共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Characterization of Myelin Basic Protein Charge Microheterogeneity in Developing Mouse Brain and in the Transgenic Shiverer Mutant 总被引:2,自引:0,他引:2
Anthony E. Palma Phillip Owh Christopher Fredric Carol Readhead Mario A. Moscarello 《Journal of neurochemistry》1997,69(4):1753-1762
Abstract: Myelin basic protein (MBP) is a highly heterogeneous family of membrane proteins consisting of several isoforms resulting from alternative splicing and charge isomers arising from posttranslational modifications. Although well characterized in the bovine and human species, those in the mouse are not. With the availability of a number of transgenic and knockout mice, the need to understand the chemical nature of the MBPs has become very important. To isolate and characterize the MBP species in murine brain, two methods were adapted for use with the small amounts of MBP available from mice. The first was a scaled-down version of the preparative CM-52 chromatographic system commonly used to isolate MBP charge isomers; the second was an alkaline-urea slab gel technique that required five times less material than the conventional tube gel system and, from these gels, western blots were readily obtained. Murine MBP was resolved into two populations of charge isomers: the 18.5- and 14-kDa isoforms. Isolation and characterization of these charge isomers or components permitted us to assign possible posttranslational modifications to some of them. Component 1 (C-1), the most cationic isomer, had a molecular weight of 14,140.38 ± 0.79. C-2 consisted of two 14-kDa species, 14,136.37 ± 0.74 and 14,204.45 ± 0.70. Two variants, 14,215.57 ± 0.94 and 18,413.57 ± 0.76, constituted C-3. C-4, C-5, and C-8 (the least cationic isomer) each consisted of both 14- and 18.5-kDa isoforms. During myelinogenesis, the 18.5-kDa isoform appeared first (day 4); the 14-kDa isoform appeared at day 16 and subsequently became the dominant isoform. The transgenic shiverer mutant synthesized mainly the 18.5-kDa isoform, but none of the 14-kDa isoform, similar to the 4-day-old mouse. We concluded that the trangenic shiverer was able to initiate myelinogenesis with the 18.5-kDa isoform, but was unable to complete myelinogenesis because of the absence of the 14-kDa isoform. 相似文献
3.
Shiverer and Normal Peripheral Myelin Compared: Basic Protein Localization, Membrane Interactions, and Lipid Composition 总被引:4,自引:2,他引:2
We have correlated membrane structure and interactions in shiverer sciatic nerve myelin with its biochemical composition. Analysis of x-ray diffraction data from shiverer myelin swollen in water substantiates our previous localization of an electron density deficit in the cytoplasmic half of the membrane. The density loss correlates with the absence of the major myelin basic proteins and indicates that in normal myelin, the basic protein is localized to the cytoplasmic apposition. As in normal peripheral myelin, hypotonic swelling in the shiverer membrane arrays occurs in the extracellular space between membranes; the cytoplasmic surfaces remain closely apposed notwithstanding the absence of basic protein from this region. Surprisingly, we found that the interaction at the extracellular apposition of shiverer membranes is altered. The extracellular space swells to a greater extent than normal when nerves are incubated in distilled water, treated at a reduced ionic strength of 0.06 in the range of pH 4-9, or treated at constant pH (4 or 7) in the range of ionic strengths 0.02-0.20. To examine the biochemical basis of this difference in swelling, we compared the lipid composition of shiverer and normal myelin. We find that sulfatides, hydroxycerebroside, and phosphatidylcholine are 20-30% higher than normal; nonhydroxycerebroside and sphingomyelin are 15-20% lower than normal; and ethanolamine phosphatides, phosphatidylserine, and cholesterol show little or no change. A higher concentration of negatively charged sulfatides at the extracellular surface likely contributes to an increased electrostatic repulsion and greater swelling in shiverer. The cytoplasmic surfaces of the apposed membranes of normal and shiverer myelins did not swell apart appreciably in the pH and ionic strength ranges expected to produce electrostatic repulsion. This stability, then, clearly does not depend on basic protein. We propose that P0 glycoprotein molecules form the stable link between apposed cytoplasmic membrane surfaces in peripheral myelin. 相似文献
4.
H. David Shine Carol Readhead Brian Popko Leroy Hood Richard L. Sidman 《Journal of neurochemistry》1992,58(1):342-349
The neurological mutant mice shiverer (shi) and myelin deficient (shimld) lack a functional gene for the myelin basic proteins (MBP), have virtually no myelin in their CNS, shiver, seize, and die early. Mutant mice homozygous for an MBP transgene have MBP mRNA and MBP in net amounts approximately 25% of normal, have compact myelin, do not shiver or seize, and live normal life spans. We bred mice with various combinations of the normal, transgenic, shi, and shimld genes to produce mice that expressed MBP mRNA at levels of 0, 5, 12.5, 17.5, 50, 62.5, and 100% of normal. The CNS of these mice were analyzed for MBP content, tissue localization of MBP, degree of myelination, axon size, and myelin thickness. MBP protein content correlated with predicted MBP gene expression. Immunocytochemical staining localized MBP to white matter in normal and transgenic shi mice with an intensity of staining comparable to the degree of MBP gene expression. An increase in the percentage of myelinated axons and the thickness of myelin correlated with increased gene expression up to 50% of normal. The percentage of myelinated axons and myelin thickness remained constant at expression levels greater than 50%. The presence of axons loosely wrapped with oligodendrocytic membrane in mice expressing lower amounts of MBP mRNA and protein suggested that the oligodendroglia produced sufficient MBP to elicit axon wrapping but not enough to form compact myelin. Mean axon circumference of myelinated axons was greater than axon circumference of unmyelinated axons at each level of gene expression, further evidence that oligodendroglial cells preferentially myelinate axons of larger caliber.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
Demyelination in the CNS of shiverer mutant mice was studied in vivo and in vitro. By immunohistochemical reaction with glial fibrillary acidic protein antibody, hypertrophy of the fibrous astrocytes was observed in the white matter of shiverer cerebella. The cerebella of shiverer mice in primary culture from the day of birth showed very poor myelination under optical microscopy. Axons of Purkinje cells are thought to be the main myelinated axons in the primary culture of the cerebellum. Purkinje cells from shiverer appeared normal with regard to Bodian silver impregnation, hematoxylin and eosin staining, and P400 protein characterization of Purkinje cells. Addition of the conditioned culture medium of shiverer to the control culture did not interfere with myelination. We concluded that the demyelination in the CNS of shiverer could be caused by an intrinsic defect of the oligodendrocyte rather than by hypertrophy of the astrocytes or by diffusible factors. 相似文献
6.
7.
8.
9.
Abstract: Myelin-deficient ( mld ) is a complex mutation affecting the myelin basic protein (MBP) locus of the mouse. It consists of duplication and partial inversion of the MBP gene and results in a dysfunctional MBP locus. The mutant phenotype is reversed, both in vivo and in vitro, in ∼5% of mld oligodendrocytes. One possible mechanism for the somatic reversion is recombination between homologous sequences of the duplicated gene copies to reconstitute a functional MBP locus. There are several possible recombination events that could reconstitute a functional MBP locus by DNA rearrangement. Two of these would result in reinversion and circularization of specific MBP gene sequences, respectively. In this work polymerase chain reaction analysis was used to detect both reinverted and circularized MBP gene sequences in mld mouse tissues, indicating that DNA rearrangement at the MBP locus does occur. Analysis of individually harvested cells showed that in revertant MBP-positive mld oligodendrocytes DNA rearrangement at the MBP locus was correlated with reactivation of the MBP gene. Fluctuation analysis showed that reactivation of the MBP locus is a stochastic event occurring with a frequency of ∼1.4 × 10−6 per cell per cell cycle during oligodendrocyte development. The frequency of rearrangement and reactivation of the MBP locus was comparable in double mutant ( mld/mld , scid/scid ) and single mutant ( mld/mld , + scid /+ scid ) mice, indicating that the scid factor is not required for MBP gene reactivation in mld . The significance of DNA rearrangement in mammalian development is discussed. 相似文献
10.
Expression of Myelin Proteolipid Protein and Basic Protein in Normal and Dysmyelinating Mutant Mice 总被引:7,自引:10,他引:7
Barbara J. A. Sorg Daya Agrawal Harish C. Agrawal Anthony T. Campagnoni 《Journal of neurochemistry》1986,46(2):379-387
Expression of myelin proteins was studied in the brains of 21-day-old normal mice and three dysmyelinating mutants-jimpy, quaking, and shiverer. Total brain polyribosomes and poly(A)+ mRNA were translated in two cell-free systems and the levels of synthesis of the myelin basic proteins (MBPs) and proteolipid protein (PLP) were determined. Synthesis of the MBPs in quaking homozygotes was at or above normal levels but PLP synthesis was significantly reduced to approximately 15% of control values, indicating independent effects on the expression of these proteins in this mutant. Immunoblot analysis of 21-day-old quaking brain homogenates showed a reduction in the steady-state levels of MBPs and PLP, suggesting a failure of newly synthesized MBPs to be incorporated into a stable membrane structure such as myelin. In the shiverer mutant very little synthesis of MBPs was observed, whereas greater synthesis of PLP occurred (approximately 50% of control). Almost no MBP, and low levels of PLP, were detected in the immunoblots, suggesting the possibility of a partial failure of PLP to be assembled into myelin in shiverer. In the jimpy mutant, low levels of MBP synthesis were observed in vitro (approximately 26% of controls) and very little synthesis of PLP was evident. The immunoblots of 21-day jimpy brain homogenates revealed no appreciable steady-state levels of PLP or MBP, again indicating that most newly synthesized MBPs were not incorporated into a stable membrane structure in this mutant. In sum, the data show that in the three cases examined, the mutation appears to affect the expression of the MBPs and PLP independently. Furthermore, regardless of their absolute levels of synthesis these proteins may or may not be assembled into myelin. 相似文献
11.
Cell-Free Synthesis of Myelin Basic Proteins in Normal and Dysmyelinating Mutant Mice 总被引:15,自引:8,他引:7
A. T. Campagnoni C. W. Campagnoni J.-M. Bourre C. Jacque N. Baumann 《Journal of neurochemistry》1984,42(3):733-739
Total polyribosomes were isolated from the brains of 16-20 day C57BL/6 mice, four neurological mutants (qk/qk, shi/shi, mld/mld, and jp/Y), and four heterozygote or littermate controls (qk/+, shil/+, mld, and jp littermates) and translated in a homologous, cell-free system. No differences were observed among the nine genotypes in either the yield of polysomes (32.2 +/- 0.6 A260/g brain) or in the incorporation of [35S]methionine into trichloroacetic acid-precipitable protein. However, when the four myelin basic proteins (BPs) were isolated from the translation mixtures little incorporation of [35S]methionine into the BPs was noted in those assays directed by polysomes from mld/mld or from shi/shi animals. Compared with C57BL/6 polysomes, mld littermate and shi/+ polysomes incorporated approximately half the levels of label into the four BPs while qk/+ and qk/qk incorporated normal and close-to-normal levels. Polysomes from jp littermates and jp/Y brains synthesized 66% and less than 15% of the levels of the 14K BP compared with C57BL/6 polysomes. Incorporation of label into the other three BPs was normal with jp littermate polysomes and about half the control levels with jp/Y polysomes. The data indicate that shi/shi and mld/mld mutants either produce altered BPs not recognized by our antibody or synthesize very low levels of BP. The data provide additional support for the notion that the qk/qk mutant synthesizes much higher levels of MBP than are incorporated into myelin. They also indicate that in the jimpy mutant the synthesis of the four BPs is affected to differing extents; thus, the mutant cannot be easily characterized as either an "assembly" or "synthesis" defect. 相似文献
12.
An ontogenetic survey of the basic protein of myelin, common to both central and peripheral nervous systems, was carried out on normal C57Bl and five dysmyelinating mutant mice. Myelin basic protein (MBP) was quantified by radioimmunoassay in the optic and sciatic nerves of mice from birth to adult stages, giving special attention to the premyelinating and early myelination periods. In the optic nerves of normal mice, MBP was already detectable at birth but the active period of myelin deposition was shown to occur after day 10 postnatal. The timing and rate of accumulation of MBP were normal in Trembler. In contrast, they were abnormal in the other mutants. In the quaking mouse, the active period of MBP deposition was delayed, and its final concentration represented no more than 12% of normal in the adult. No active period of MBP deposition was observed in the other mutants. In the jimpy mouse, a slow accumulation of MBP resulted in a final concentration reaching 2% of the normal value at 25 days. In mild and shiverer mice, the MBP was hardly detectable. In the sciatic nerves of normal mice, the active period of MBP deposition occurred between days 3 and 12 postnatal. No substantial changes occurred in the period of 2 months--2 years.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
Sabine Kuchler Jean-Pierre Zanetta Marlyse Zaepfel Ali Badache Louis L. Sarliève Guy Vincendon Jean-Marie Matthieu 《Journal of neurochemistry》1991,56(2):436-445
The myelin-deficient (mld) mutation is autosomal recessive mutation in the murine CNS exhibiting severe hypomyelination. The primary defect results in a drastic reduction of myelin basic protein synthesis caused by a duplication of the myelin basic protein gene with partial inversion of the upstream gene copy. The severe deficit of myelin basic protein is responsible for the absence of the major dense line but cannot explain the heterogeneity of myelin compaction found in mld. We have tested the hypothesis that the endogenous cerebellar soluble lectin (CSL) and/or its endogenous glycoprotein ligands could be involved in myelin abnormalities in the dysmyelinating mutant, mld. Immunocytochemical and immunoblotting techniques showed that the CSL level was not reduced significantly in the mld mutant. Furthermore, two ligands of CSL, the myelin-associated glycoprotein and an axonal glycoprotein, with a relative molecular mass of 31 kDa, were not decreased in level in the purified myelin fraction isolated from mld mice. In contrast, three minor glycoprotein ligands of CSL of relative molecular mass of 23, 18, and 16 kDa were greatly reduced in content. The reduced concentration of these low-molecular-mass glycoproteins in mld myelin suggests that they are constituents of compact myelin. Furthermore, the observation that CSL is specifically localized in vivo in regions where mld myelin is more compact and absent from regions devoid of myelin compaction may suggest that the endogenous CSL lectin, as well as its minor glycoprotein ligands, plays a role in the stabilization of the myelin sheath. 相似文献
14.
Kazunori Nakajima† Kazuhiro Ikenaka Tetsushi Kagawa Jun Aruga† Junji Nakao Kensuke Nakahira Chiyo Shiota Seung U. Kim‡ Katsuhiko Mikoshiba† 《Journal of neurochemistry》1993,60(4):1554-1563
Abstract: Myelin basic protein (MBP), a major protein of myelin, is thought to play an important role in myelination, which occurs postnatally in mouse. Here we report that the MBP gene is expressed from the 12th embryonic day in mouse brain and that most of the predominant embryonic isoforms are not those reported previously. These isoforms have a deletion of a sequence encoded by exon 5 from the well-known isoforms. These isoforms show a unique developmental profile, i.e., they peak in the embryonic stage and decrease thereafter. In jimpy, a dysmyelinating mutant, the level of these isoforms remains high even in the older ages. These results suggest that MBPs have heretofore unknown functions unrelated to myelination before myelinogenesis begins. The possible presence of 18 isoforms of MBP mRNA, which are classified into at least three groups with different developmental profiles, is also reported here. 相似文献
15.
16.
Bertrand Garbay Christine Domec Michel Fournier Jacques Bonnet 《Journal of neurochemistry》1989,53(3):907-911
Mice affected by the autosomal dominant Trembler mutation exhibit a severe hypomyelinization of the PNS. Previous biochemical studies have shown that the accumulation of the major PNS myelin proteins, P0 and myelin basic protein (MBP), is strongly diminished in Trembler sciatic nerves during postnatal development. We performed Northern blots which showed that the size of mRNA species for P0 and MBP in normal and mutant mice are indistinguishable. Densitometric analysis of Northern blots showed that, in normal mice, the proportion of P0 mRNA increases up to the 12th day, then decreases slowly. At day 40, the proportion is 60% of the maximal value. In the mutant, the proportion of P0 mRNA increases up to the 12th day and then decreases much faster than in the control. At days 12 and 40, the P0 mRNA proportion measured in Trembler sciatic nerves represents only 40% and 7%, respectively, of the proportion measured in control littermates. The MBP mRNA proportion in the normal mice increases up to the 16th day, and then decreases to attain 45% of the maximum level at day 40. In the Trembler mouse, there is a maximum level at day 12, representing 25% of the normal level, but the MBP mRNA is barely detectable at days 8 or 40. Thus, these data seem to indicate that in the Trembler sciatic nerves, the proportions of P0 and MBP mRNAs are too small to allow the synthesis of normal levels of the corresponding proteins. 相似文献
17.
The Relationship of Myelin Basic Protein (Arginine) Methyltransferase to Myelination in Mouse Spinal Cord 总被引:4,自引:1,他引:3
Abstract: The relationship between the activity of myelin basic protein (arginine) methyltransferase and myelination in the mouse spinal cord has been examined. The activity of this methylase increases between 8 and 45 days postnatal age and correlates well with other parameters of myelination. A comparison of myelin basic protein methylase with histone methylase activity during development indicates that each is a distinct, specific enzyme activity. Together, these results are considered to establish myelin basic protein methylase as a myelination-related enzyme. 相似文献
18.
Evolutionary Divergence in the Structure of Myelin Basic Protein: Comparison of Chondrichthye Basic Proteins with Those from Higher Vertebrates 总被引:2,自引:2,他引:0
F. L. Tai Ross Smith C. C. A. Bernard† M. W. T. Hearn‡ 《Journal of neurochemistry》1986,46(4):1050-1057
Abstract: A basic protein has been purified from the CNS myelin of the gummy shark (Mustelus antarticus). Electroblotting was used to examine the capacity of rabbit antisera raised against this electrophoretically pure protein to recognize myelin basic protein from higher vertebrates. The antisera bound to two shark proteins including the original polypeptide antigen and to chicken, bovine, and human myelin basic proteins. Thus, the shark protein appeared to possess antigenic determinants that have been retained through evolutionary divergence of these proteins. Whereas bovine basic protein caused experimental allergic encephalomyelitis in guinea pigs, animals that received injections of the shark protein showed neither clinical nor histological signs of this disease. However, tests for delayed-type hypersensitivity and for Arthus reaction following injection with the shark protein revealed a T-cell-mediated response to this antigen and substantial cross-reactivity with higher vertebrate basic proteins. Analysis of the amino acid composition of the shark protein, and comparison of its tryptic peptide map with that of the bovine protein, revealed substantial changes in the amino acid sequence. Although the shark protein has some antigenic determinants in common with the proteins from higher vertebrates, it appears that much of the structure differs. 相似文献
19.
Mirjana Tosic Michel Dolivo Krystyna Domaska-Janik Jean-Marie Matthieu 《Journal of neurochemistry》1994,63(6):2210-2216
Abstract: Paralytic tremor ( pt ) is a sex-linked mutation in rabbit that affects myelination of the CNS. Myelin in the pt brains represents ∼30% of the normal levels. Previously we showed that the pt mutation affects primarily proteolipid protein ( Plp ) gene expression. In the present study we investigated the relative effect of the pt mutation on two distinctive Plp gene products, PLP- and DM-20-specific messenger RNAs. Our results showed that both PLP and DM-20 are affected and that the ratio DM-20/PLP was higher in pt rabbits than in age-matched controls. We sequenced normal rabbit PLP cDNA and characterized pt mutation at the DNA level. Rabbit PLP sequence, deduced from cDNA, differs from the human protein only at Thr198 . Sequence analysis of the mutant cDNA revealed a transversion T → A in exon 2 of the Plp gene. This point mutation, which is placed at the end of the first potential transmembrane domain, results in a substitution of His36 by a glutamine. This transversion abolishes a restriction site that enabled us to screen a large number of animals and observe a perfect correlation between the pt allele and the abnormal phenotype. 相似文献
20.
Multiple Sclerosis Brain Immunoglobulins Stimulate Myelin Basic Protein Degradation in Human Myelin: A New Cause of Demyelination 总被引:1,自引:0,他引:1
Membrane-bound proteolysis may be implicated in the pathogenesis of demyelinating disorders including multiple sclerosis (MS). We previously found that the extent of myelin basic protein (MBP) degradation by the calcium-activated neutral protease did not differ for isolated human control myelin or MS myelin. Hence we suggested that, if involved in demyelination, the myelin neutral protease must be activated in vivo by an increased availability of free calcium. The postulate was therefore tested that immunoglobulin (Ig) binding to myelin results in activation of the myelin neutral protease, possibly through release of free calcium from calcium-binding sites of myelin. Isolated myelin from the brains of controls and patients with MS were incubated with purified Igs eluted from the brains of patients with MS or controls and degradation of MBP was assessed by quantitative electroimmunoblotting. Such degradation was significantly greater in myelin incubated in the presence of MS Igs than in myelin incubated without added Igs or in the presence of control Igs. Furthermore, the degree of MBP degradation in myelin incubated with control Igs was similar to that observed in myelin incubated without added Igs. Accordingly, it is suggested that Ig in MS brain potentiates myelin breakdown. Moreover activation of membrane-bound proteolysis by Ig binding to myelin appears to represent a hitherto undescribed pathway for demyelination in MS. 相似文献