首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Genes encoding enzymes involved in biosynthesis of very long chain fatty acids were significantly up-regulated during early cotton fiber development. Two cDNAs, GhKCR1 and GhKCR2 encoding putative cotton 3-ketoacyl-CoA reductases that catalyze the second step in fatty acid elongation, were isolated from developing cotton fibers. GhKCRI and 2 contain open reading frames of 963 bp and 924 bp encoding proteins of 320 and 307 amino acid residues,respectively. Quantatitive RT-PCR analysis showed that both these genes were highly preferentially expressed during the cotton fiber elongation period with much lower levels recovered from roots, stems and leaves. GhKCR1 and 2 showed 30%-32% identity to Saccharomyces cerevisiae Ybr159p at the deduced amino acid level. These cotton cDNAs were cloned and expressed in yeast haploid ybr159wA mutant that was deficient in 3-ketoacyl-CoA reductase activity.Wild-type growth rate was restored in vbr159wA cells that expressed either GhKCRI or 2. Further analysis showed that GhKCR1 and 2 were co-sedimented within the membranous pellet fraction after high-speed centrifugation, similar to the yeast endoplasmic reticulum marker ScKar2p. Both GhKCR(s) showed NADPH-dependent 3-ketoacyl-CoA reductase activity in an in vitro assay system using palmitoyl-CoA and malonyl-CoA as substrates. Our results suggest that GhKCR1 and 2 are functional orthologues of ScYbr159p.  相似文献   

4.
5.
Ji SJ  Lu YC  Feng JX  Wei G  Li J  Shi YH  Fu Q  Liu D  Luo JC  Zhu YX 《Nucleic acids research》2003,31(10):2534-2543
Cotton fibers are differentiated epidermal cells originating from the outer integuments of the ovule. To identify genes involved in cotton fiber elongation, we performed subtractive PCR using cDNA prepared from 10 days post anthesis (d.p.a.) wild-type cotton fiber as tester and cDNA from a fuzzless-lintless (fl) mutant as driver. We recovered 280 independent cDNA fragments including most of the previously published cotton fiber-related genes. cDNA macroarrays showed that 172 genes were significantly up-regulated in elongating cotton fibers as confirmed by in situ hybridization in representative cases. Twenty-nine cDNAs, including a putative vacuolar (H+)-ATPase catalytic subunit, a kinesin-like calmodulin binding protein, several arabinogalactan proteins and key enzymes involved in long chain fatty acid biosynthesis, accumulated to greater than 50-fold in 10 d.p.a. fiber cells when compared to that in 0 d.p.a. ovules. Various upstream pathways, such as auxin signal transduction, the MAPK pathway and profilin- and expansin-induced cell wall loosening, were also activated during the fast fiber elongation period. This report constitutes the first systematic analysis of genes involved in cotton fiber development. Our results suggest that a concerted mechanism involving multiple cellular pathways is responsible for cotton fiber elongation.  相似文献   

6.
7.
8.
9.
10.
11.
A majority of cotton genes are expressed in single-celled fiber   总被引:7,自引:0,他引:7  
Hovav R  Udall JA  Hovav E  Rapp R  Flagel L  Wendel JF 《Planta》2008,227(2):319-329
  相似文献   

12.
13.
14.
Since 1974, when Beasley and Ting discovered that fertilized ovules of cotton can be cultured in media supplemented with GA along with auxin, the effect of all types of phytohormones on fiber development has been widely studied. Many phytohormones, including GA, IAA, brassinosteroid (Br), ABA, ethylene (Et), and cytokinins (Ck), all have been demonstrated to play important roles during cotton fiber development. In recent years, the rapid development of genomic analysis and the accumulation of high-quality cotton ESTs allowed us to probe phytohormonal gene expression during fiber development. Many phytohormonal genes, including GA-, IAA-, ABA-, Br-, Et-, and Ck-related genes, participating in phytohormone biosynthesis pathways and signal transduction pathway accumulated in the process of cotton fiber development.  相似文献   

15.
该研究以陆地棉苯基香豆满苄基醚还原酶(phenylcoumaran benzylic ether reductase,PCBER)氨基酸序列为探针,利用Blastp从陆地棉基因组数据库中发现了6个同源性较高的基因。根据6个基因序列设计引物,利用RT-PCR技术从陆地棉纤维细胞中克隆出了这6个基因的全长cDNA序列,分别命名为GhPCBER1、GhPCBER2、GhPCBER3、GhIFR、GhPLR1和GhPLR2。多重序列比对和进化树分析发现,6个蛋白均含有PIP类型蛋白的所有保守性基序和活性残基,属于PIP亚家族。实时荧光定量PCR结果显示,除GhPLR1之外其他5个PIP亚家族基因均在纤维细胞中优势或特异表达;在纤维发育过程中,GhPCBER1、GhPCBER2、GhPCBER3和GhIFR的表达均表现为先上升后下降,GhPCBER1和GhPCBER2在花后21d表达量达到最高,GhPCBER3和GhIFR在花后18d达到最高,GhPLR1和GhPLR2在纤维中的表达量呈持续上升趋势。根据基因的表达特征,推测PIP亚家族可能在棉纤维的发育过程中发挥着重要作用。  相似文献   

16.
Cotton is one of the most important cash crops in US agricultural industry. Environmental stresses, such as drought, high temperature and combination of both, not only reduce the overall growth of cotton plants, but also greatly decrease cotton lint yield and fiber quality. The impact of environmental stresses on fiber development is poorly understood due to technical difficulties associated with the study of developing fiber tissues and lack of genetic materials to study fiber development. To address this important question and provide the need for scientific community, we have generated transgenic cotton lines harboring cotton fiber specific promoter (CFSP)-reporter constructs from six cotton fiber specific genes (Expansin, E6, Rac13, CelA1, LTP, and Fb late), representing genes that are expressed at different stages of fiber development. Individual CFSP::GUS or CFSP::GFP construct was introduced into Coker 312 via Agrobacterium mediated transformation. Transgenic cotton lines were evaluated phenotypically and screened for the presence of selectable marker, reporter gene expression, and insertion numbers. Quantitative analysis showed that the patterns of GUS reporter gene activity during fiber development in transgenic cotton lines were similar to those of the native genes. Greenhouse drought and heat stress study showed a correlation between the decrease in promoter activities and decrease in fiber length, increase in micronaire and changes in other fiber quality traits in transgenic lines grown under stressed condition. These newly developed materials provide new molecular tools for studying the effects of abiotic stresses on fiber development and may be used in study of cotton fiber development genes and eventually in the genetic manipulation of fiber quality.  相似文献   

17.
Two genes, each corresponding to fiber mRNA E6, were isolated from cotton cultivars Coker 312 (Gossypium hirsutum L.) and Sea Island (G. barbadense L.). E6 is one of the predominant fiber-specific mRNAs present during early fiber development. The distinguishing feature of the nucleotide-derived E6 protein is the presence of a motif where a dimer, Ser-Gly, is repeated several times. Two of the Sea Island genes contained a pentameric motif, Ser-Gly, while one of the Coker genes had one and the other had four motifs each. cDNA clones containing one or five Ser-Gly motifs were also identified. Thus, it appears that the strict conservation of this motif may not be critical to E6 protein function. Sequence characterizations of the genes and cDNAs showed that multiple members of the E6 family are transcribed in fiber and may result in proteins 238 to 246 amino acids long. The 3 ends of the genes and cDNAs showed considerable heterology among them. Transgenic plants containing antisense genes were generated to decipher E6 function. Transgenic cotton with reduced E6 protein levels in the range of 60 to 98% were identified. However, no discernible phenotypic changes in fiber development or properties were apparent. This result leads to the conclusion that E6 is not critical to the normal development or structural integrity of cotton fibers.  相似文献   

18.
19.
低温对棉纤维比强度形成的生理机制影响   总被引:25,自引:0,他引:25       下载免费PDF全文
通过设置播期试验使棉纤维加厚发育过程(铃龄25~50 d)处于不同的温度条件下,研究低温对棉花纤维比强度形成的内在生理机制影响,为采取调控措施解决目前棉花(Gossypium)生产中存在的晚熟劣质问题提供理论依据。两年试验结果表明:棉纤维加厚发育期24.0 ℃左右的日均温是高强纤维形成的最佳温度,其内在生理机制表现为棉纤维蔗糖合成酶活性最高,β_1,3_葡聚糖酶活性最低,纤维素的累积量和累积速率均明显高于其它低温条件,纤维超分子结构取向参数角较小,处于优化状态,最终表现为纤维比强度亦最大;低于21.0 ℃时即对棉纤维加厚发育相关酶活性产生明显影响,纤维比强度降低。当温度降到15.0 ℃左右时,棉纤维蔗糖合成酶活性显著降低,而β-1,3_葡聚糖酶活性显著升高,同时纤维素累积量和累积速率均显著降低,纤维超分子结构取向参数角明显宽化,棉纤维不能正常发育,不利于高强纤维的形成(铃重仅为3.22 g,纤维比强度仅为15.73 cN·tex-1)。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号