首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
cDNAs encoding the entire coding regions of the precursors (p) of rat long chain acyl-CoA (LCAD), short chain acyl-CoA (SCAD) and isovaleryl-CoA dehydrogenase (IVD) have been cloned and sequenced. Three cDNAs for rat liver LCAD together cover a 1440-base pair region. These cDNAs encode the entire 430-amino acid sequence of pLCAD, including the 30-amino acid leader peptide and the 400-amino acid mature LCAD. A single 1773 base pair cDNA for rat SCAD covers the entire coding region (414 amino acids), including the 26-amino acid leader peptide and the 388-amino acid mature peptide. Four identified IVD cDNAs, when combined, encompass a 2104 base region, and encode 424 amino acids including a 30-amino acid leader peptide and the 394-amino acid mature peptide. The identities of all cDNA clones have been confirmed by matching the amino acid sequences predicted from the respective cDNAs to the amino-terminal and tryptic peptide sequences derived from the corresponding purified rat enzyme. Comparison of the sequences of four rat acyl-CoA dehydrogenases, including LCAD, MCAD, SCAD, and IVD, and two of their human counterparts (MCAD and SCAD) reveals a high degree of homology (57 invariant and 92 near invariant residues: 30.6-35.4% of identical residues in pairwise comparisons), suggesting that these enzymes belong to a gene family and have evolved from a common ancestral gene.  相似文献   

3.
Multigene families encode the proline-rich proteins that are so prominent in human saliva and are dramatically induced in mouse and rat salivary glands by isoproterenol treatment and by feeding tannins. A cDNA encoding an acidic proline-rich protein of rat has been sequenced (Ziemer, M. A., Swain, W. F., Rutter, W. J., Clements, S., Ann, D. K., and Carlson D. M. (1984) J. Biol. Chem. 259, 10475-10480). This study presents the nucleotide sequences of five additional proline-rich protein cDNAs complementary to both mouse and rat parotid and submandibular gland mRNAs. Amino acid compositions deduced from the nucleotide sequences are typical for proline-rich proteins: 25-45% proline, 18-22% glycine, and 18-22% glutamine and generally an absence of sulfur-containing amino acids except for the initiator methionine. These proline-rich proteins display unusual repeating peptide sequences of 14-19 amino acids. The derived amino acid sequence of the cDNA insert of plasmid pMP1 from mouse has a 19-amino acid sequence which is repeated four times. The inserts of plasmids pUMP40 and pUMP4 also from mouse encode for 12 and 11 repeats of a 14-amino acid peptide, respectively. These repetitive sequences, and others from rat and mouse cDNAs and from human genomic clones, all show very high homologies and likely evolved from duplication of internal portions of an ancestral gene. Gene conversion could account for the high degree of conservation of nucleotide sequences of the repeat regions. Protein derived from the nucleotide sequences are all characterized by four general regions: a putative signal peptide, a transition region, the repetitive region, and a carboxyl-terminal region. The 5'-flanking sequences and sequences encoding the putative signal peptides are highly conserved (greater than 94%) in all six cDNAs. This sequence conservation may be important in the regulation of the biosynthesis of these unusual proteins.  相似文献   

4.
5.
6.
The endosperm of hexaploid wheat (Triticum aestivum [L.]) was shown to contain a high molecular weight starch synthase (SS) analogous to the product of the maize du1 gene, starch synthase III (SSIII; DU1). cDNA and genomic DNA sequences encoding wheat SSIII were isolated and characterized. The wheat SSIII cDNA is 5,346 bp long and contains an open reading frame that encodes a 1,628-amino acid polypeptide. A putative N-terminal transit peptide, a 436-amino acid C-terminal catalytic domain, and a central 470-amino acid SSIII-specific domain containing three regions of repeated amino acid similarity were identified in the wheat gene. A fourth region between the transit peptide and the SSIII-specific domain contains repeat motifs that are variable with respect to motif sequence and repeat number between wheat and maize. In dicots, this N-terminal region does not contain repeat motifs and is truncated. The gene encoding wheat SSIII, designated ss3, consists of 16 exons extending over 10 kb, and is located on wheat chromosome I. Expression of ss3 mRNA in wheat was detected in leaves, pre-anthesis florets, and from very early to middle stage of endosperm development. The entire N-terminal variable repeat region and the majority of the SSIII-specific domain are encoded on a single 2,703-bp exon. A gene encoding a class III SS from the Arabidopsis genome sequencing project shows a strongly conserved exon structure to the wheat ss3 gene, with the exception of the N-terminal region. The evolutionary relationships of the genes encoding monocot and dicot class III SSs are discussed.  相似文献   

7.
It has been previously shown that a single gene is used to encode the peptide core of the extracellular proteoglycan of rat L2 yolk sac tumor cells and the intracellular proteoglycan of rat basophilic leukemia (RBL)-1 cells. In order to determine if the predicted amino acid sequences of these proteoglycans are identical as well as to isolate a full length cDNA encoding a rat secretory granule proteoglycan, a cDNA library was prepared from RBL-1 cells and screened with the 165-base pair 5'----XmnI fragment of pPG-1, a partial cDNA which encodes the rat L2 cell proteoglycan peptide core. Based on the consensus nucleotide sequence of two full length RBL-1 cell-derived cDNAs, the 5' untranslated region of the mRNA that is expressed in RBL-1 cells is shorter than that expressed in the rat L2 cells although the coding regions of the mRNAs from the two cell types are identical. These findings indicate that the targeting of proteoglycans to an intracellular or extracellular compartment is a cell-specific event which is independent of the translated peptide core. Since the RBL-1 cell and the rat L2 cell proteoglycans have different types of glycosaminoglycans bound to them, it can also be concluded that the selection of the type of glycosaminoglycan that will be synthesized onto a peptide core is a cell-specific event which is not exclusively dependent on the translated peptide core. When the predicted amino acid sequence of the RBL-1 cell proteoglycan peptide core was compared to the predicted sequence of the homologous human molecule from HL-60 cells, 48% of the amino acids were identical. The N terminus was the most highly conserved area of the molecule. This region of the peptide core, which precedes the serine-glycine repeat region, is likely to be of critical importance for the biosynthesis and/or function of these proteoglycans. Analysis of 10 different mouse/hamster somatic cell hybrid lines with a SspI----3' fragment of the rat L2 cell cDNA revealed that, as in the human, the gene that encodes the mouse analogue of this peptide core resides on chromosome 10.  相似文献   

8.
We have isolated a cDNA clone (pRcol 2) which is complementary to the 5'-terminal portion of the rat pro-alpha 1(II) chain mRNA. A synthetic oligonucleotide was used both as a primer for cDNA synthesis and as a probe for screening a cDNA library. The probe was a mixture of sixteen 14-mers deduced from an amino acid sequence present in the amino-terminal telopeptide of the rat cartilage alpha 1(II) chain. This primer was chosen so that the resulting cDNA would contain the sequence of the 5' end of the mRNA. The nucleotide sequences of the cDNA were determined and compared with that of three other interstitial procollagen chain mRNAs (pro-alpha 1(I), pro-alpha 2(I), and pro-alpha 1(III) chain mRNA). pRcol 2 contains a 521-base pair (bp) insert, including 153 bp of the 5' untranslated region plus 368 bp coding for the signal peptide, the amino-terminal propeptide, and a part of the telopeptide. The signal peptide of the type II collagen chain is composed of about 20 amino acids. There is little homology between the amino acid sequence of the signal peptide in the pro-alpha 1(II) chain and that of three other interstitial procollagen chains. The NH2-terminal propeptide is deduced to contain short nonhelical sequences at its amino and carboxyl ends and an internal helical collagenous domain comprising 25 repeats of Gly-X-Y with one interruption. There is a strong conservation of the amino acid sequence of the carboxyl-terminal part of the NH2-terminal propeptide in the pro-alpha 1(II), pro-alpha 1(I), and pro-alpha 2(I) chains. Type II collagen mRNA does not contain a sequence corresponding to a uniquely conserved nucleotide sequence around the translation initiation site which occurs in mRNA for other procollagen chains.  相似文献   

9.
We have identified and characterized a novel human insulin-like growth factor I (IGF-I) precursor from the transplantable T61 human breast cancer xenograft and from normal liver. The mRNA encoding this precursor contains a 5'-untranslated region that is 83% identical to the corresponding region of a previously described variant rat IGF-I. The nucleotide sequence of the cloned cDNA predicts an IGF-IA protein precursor of 137 amino acids, including a 32 residue signal peptide, 70 amino acid IGF-I, and a 35 residue COOH-terminal extension or E peptide. The exon encoding this variant maps in the genome between IGF-I exons 1 and 2, in a similar location to the homologous rat exon 1a. The rat and human exons 1a are 59% identical over 1443 nucleotides, with DNA sequence conservation occurring in a mosaic pattern. Human IGF-I mRNAs encoding this novel exon are expressed in liver, T61 tumor cells, and in an ovarian carcinoma cell line, NIH OVCAR3. These studies demonstrate that as in the rat, the human IGF-I gene contains six exons that are variably processed into multiple IGF-I mRNAs. The mechanisms responsible for generating different IGF-I mRNAs thus appear to be conserved among mammalian species.  相似文献   

10.
Mast cell carboxypeptidase A has been isolated from the secretory granules of mouse peritoneal connective tissue mast cells (CTMC) and from a mouse Kirsten sarcoma virus-immortalized mast cell line (KiSV-MC), and a cDNA that encodes this exopeptidase has been cloned from a KiSV-MC-derived cDNA library. KiSV-MC-derived mast cell carboxypeptidase A was purified with a potato-derived carboxypeptidase-inhibitor affinity column and was found by analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be a Mr 36,000 protein. Secretory granule proteins from KiSV-MC and from mouse peritoneal CTMC were then resolved by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transblotted to polyvinylidine difluoride membranes. Identical aminoterminal amino acid sequences were obtained for the prominent Mr 36,000 protein present in the granules of both cell types. Based on the amino-terminal sequence, an oligonucleotide probe was synthesized and used to isolate a 1,470-base pair cDNA that encodes this mouse exopeptidase. The deduced amino acid sequence revealed that, after cleavage of a 15-amino acid hydrophobic signal peptide and a 94-amino acid activation peptide from a 417-amino acid preproenzyme, the mature mast cell carboxypeptidase A protein core has a predicted Mr of 35,780 and a high positive charge [Lys + Arg) - (Asp + Glu) = 17) at neutral pH. Although critical zinc-binding amino acids (His67, Glu70, His195), substrate-binding amino acids (Arg69, Asn142, Arg143, Tyr197, Asp255, Phe278), and cysteine residues that participate in intrachain disulfide bonds (Cys64-Cys77, Cys136-Cys159) of pancreatic carboxypeptidases were also present in mast cell carboxypeptidase A, the overall amino acid sequence identities for mouse mast cell carboxypeptidase A relative to rat pancreatic carboxypeptidases A1, A2, and B were only 43, 41, and 53%, respectively. RNA and DNA blot analyses revealed that mouse peritoneal CTMC, KiSV-MC, and bone marrow-derived mast cells all express a prominent 1.5-kilobase mast cell carboxypeptidase A mRNA which is transcribed from a single gene. We conclude that mouse mast cell carboxypeptidase A is a prominent secretory granule enzyme of mast cells of the CTMC subclass and represents a novel addition to the carboxypeptidase gene family.  相似文献   

11.
The function of amino-terminal pro-specific peptides (propeptides), sequences often found on intermediate precursor forms of secreted proteins, is poorly understood. Human preproparathyroid hormone (prepro-PTH), a precursor protein containing such a propeptide, is initially synthesized as a precursor containing a 25-amino acid signal sequence, a 6-amino acid propeptide, and the 84-amino acid mature secreted peptide. Cloned cDNA encoding prepro-PTH and synthetic oligonucleotides were used to generate a mutant missing precisely the pro-specific sequences. The effects of this deletion on signal sequence function and on secretion per se were assessed after expression of the mutant cDNA in intact cells and in a cell-free translation system using synthetic mRNA in the presence of microsomal membranes. The mutant precursor protein was inefficiently translocated and cleaved, and cleavage occurred both at the normal site and within the signal sequence. Thus, for the eukaryotic protein prepro-PTH, sequences immediately downstream and separate from the classically defined signal sequence facilitate accurate and efficient signal function.  相似文献   

12.
13.
Guanylin (PNTCEICAYAACTGC) is a peptide recently isolated from the intestine, the actions of which appear to be mimicked by bacterial heat-stable enterotoxins (Currie, M. G., Fok, K. F., Kato, J., Moore, R. J., Hamra, F. K., Duffin, K. L., and Smith, C. E. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 947-951). A cDNA clone encoding the peptide was isolated from a rat intestinal cDNA library using a degenerate oligonucleotide probe. The mRNA (approximately 0.8-0.9 kilobase) encoding the peptide contained an open reading frame of 115 amino acids, including an amino-terminal signal peptide. The carboxyl-terminal region of the predicted polypeptide contained a sequence identical to guanylin, but the 15-amino acid peptide likely represents an artifact of previous acetic acid extraction methods, since an aspartate residue precedes the amino-terminal proline. A lysine-lysine dipeptide bond is one likely processing site of pro-guanylin and would generate a 60-amino acid mature peptide. Other potential cleavage sites exist at single lysine and arginine residues, which could result in peptides ranging from 22 to 56 amino acids. Transfection of COS-7 cells with the guanylin cDNA resulted in the expression of a secreted protein of M(r) 10,000. The expressed proguanylin failed to elevate cyclic GMP concentrations in human colonic T84 cells, but acetic acid treatment of pro-guanylin activated it and resulted in large elevations of cyclic GMP. Guanylin mRNA was prevalent in rat intestine but was also found in low abundance in adrenal gland, kidney, and uterus/oviduct. Guanylyl cyclase C, the apparent guanylin receptor, was found in abundant amounts in the intestine by Northern analysis, and by the polymerase chain reaction or cDNA cloning it was also found in adrenal gland, airway epithelial cells, brain, and olfactory and tracheal mucosa. Therefore, the ligand and apparent receptor (guanylyl cyclase C) both originate from mammalian genes, and are expressed in various mammalian tissues.  相似文献   

14.
The nucleotide sequence of a novel peptide from a rat Leydig cell hypercalcemic tumor H-500 was determined. This cDNA encodes a peptide of 93 amino acids and contains a heparin binding domain similar to histone 2-B. Northern blot analysis showed tissue specific expression of this peptide mRNA.  相似文献   

15.
16.
We demonstrated that nucleotide and amino acid sequences in the carboxyl-terminal regions of rat, mouse, and human prepropancreatic polypeptide exhibit a high degree of divergence, whereas the amino-terminal domains are highly conserved. To understand the molecular basis of this divergence and conservation, we determined the nucleotide sequence of the rat pancreatic polypeptide gene from an islet genomic library and compared it with that of the human gene. Exon 2 of the rat gene encodes the signal peptide and pancreatic polypeptide, exon 3 encodes the carboxyl-terminal region, and exons 1 and 4 encode the 5'- and 3'- untranslated regions of the mRNA, respectively. Exons 1 and 2 of rat and human genes are well conserved. The rat and human genes, however, have exons 3 and 4 of different lengths and heterologous nucleotide sequences. Mutational accumulation in exons 3 and 4 and intron 3 of the rat gene appears to have caused splice junction sliding and translational frameshift, resulting in a structural divergence in the carboxyl-terminal region. Available evidence indicates that the mosaicism of structural conservation and divergence in pancreatic polypeptide genes may have been caused by a difference in the evolutionary rates of the genomic regions.  相似文献   

17.
Prothymosin alpha and thymosin alpha 1 are believed to be thymus-derived, hormone-like materials with immunomodulatory functions performed outside the cell. These functions are inconsistent with the existence of a full length cDNA clone that does not encode an amino-terminal signal peptide or several consecutive hydrophobic residues. A study of the prothymosin alpha mRNAs and genes was undertaken in search of evidence for secreted forms of the protein. Prothymosin alpha mRNA was localized exclusively on free, rather than membrane-bound, polysomes. Upon screening cosmid and plasmid libraries totaling 2 X 10(6) clones, a gene family consisting of six members was identified. Sequence information from the 5'-ends of all the genes indicated that none encodes an amino-terminal signal peptide. One of the genes, apparently by means of alternate splicing, gives rise to two prothymosin alpha mRNAs, one of which has an additional internal glutamic acid codon with respect to the other. Comparison of the translated nucleic acid sequences of the five remaining genes with those encoded in the mRNAs revealed 30-98% homology in the first 50 amino acids. These five genes appear to be processed genes and/or pseudogenes. The localization of prothymosin alpha mRNAs on free polysomes, together with the partial nucleotide sequences of the genes, strongly suggest an intracellular function for prothymosin alpha. Therefore, the possibility must be raised that prothymosin alpha and its peptide derivatives act as xenobiotics when introduced into assays of immune function.  相似文献   

18.
Nucleotide sequences of two mRNAs for rat brain myelin proteolipid protein   总被引:39,自引:0,他引:39  
R J Milner  C Lai  K A Nave  D Lenoir  J Ogata  J G Sutcliffe 《Cell》1985,42(3):931-939
The 3200 and 1600 nucleotide mRNAs encoding rat brain proteolipid protein (PLP), the major protein component of central nervous system myelin, are heterogeneous at their 5' ends, differ in their 3' polyadenylation sites, and are transcribed from a single gene. The mRNAs, which first appear postnatally, encode identical 277 amino acid proteins that are 99% identical to the bovine protein sequence. Thus, PLP has been highly conserved during mammalian evolution. A single amino-terminal methionine is removed post-translationally, indicating that PLP does not require a signal peptide sequence for insertion into the myelin membrane. Mouse and monkey utilize the 3200 but not the 1600 nucleotide mRNA, suggesting that there is no functional necessity for two sizes of rat PLP mRNAs.  相似文献   

19.
Pancreatic polypeptide is a 36-amino acid peptide which inhibits pancreatic exocrine function. We have previously determined from the nucleotide sequence of a cDNA that pancreatic polypeptide is derived from a 95-amino acid precursor, prepropancreatic polypeptide. Pulse-chase studies have suggested that the precursor is cleaved to produce three peptides: pancreatic polypeptide, an icosapeptide, and a smaller peptide. In the present study, we have used the cloned cDNA as a hybridization probe to isolate the pancreatic polypeptide gene from a human bacteriophage genomic library. The nucleotide sequence of 2.8 kilobases of DNA representing the entire human pancreatic polypeptide gene was determined. The gene contains four exons and three introns. Exon 1 encodes the 5'-untranslated region of the mRNA, exon 2 encodes the signal sequence and the sequence of pancreatic polypeptide, exon 3 encodes the icosapeptide, and exon 4 encodes a carboxyl-terminal heptapeptide and the 3'-untranslated region of the mRNA. By Southern blot analysis, the gene detected in a pancreatic polypeptide-producing islet cell tumor was indistinguishable from that in normal human leukocytes. The structure of the human pancreatic polypeptide gene is consistent with the hypothesis that prepropancreatic polypeptide generates three distinct peptides, each encoded by a separate exon. Increased expression of pancreatic polypeptide in the islet cell tumor does not appear to be correlated with major alterations in pancreatic polypeptide gene structure.  相似文献   

20.
R Kageyama  H Ohkubo  S Nakanishi 《Biochemistry》1984,23(16):3603-3609
Cloned cDNA sequences for human preangiotensinogen have been isolated from a human liver cDNA library by hybridization with a restriction fragment derived from a previously cloned cDNA for rat preangiotensinogen. Analyses by nucleotide sequence determination, S1 nuclease mapping, and RNA blot hybridization indicate that human preangiotensinogen is encoded by two mRNAs that differ only in the length of the 3'-untranslated region. The deduced amino acid sequence shows that the mature angiotensinogen consists of 452 amino acid residues with the angiotensin sequence at its amino-terminal portion. Two potential initiation sites have been discussed. These are the methionine codon located at the position exactly corresponding to the initiation site of rat preangiotensinogen mRNA and an additional methionine codon positioned nearest the 5' end of the mRNA. The amino acid sequences starting at either of the initiation sites and preceding the angiotensin sequence constitute a large number of hydrophobic amino acid residues, thus representing the signal peptide characteristic of the secretory proteins. Human and rat preangiotensinogens show that 63.6% of the amino acid positions of the two proteins are identical. However, the amino-terminal portions directly distal to angiotensin I diverge markedly between the two proteins and differ in their possible glycosylation sites. These structural differences may contribute to the known species specificity exhibited by renin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号