and 15 day old embryonic cerebrum. However, it failed to show any sustained inhibition on thymidine kinase activity in 5 day old postnatal cerebrum. In this case, the marginal decrease of thymidine kinase activity noticed during early intervals reversed back to more than normal value at a later time interval. These results along with our earlier findings are taken to indicate the differential action of this drug on thymidine kinase activity in rapidly and slowly proliferating regions of rat brain  相似文献   

13.
We investigated the effect of long‐term exposure to modulation magnetic field (MF), insulin, and their combination on blood–brain barrier (BBB) permeability in a diabetic rat model. Fifty‐three rats were randomly assigned to one of six groups: sham, exposed to no MF; MF, exposed to MF; diabetes mellitus (DM), DM induced with streptozotocin (STZ); DM plus MF (DMMF); DM plus insulin therapy (DMI); and DM plus insulin therapy plus MF (DMIMF). All the rats underwent Evans blue (EB) measurement to evaluate the BBB 30 days after the beginning of experiments. The rats in MF, DMMF, and DMIMF groups were exposed to MF (B = 5 mT) for 165 min every day for 30 days. Mean arterial blood pressure (MABP), body mass, and serum glucose level of the study rats were recorded. The extravasation of brain EB of the MF, DM, DMMF, DMI, and DMIMF groups was higher than that of the sham group and the extravasation of right hemisphere of the DMIMF group was highest (P < 0.05). The post‐procedure body mass of the sham and MF groups were significantly higher than those of the DM and DMMF groups (P < 0.05). In the DM, DMMF, DMI, and DMIMF groups, the baseline glucose was significantly lower than the post‐procedure glucose (P < 0.05). DM and MF increase BBB permeability; in combination, they cause more increase in BBB permeability, and insulin decreases their effect on BBB. Improved glucose metabolism may prevent body mass loss and the hypoglycemic effect of MF. DM increases MABP but MF causes no additional effect. Bioelectromagnetics 31:262–269, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Summary We describe the kinetic modifications to mitochondrial-membrane-bound phosphate-dependent glutaminase in various types of rat tissue brought about by acute metabolic acidosis. The activity response of phosphate-dependent glutaminase to glutamine was sigmoidal, showing positive co-operativity, the Hill coefficients always being higher than 2. The enzyme from acidotic rats showed increased activity at subsaturating concentrations of glutamine in kidney tubules, as might be expected, but not in brain, intestine or liver tissues. Nevertheless, when brain and intestine from control rats were incubated in plasma from acutely acidotic rats enzyme activity increased at 1 mM glutamine in the same way as in kidney cortex. The enzyme from liver tissue remained unaltered. S0.5 and nH values decreased significantly in kidney tubules, enterocytes and brain slices preincubated in plasma from acidotic rats. The sigmoidal curves of phosphate-dependent glutaminase shifted to the left without any significant changes in Vmax. The similar response of phosphate-dependent glutaminase to acute acidosis in the kidney, brain and intestine confirms the fact that enzymes from these tissues are kinetically identical and reaffirms the presence of an ammoniagenic factor in plasma, either produced or concentrated in the kidneys of rats with acute acidosis.Abbreviations Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid - EDTA NN-1,2-Ethane-diylbis [N-(carboxymethyl)glycyne] - Tris 2-amino-2-hydroxymethyl-1,3-propanediol - PDG phosphate dependent glutaminase Publication No. 145 from Drogas, Tóxicos Ambientales y Metabolismo Celular Research Group. Department of Biochemistry and Molecular Biology, University of Granada, Spain  相似文献   

15.
The neuroleptic drug, chlorpromazine (CPZ) has been shown to exert its antipsychotic effect by blocking post synaptic dopamine receptors. However, its effect on steady state levels of monoamines is still in discrepancy. In the present study, CPZ (4 mg/kg body weight) was administered intraperitoneally to adult Wistar rats chronically for 75 days and the levels of norepinephrine (NE), dopamine (DA) and 5-hydroxytryptamine (5-HT) were assayed in various brain regions by high performance liquid chromatography (HPLC). After the experimental period body and brain weights were not statistically different from controls. NE and 5-HT levels were increased only in hippocampus by 15% (p<0.01) and 16% (p<0.01) respectively. DA levels were consistently increased in cortex by 39% (p<0.001), striatum-accumbens by 18% (p<0.01), hippocampus by 27% (p<0.01), hypothalamus by 34% (p<0.001), cerebellum by 36% (p<0.001) and brainstem by 40% (p<0.001) in CPZ treated rats compared to controls. The results suggest that chronic CPZ administration increases DA levels in almost all regions of brain and reflect the ability of CPZ to preferentially interfere with synaptic transmission mediated by DA in brain. It also suggests that this increase in DA might be responsible for certain side effects seen in patients after chronic CPZ treatment.  相似文献   

16.
The effects of intraperitoneal administration of gamma-hydroxybutyric acid (GHB) on biogenic amine levels in hemispheres, hypothalamus, midbrain, and medulla-pons, and on tryptophan in serum and brain, were studied. One hour after GHB administration (50 and 100 mg/kg) significant increases of dopamine concentration were observed in the hemispheres with both doses and in the hypothalamus with the higher dose, but a significant decrease of noradrenaline in the hypothalamus. No significant changes of serotonin metabolism were observed. These results indicate that low doses of GHB selectively affect the catecholaminergic neuronal activity.  相似文献   

17.
Changes in the activity of proteases (cathepsin D and calpains) caused by 48-h food withdrawal were studied in the brain, liver, kidney, spleen, and heart of 3-, 12-, and 24-month-old Fischer rats. Cathepsin D activity was similar in brain, liver, and heart of control animals; in kidney it was 5-fold higher and in spleen about 10-fold higher. With age, activity increased in all organs tested except spleen. Brief starvation caused no change of cathepsin D activity in brain, but caused an increase in liver and a decrease in spleen. Neutral proteolytic activity in control was highest in the pons-medulla-cerebellum fraction of brain, and activity in liver and heart was below that in brain. Activity increased with age in brain and decreased in other organs. Brief starvation in young animals caused an increase in activity in brain, and a decrease in liver and spleen. Isolated calpain II activity was high in control brain. It increased with age in the cerebrum. Brief starvation resulted in a decrease in the brain. The results indicate that the protease content of the brain is altered with age and in malnutrition, with changes not being the same for all proteases, and changes in brain being different from those in other organs.Special issue dedicated to Dr. Louis Sokoloff.  相似文献   

18.
Carbamazepine (25 mg/kg body weight) was administered intraperitoneally to adult male Wistar rats for 45 days and norepinephrine (NE), dopamine (DA) and serotonin (5-HT) levels were simultaneously assayed in discrete brain regions by high performance liquid chromatographic (HPLC) method. Experimental rats displayed no behavioral abnormalities. Body and brain weights were not significantly different from control group of rats. After exposure it was observed that norepinephrine levels were elevated in motor cortex (P<0.01) and cerebellum (P<0.05), while dopamine levels were decreased in these two regions (P<0.001, P<0.05). However, dopamine levels were increased in hippocampus (P<0.01). Serotonin levels were significantly decreased in motor cortex (P<0.001) and hypothalamus (P<0.001) but increased in striatum-accumbens (P<0.001) and brainstem (P<0.001). These results suggest that carbamazepine may mediate its anticonvulsant effect by differential alterations of monoamine levels in discrete brain regions particularly in motor cortex and cerebellum.  相似文献   

19.
Expcsure of adult male albino rats to higher environmental temperature (HET) at 35° for 2–12 hr or at 45° for 1–2 hr increases hypothalamic synaptosomal acetylcholinesterase (AChE) activity. Synaptosomal AChE activity in cerebral cortex of rats exposed to 35° for 12 hr and in cerebral cortex and pons-medulla of rats exposed to 45° for 1–2 hr are also activated. AChE activity of synaptosomes prepared from normal rat brain regions incubated in-vitro at 39° or 41° for 0.5 hr increases significantly in cerebral cortex and hypothalamus. The activation of AChE in ponsmedulla is also observed when this brain region is incubated at 41° for 0.5 hr. Increase of (a) the duration of incubation at 41° and (b) the incubation temperature to 43° under in-vitro condition decreases the synaptosomal AChE activity. Lioneweaver-Burk plots indicate that (a) in-vivo and invitro HET-induced increases of brain regional synaptosomal AChE activity are coupled with an increase ofV max without any change inK m (b) very high temperature (43° under in-vitro condition) causes a decrease inV max with an increase inK m of AChE activity irrespective of brain regions. Arrhenius plots show that there is a decrease in transition temperature in hypothalamus of rats exposed to either 35° or 45°; whereas such a decrease in transition temperature of the pons-medulla and cerebral cortex regions are observed only after exposure to 45°. These results suggests that heat exposure increases the lipid fluidity of synaptosomal membrane depending on the brain region which may expose the catalytic site of the enzyme (AChE) and hence activate the synaptosomal membrane bound AChE activity in brain regions. Further the in-vitro higher temperature (43°C)-induced inhibition of synaptosomal AChE activity irrespective of brain regions may be the cause iof partial proteolysis/disaggregation of AChE oligomers and/or solubilization of this membrane-bound enzyme.To whom to address reprint requests:  相似文献   

20.
The effect of alloxan-induced diabetes was studied on the activity of monoamine oxidase (MAO), the oxidative deaminating enzyme of monoamine neurotransmitters. MAO was assayed from discrete brain regions like medial preoptic area and median eminence - arcuate region of hypothalamus, septum, amygdala, thalamus, hippocampus, pons and medulla. In all these areas studied, the induction of diabetes resulted in significant increase in MAO activity at 3, 8, 15 and 28 day intervals, whereas, the treatment of diabetic rats with insulin led to recovery in the enzyme activity. Blood glucose levels increased significantly after induction of diabetes and the recovery was seen after insulin treatment. These data suggest the involvement of MAO in diabetes associated alterations in physiological and endocrinological disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号