首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coordination of N-deacetylation and N-sulfation of heparan sulfate was examined in wild-type Chinese hamster ovary cells and mutant pgsE-606. This mutant expresses about 3-fold less N-sulfotransferase activity, which causes the proportion of N-sulfated GlcN residues in heparan sulfate to decline from 39 to 21% of total GlcN (Bame, K.J., and Esko, J.D. (1989) J. Biol. Chem. 264, 8059-8065). In this report, we show that microsomes from pgsE-606 cells have about twice the N-deacetylase activity found in microsomes from wild-type cells. However, N-deacetylation in vivo was actually depressed since heparan sulfate preparations from the mutant contained very few unsubstituted GlcN residues and 2-fold less N-sulfated GlcN residues. Treatment of mutant cells with chlorate, a general inhibitor of sulfation, depressed adenosine 3'-phosphate-5'-phosphosulfate pools more than 10-fold and further reduced the extent of N-sulfation from 21% to less than 6% of total GlcN. Unsubstituted GlcN residues accumulated under these conditions to the extent that N-sulfated residues declined. Thus, N-deacetylation remained depressed in the mutant in the presence of chlorate. These findings show that N-deacetylation is regulated in vivo and support the idea that the activity of N-deacetylase may be linked to N-sulfotransferase.  相似文献   

2.
Heparan sulfate polymerization and modification take place in the Golgi compartment. The modification reactions are initiated by glucosaminyl N-deacetylase/N-sulfotransferase (NDST), a bifunctional enzyme that removes N-acetyl groups from selected N-acetyl-d-glucosamine units followed by N-sulfation of the generated free amino groups. Four isoforms of NDST have been identified. NDST-1 and -2 have a wide and largely overlapping tissue distribution, but it is not known if they can act on the same heparan sulfate chain. We have introduced point mutations into NDST-1 cDNA, which selectively destroy the N-deacetylase or N-sulfotransferase activity of the enzyme [Wei, Z., and Swiedler, S. J. (1999) J. Biol. Chem. 274, 1966-70 and Sueyoshi, T., et al. (1998) FEBS Lett. 433, 211-4]. Stable 293 cell lines expressing the NDST-1 mutants were then generated. Structural analyses of heparan sulfate synthesized by these cells and by cells overexpressing wild-type NDST-1 demonstrate that the N-deacetylation step is not only prerequisite but also rate-limiting, determining the degree of N-sulfation. Transfection of mutant NDST-1 lacking N-deacetylase activity had no effect on heparan sulfate sulfation, while cells expressing wild-type enzyme or NDST-1 lacking N-sulfotransferase activity both resulted in the production of oversulfated heparan sulfate. Since no increase in the amount of N-unsubstituted glucosamine residues was seen after transfection of the mutant lacking N-sulfotransferase activity, the results also suggest that two different enzyme molecules can act on the same glucosamine unit. In addition, we show that oversulfation of heparan sulfate produced by cells tranfected with wild-type NDST-1 or the mutant lacking N-sulfotranferase activity results in decreased sulfation of chondroitin sulfate.  相似文献   

3.
A previous study identified a Chinese hamster ovary cell mutant, pgsE-606, which is defective in the N-sulfotransferase that catalyzes one of the initial polymer-modification reactions in the biosynthesis of heparan sulfate (Bame, K. J., and Esko, J. D. (1989) J. Biol. Chem. 264, 8059-8065). The structure of heparan sulfate generated by these cells reflects a 3-5-fold reduction in enzyme activity. The mutant produces heparan sulfate with half the content of N-sulfated glucosamine residues of that produced by wild-type cells and a more sparse distribution of N-sulfated residues. The present study demonstrates corresponding reductions in the proportion of 6-O-sulfated glucosamine residues (41% reduction) and the content of L-iduronic acid (51% reduction). The amount of 2-O-sulfated L-iduronic acid declines more dramatically (from 25% of total L-iduronic acid in the wild type to 8.4% in the mutant). Enzymatic assay of mixed O-sulfotransferases showed that the mutant has more activity than the wild type. Previous studies on the biosynthesis of heparin/heparan sulfate in cell-free systems point to a pivotal role of N-sulfation in determining the extent of the subsequent polymer-modification reactions. The present study shows that this concept also applies to heparan sulfate biosynthesis in the intact cell.  相似文献   

4.
Heparan sulfate interacts with antithrombin, a protease inhibitor, to regulate blood coagulation. Heparan sulfate 3-O-sulfotransferase isoform 1 performs the crucial last step modification in the biosynthesis of anticoagulant heparan sulfate. This enzyme transfers the sulfuryl group (SO(3)) from 3'-phosphoadenosine 5'-phosphosulfate to the 3-OH position of a glucosamine residue to form the 3-O-sulfo glucosamine, a structural motif critical for binding of heparan sulfate to antithrombin. In this study, we report the crystal structure of 3-O-sulfotransferase isoform 1 at 2.5-A resolution in a binary complex with 3'-phosphoadenosine 5'-phosphate. This structure reveals residues critical for 3'-phosphoadenosine 5'-phosphosulfate binding and suggests residues required for the binding of heparan sulfate. In addition, site-directed mutagenesis analyses suggest that residues Arg-67, Lys-68, Arg-72, Glu-90, His-92, Asp-95, Lys-123, and Arg-276 are essential for enzymatic activity. Among these essential amino acid residues, we find that residues Arg-67, Arg-72, His-92, and Asp-95 are conserved in heparan sulfate 3-O-sulfotransferases but not in heparan N-deacetylase/N-sulfotransferase, suggesting a role for these residues in conferring substrate specificity. Results from this study provide information essential for understanding the biosynthesis of anticoagulant heparan sulfate and the general mechanism of action of heparan sulfate sulfotransferases.  相似文献   

5.
Heparin and heparan sulfate are linear sulfated polysaccharides that exert a multitude of biological functions. Heparan sulfate glucosaminyl N-deacetylase/N-sulfotransferase isoform 2 (NDST-2), a key enzyme in the biosynthesis of heparin, contains two distinct activities. This bifunctional enzyme removes the acetyl group from N-acetylated glucosamine (N-deacetylase activity) and transfers a sulfuryl group to the unsubstituted amino position (N-sulfotransferase activity). The N-sulfotransferase activity of NDST has been unambiguously localized to the C-terminal domain of NDST. Here, we report that the N-terminal domain of NDST-2 retains N-deacetylase activity. The N-terminal domain (A66-P604) of human NDST-2, designated as N-deacetylase (NDase), was cloned as a (His)(6)-fusion protein, and protein expression was carried out in Escherichia coli. Heparosan treated with NDase contains N-unsubstituted glucosamine and is highly susceptible to N-sulfation by N-sulfotransferase. Our results conclude that the N-terminal domain of NDST-2 contains functional N-deacetylase activity. This finding helps further elucidate the mechanism of action of heparan sulfate N-deacetylase/N-sulfotransferases and the biosynthesis of heparan sulfate in general.  相似文献   

6.
Cultured arterial smooth muscle cells synthesize a cell-associated heparan sulfate proteoglycan which consists of a 92 kDa core protein with 3 to 4 heparan sulfate side chains covalently attached. Biosynthesis of the cell-associated heparan sulfate proteoglycan was compared in proliferating and in non-dividing vascular smooth muscle cells which are preincubated in the presence of [35]sulfate or a combination of [35S]methionine and [3H]glucosamine. The Mr of the core protein was identical in either growth state, but changes in the structure of the heparan sulfate side chains were observed. Non-dividing (postconfluent) arterial smooth muscle cells form longer heparan sulfate chains with a higher proportion of hydrophobic (N-acetyl) groups than proliferating (preconfluent) cells as judged from gel filtration experiments, hydrophobic interaction chromatography and heparitinase degradation. An enzyme preparation from proliferating cells catalyzes deacetylation and N-sulfation of heparan sulfate at a 5-fold higher activity than from non-dividing cells. Cell density-dependent structural differences of heparan sulfate are related to the finding that heparan sulfate isolated from non-dividing cells has a 10-fold higher antiproliferative potency than heparan sulfate from proliferating (preconfluent) cells.  相似文献   

7.
8.
Incubation of microsomal fractions with labelled 3'-phosphoadenylyl sulfate results in incorporation of [35S]sulfate into endogenous glycosaminoglycans. Specific radioactivity observed incorporated into heparan sulfate chains is 10-fold greater than that incorporated into chondro?tin sulfate chains. This is in agreement with the results obtained for glycosylation of glycosaminoglycans in arterial wall membrane fractions. Sulfation of heparan sulfate was studied since it contains N- and O-sulfate groups in contrast with the other sulfated glycosaminoglycans which contain only O-sulfate groups. Sulfation of heparan sulfate occurs rapidly, since sulfate incorporation is detected after exposure for only 0.5 min. Heparan sulfate was identified on the basis of its resistance to hyaluronidase and chondro?tin ABC lyase, its susceptibility to heparitinase, its sensitivity to nitrous acid and the presence of glucosamine as the only hexosamine. The chemical composition of the purified heparan sulfate fractions provides evidence for the high degree of sulfation of its chains. Studies into the distribution of sulfate residues on heparan sulfate at different times of sulfation indicate that N-sulfate groups are not randomly introduced into the polymer. The relationship between the processes of N- and O-sulfation was studied. The present results demonstrate that preferential N-sulfation is obtained for incorporation of labelled precursor over a short period, the O-sulfation occurring on previously N-sulfated heparan sulfate.  相似文献   

9.
Heparan sulfate N-deacetylase/N-sulfotransferase (NDST) catalyzes the deacetylation and sulfation of N-acetyl-D-glucosamine residues of heparan sulfate, a key step in its biosynthesis. Recent crystallographic and mutational studies have identified several potentially catalytic residues of the sulfotransferase domain of this enzyme (, J. Biol. Chem. 274:10673-10676). We have used the x-ray crystal structure of heparan sulfate N-sulfotransferase with 3'-phosphoadenosine 5'-phosphate to build a solution model with cofactor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and a model heparan sulfate ligand bound, and subsequently performed a 2-ns dynamics solution simulation. The simulation results confirm the importance of residues Glu(642), Lys(614), and Lys(833), with the possible involvement of Thr(617) and Thr(618), in binding PAPS. Additionally, Lys(676) is found in close proximity to the reaction site in our solvated structure. This study illustrates for the first time the possible involvement of water in the catalysis. Three water molecules were found in the binding site, where they are coordinated to PAPS, heparan sulfate, and the catalytic residues.  相似文献   

10.
Heparan sulfate (HS) and chondroitin sulfate (CS) are highly sulfated polysaccharides with a wide range of biological functions. Heparan sulfate 2-O-sulfotransferase (HS-2OST) transfers the sulfo group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the 2-OH position of the hexauronic acid that is adjacent to N-sulfated glucosamine, whereas chondroitin sulfate 2-O-sulfotransferase (CS-2OST) transfers the sulfo group to the hexauronic acid that is adjacent to N-acetylated galactosamine. Here we report a systematic mutagenesis study of HS-2OST and CS-2OST based on their structural homology to estrogen sulfotransferase and HS 3-O-sulfotransferase isoform 3 (3-OST3), for which crystal structures exist. We have identified six residues possibly involved in binding to PAPS. HS-2OST carrying mutations of these residues lacks sulfotransferase activity and the ability to bind 3'-phosphoadenosine 5'-phosphate, a PAPS analogue, as determined by isothermal titration calorimetry. Similar residues involved in binding to PAPS were also identified in CS-2OST. Additional residues that participate in carbohydrate substrate binding were also identified in both enzymes. Mutations at these residues led to the loss of sulfotransferase activity but maintained the ability to bind to phosphoadenosine 5'-phosphate. The catalytic function of HS-2OST appears to involve two histidine residues (His140 and His142), whereas only one histidine (His168) of CS 2-OST is likely to be critical. This unique feature of HS 2-OST catalytic residues directed us to characterize the Drosophila heparan sulfate 2-O-sulfotransferase. The results from this study provide insight into the differences and similarities various residues play in the biological roles of the HS-2OST and CS-2OST enzymes.  相似文献   

11.
Liu R  Liu J 《Biochemistry》2011,50(20):4382-4391
Heparan sulfate is a highly sulfated polysaccharide that exhibits important physiological and pathological functions. The glucosamine residue of heparan sulfate can carry sulfo groups at the 2-N, 3-O, and 6-O positions, leading to diverse polysaccharide structures. 6-O-Sulfation at the glucosamine residue contributes to a wide range of biological functions. Here, we report a method for controlling the positioning of 6-O-sulfo groups in oligosaccharides. This was achieved by synthesizing oligosaccharide backbones from a disaccharide building block utilizing glycosyltransferases followed by modifications using heparan sulfate N-sulfotransferase and 6-O-sulfotransferases. This method offers a viable approach for preparing heparan sulfate oligosaccharides with precisely located 6-O-sulfo groups.  相似文献   

12.
The structural alterations in heparan sulfate produced by sulfate deprivation were studied in cell cultures of the Engelbreth-Holm-Swarm tumor. Tumor cells were labeled in vitro with [3H]glucosamine and/or [35S]sulfate in media containing either 300 microM MgSO4 or no added carrier sulfate, and the newly synthesized proteoglycans isolated by chromatography on DEAE-Sephacel. The proteoglycans isolated from low sulfate cultures showed a reduced affinity for the column eluting at lower salt concentrations compared with the proteoglycans isolated from cultures containing sulfate, suggesting that the former were undersulfated. Analysis of the isolated heparan sulfate side chains indicated that two pools of heparan sulfate were present which differed in their degree of sulfation. Both pools were synthesized by both high sulfate and low sulfate cultures, but the highly sulfated pool was the predominant form produced in sulfate containing cultures, while the undersulfated pool was the predominant form synthesized in low sulfate cultures. The more sulfated pool contained more N-sulfate than the less sulfated pool. Few if any free amino groups were detected in either pool, suggesting that the initial deacetylation step in the biosynthesis of heparan sulfate is tightly coupled to the N-sulfation step in the cells.  相似文献   

13.
To understand how 2-O-sulfation of uronic acid residues influences the biosynthesis of anticoagulant heparan sulfate, the cDNA encoding glucosaminyl 3-O-sulfotransferase-1 (3-OST-1) was introduced into wild-type Chinese hamster ovary cells and mutant pgsF-17 cells, which are defective in 2-O-sulfation. 3-OST-1-transduced cells gained the ability to bind to antithrombin. Structural analysis of the heparan sulfate chains showed that 3-OST-1 generates sequences containing GlcUA-GlcN(SO(3))3(SO(3)) and GlcUA-GlcN(SO(3))3(SO(3))6(SO(3)) in both wild-type and mutant cells. In addition, IdoUA-GlcN(SO(3))3(SO(3)) and IdoUA-GlcN(SO(3))3(SO(3))6(SO(3)) accumulate in the mutant chain. These disaccharides were also observed by tagging [6-(3)H]GlcN-labeled pgsF-17 heparan sulfate in vitro with [(35)S]PAPs and purified 3-OST-1. Heparan sulfate derived from the transduced mutant also had approximately 2-fold higher affinity for antithrombin than heparan sulfate derived from the transduced wild-type cells, and it inactivated factor Xa more efficiently. This study demonstrates for the first time that (i) 3-O-sulfation by 3-OST-1 can occur independently of the 2-O-sulfation of uronic acids, (ii) 2-O-sulfation usually occurs before 3-O-sulfation, (iii) 2-O-sulfation blocks the action of 3-OST-1 at glucosamine residues located to the reducing side of IdoUA units, and (iv) that alternative antithrombin-binding structures can be made in the absence of 2-O-sulfation.  相似文献   

14.
A simple procedure using human basic fibroblast growth factor (FGF) was utilized for the selection of COS cell mutants with defects in the biosynthesis or expression of heparan sulfate proteoglycan (HSPG). Our approach was based on the strong binding affinity exhibited by COS cells to human basic FGF that had been adsorbed to plastic dishes. Cell binding to basic FGF could be inhibited by heparin and heparan sulfate (HS), but not by chondroitin sulfate, dermatan sulfate, keratan sulfate, or hyaluronic acid, suggesting that the cell binding involved an interaction between basic FGF and cell surface heparin-like molecules. COS cells were treated with ethyl methanesulfonate and four stable mutants were subsequently isolated that did not bind strongly to basic FGF adsorbed to plastic. These mutants cell lines (CM-2, CM-8, CM-9, and CM-15) exhibited significantly reduced 35SO4 incorporation into HS (40-70% depending on the cellular pool analyzed). In one of these cell lines, CM-15, the incorporation of [6-3H]glucosamine into HS was unaltered, suggesting that the extent of oligosaccharide polymerization was equivalent to that observed for the wild-type cells. Structural analysis revealed that N-sulfated glucosamine residues were present much less frequently in HS derived from these cells as compared with that derived from wild-type cells. Furthermore, CM-15 was found to be three-fold deficient in HS N-sulfotransferase activity, but contained wild-type levels of HS O-sulfotransferase activities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Heparan sulfate N-deacetylase/N-sulfotransferase (HSNST) catalyzes the first and obligatory step in the biosynthesis of heparan sulfates and heparin. The crystal structure of the sulfotransferase domain (NST1) of human HSNST-1 has been determined at 2.3-A resolution in a binary complex with 3'-phosphoadenosine 5'-phosphate (PAP). NST1 is approximately spherical with an open cleft, and consists of a single alpha/beta fold with a central five-stranded parallel beta-sheet and a three-stranded anti-parallel beta-sheet bearing an interstrand disulfide bond. The structural regions alpha1, alpha6, beta1, beta7, 5'-phosphosulfate binding loop (between beta1 and alpha1), and a random coil (between beta8 and alpha13) constitute the PAP binding site of NST1. The alpha6 and random coil (between beta2 and alpha2), which form an open cleft near the 5'-phosphate of the PAP molecule, may provide interactions for substrate binding. The conserved residue Lys-614 is in position to form a hydrogen bond with the bridge oxygen of the 5'-phosphate.  相似文献   

16.
Heparan sulfate (HS) proteoglycans influence embryonic development as well as adult physiology through interactions with various proteins, including growth factors/morphogens and their receptors. The interactions depend on HS structure, which is largely determined during biosynthesis by Golgi enzymes. A key step is the initial generation of N-sulfated domains, primary sites for further polymer modification and ultimately for functional interactions with protein ligands. Such domains, generated through action of a bifunctional GlcNAc N-deacetylase/N-sulfotransferase (NDST) on a [GlcUA-GlcNAc](n) substrate, are of variable size due to regulatory mechanisms that remain poorly understood. We have studied the action of recombinant NDSTs on the [GlcUA-GlcNAc](n) precursor in the presence and absence of the sulfate donor, 3'-phosphoadenosine 5'-phosphosulfate (PAPS). In the absence of PAPS, NDST catalyzes limited and seemingly random N-deacetylation of GlcNAc residues. By contrast, access to PAPS shifts the NDST toward generation of extended N-sulfated domains that are formed through coupled N-deacetylation/N-sulfation in an apparent processive mode. Variations in N-substitution pattern could be obtained by varying PAPS concentration or by experimentally segregating the N-deacetylation and N-sulfation steps. We speculate that similar mechanisms may apply also to the regulation of HS biosynthesis in the living cell.  相似文献   

17.
Anticoagulant heparan sulfate proteoglycans bind and activate antithrombin by virtue of a specific 3-O-sulfated pentasaccharide. They not only occur in the vascular wall but also in extravascular tissues, such as the ovary, where their functions remain unknown. The rupture of the ovarian follicle at ovulation is one of the most striking examples of tissue remodeling in adult mammals. It involves tightly controlled inflammation, proteolysis, and fibrin deposition. We hypothesized that ovarian heparan sulfates may modulate these processes through interactions with effector proteins. Our previous work has shown that anticoagulant heparan sulfates are synthesized by rodent ovarian granulosa cells, and we now have set out to characterize heparan sulfates from human follicular fluid. Here we report the first anticoagulant heparan sulfate purified from a natural human extravascular source. Heparan sulfate chains were fractionated according to their affinity for antithrombin, and their structure was analyzed by 1H NMR and MS/MS. We find that human follicular fluid is a rich source of anticoagulant heparan sulfate, comprising 50.4% of total heparan sulfate. These antithrombin-binding chains contain more than 6% 3-O-sulfated glucosamine residues, convey an anticoagulant activity of 2.5 IU/ml to human follicular fluid, and have an anti-Factor Xa specific activity of 167 IU/mg. The heparan sulfate chains that do not bind antithrombin surprisingly exhibit an extremely high content in 3-O-sulfated glucosamine residues, which suggest that they may exhibit biological activities through interactions with other proteins.  相似文献   

18.
19.
The 3-O-sulfation of glucosamine by heparan sulfate 3-O-sulfotransferase-1 (3-OST-1) is a key modification step during the biosynthesis of anticoagulant heparan sulfate (HS). In this paper, we present evidence of a conformational change that occurs in 3-OST-1 upon binding to heparan sulfate. The intrinsic fluorescence of 3-OST-1 was increased in the presence of HS, suggesting a conformational change. This apparent conformational change was further investigated using differential chemical modification of 3-OST-1 to measure the solvent accessibility of the lysine residues. 3-OST-1 was treated with acetic anhydride in either the presence or absence of HS using both acetic anhydride and hexadeuterioacetic anhydride under nondenaturing and denaturing conditions, respectively. The relative reactivity of the lysine residues to acetylation and [2H] acetylation in the presence or absence of HS was analyzed by measuring the ratio of acetylated and deuterioacetylated peptides using matrix-assisted laser desorption ionization mass spectrometry. The solvent accessibilities of the lysine residues were altered differentially depending on their location. In particular, we observed a group of lysine residues in the C-terminus of 3-OST-1 that become more solvent accessible when 3-OST-1 binds to HS. This observation indicates that a conformational change could be occurring during substrate binding. A truncated mutant of 3-OST-1 that lacked this C-terminal region was expressed and found to exhibit a 200-fold reduction in sulfotransferase activity. The results from this study will contribute to our understanding of the interactions between 3-OSTs and HS.  相似文献   

20.
Cell surface heparan sulfate (HS) proteoglycans are required in development and postnatal repair. Important classes of ligands for HS include growth factors and extracellular matrix macromolecules. For example, the focal adhesion component syndecan-4 interacts with the III(12-14) region of fibronectin (HepII domain) through its HS chains. The fine structure of HS is critical to growth factor responses, and whether this extends to matrix ligands is unknown but is suggested from in vitro experiments. Cell attachment to HepII showed that heparin oligosaccharides of >or=14 sugar residues were required for optimal inhibition. The presence of N-sulfated glucosamine in the HS was essential, whereas 2-O-sulfation of uronic acid or 6-O-sulfation of glucosamine had marginal effects. In the more complex response of focal adhesion formation through syndecan-4, N-sulfates were again required and also glucosamine 6-O-sulfate. The significance of polymer N-sulfation and sulfated domains in HS was confirmed by studies with mutant Chinese hamster ovary cells where heparan sulfation was compromised. Finally, focal adhesion formation was absent in fibroblasts synthesizing short HS chains resulting from a gene trap mutation in one of the two major glucosaminoglycan polymerases (EXT1). Several separate, specific properties of cell surface HS are therefore required in cell adhesion responses to the fibronectin HepII domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号