首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfhydryl-endopeptidase (SH-EP) is a papain-type vacuolar proteinase expressed in cotyledons of germinated Vigna mungo seeds, and the enzyme possesses a C-terminal propeptide containing KDEL tail, an endoplasmic reticulum retention signal for soluble proteins. SH-EP is transported to vacuoles via a KDEL vesicle (KV) through a Golgi complex-independent route. To see the function of the KDEL sequence of SH-EP, wild-type SH-EP and its KDEL deletion mutant (SH-EPDeltaKDEL) were heterologously expressed in Arabidopsis and in cultured tobacco Bright Yellow 2 cells, and their intracellular transport pathways and localizations were analyzed. A combination of the results from analyses for transformed Arabidopsis and tobacco (Nicotiana tabacum) cells indicated that wild-type SH-EP is packed into KV-like vesicles through the KDEL sequence and is transported to vacuoles in the cells of transformants. In contrast, KV was not formed/induced in the cells expressing SH-EPDeltaKDEL, and the mutant protein was mainly secreted. Therefore, the C-terminal KDEL sequence of the KDEL-tailed cysteine proteinase is thought to be involved in the formation of KV, and in the efficient vacuolar transport of the proteins through KV.  相似文献   

2.
SH-EP is the major papain-type proteinase expressed in cotyledons of germinated Vigna mungo seeds. The proteinase possesses a KDEL sequence at the C-terminus although the mature form of SH-EP is localized in vacuoles. It has also been shown that the proform of SH-EP is accumulated at the edge or middle region of the endoplasmic reticulum, and the accumulated proSH-EP is directly transported to vacuoles via the KDEL-tailed cysteine proteinase-accumulating vesicle, KV. In this study, to address the transport machinery of proSH-EP through KV, putative receptor for proSH-EP was isolated from membrane proteins of cotyledons of V. mungo seedlings using a proSH-EP-immobilized column. The deduced amino acid sequence from cDNA to the protein revealed that the putative receptor for proSH-EP is a member of vacuolar sorting receptor, VSR, that is known to be localized in the Golgi-complex and/or clathrin coated vesicle. We carried out subcellular fractionation of cotyledon cells and subsequently conducted SDS-PAGE/immunoblotting and immunocytochemistry with anti-V. mungo VSR (VmVSR) or SH-EP antibody. The results showed that VmVSR is co-localized in the fraction of the gradient in which KV existed.  相似文献   

3.
SH-EP is a vacuolar cysteine proteinase from germinated seeds of Vigna mungo. The enzyme has a C-terminal propeptide of 1 kDa that contains an endoplasmic reticulum (ER) retention signal, KDEL. The KDEL-tail has been suggested to function to store SH-EP as a transient zymogen in the lumen of the ER, and the C-terminal propeptide was thought to be removed within the ER or immediately after exit from the ER. In the present study, a protease that may be involved in the post-translational processing of the C-terminal propeptide of SH-EP was isolated from the microsomes of cotyledons of V. muno seedlings. cDNA sequence for the protease indicated that the enzyme is a member of the papain superfamily. Immunocytochemistry and subcellular fractionation of cotyledon cells suggested that the protease was localized in both the ER and protein storage vacuoles as enzymatically active mature form. In addition, protein fractionations of the cotyledonary microsome and Sf9 cells expressing the recombinant protease indicated that the enzyme associates with the microsomal membrane on the luminal side. The protease was named membrane-associated cysteine protease, MCP. The possibility that a papain-type enzyme, MCP, exists as mature enzyme in both ER and protein storage vacuoles will be discussed.  相似文献   

4.
A vacuolar cysteine proteinase, designated SH-EP, is synthesized in cotyledons of germinated Vigna mungo seeds and is responsible for degradation of the seed proteins accumulated in protein bodies (protein storage vacuoles). SH-EP belongs to the papain proteinase family and has a large N-terminal prosegment consisting of 104 amino acid residues and a C-terminal prosegment of 10 amino acid residues. It has been suggested that an asparaginyl endopeptidase, V. mungo processing enzyme 1 (VmPE-1), is involved in the N-terminal post-translational processing of SH-EP. The recombinant proform of SH-EP (rSH-EP) was produced in Escherichia coli cells, purified to homogeneity and refolded by stepwise dialysis. 31P-NMR analysis of intact germinated cotyledons revealed that the vacuolar pH of cotyledonary cells changes from 6.04 to 5.47 during seed germination and early seedling growth. rSH-EP was converted in vitro to the mature form through autocatalytic processing at a pH mimicking the vacuolar pH at the mid and late stages of seed germination, but not at the pH of the early stage. VmPE-1 accelerated the rate of processing of rSH-EP in vitro at the pH equivalent to the vacuolar pH at the early and mid stages of germination. In addition, the cleavage sites of the in vitro processed intermediates and the mature form of SH-EP were identical to those of SH-EP purified from germinated cotyledons of V. mungo. We propose that the asparaginyl endopeptidase (VmPE-1)-mediated processing mainly functions in the activation of proSH-EP at the early stage of seed germination, and both VmPE-1-mediated and autocatalytic processings function synergistically in the activation of proSH-EP in cotyledons at the mid and late stages.  相似文献   

5.
SH-EP is a cysteine protease from germinating mung bean (Vigna mungo) that possesses a carboxyl-terminal endoplasmic reticulum (ER) retention sequence, KDEL. In order to examine the function of the ER retention sequence, we expressed a full-length cDNA of SH-EP and a minus-KDEL control in insect Sf-9 cells using the baculovirus system. Our observations on the synthesis, processing, and trafficking of SH-EP in Sf-9 cells suggest that the KDEL ER-retention sequence is posttranslationally removed either while the protein is still in the ER or immediately after its exit from the ER, resulting in the accumulation of proSH-EP minus its KDEL signal. It is this intermediate form that appears to progress through the endomembrane system and is subsequently processed to form mature active SH-EP. The removal of an ER retention may regulate protein delivery to a functional site and present an alternative role for ER retention sequences in addition to their well established role in maintaining the protein composition of the ER lumen.  相似文献   

6.
Asparaginyl endopeptidase is a cysteine endopeptidase that has strict substrate specificity toward the carboxy side of asparagine residues. Vigna mungo processing enzyme 1, termed VmPE-1, occurs in the cotyledons of germinated seeds of V. mungo, and is possibly involved in the post-translational processing of a vacuolar cysteine endopeptidase, designated SH-EP, which degrades seed storage protein. VmPE-1 also showed a substrate specificity to asparagine residues, and its enzymatic activity was inhibited by NEM but not E-64. In addition, purified VmPE-1 had a potential to process the recombinant SH-EP precursor to its intermediate in vitro. cDNA clones for VmPE-1 and its homologue, named VmPE-1A, were identified and sequenced, and their expressions in the cotyledons of V. mungo seedlings and other organs were investigated. VmPE-1 mRNA and SH-EP mRNA were expressed in germinated seeds at the same stage of germination although the enzymatic activity of VmPE-1 rose prior to that of SH-EP. The level of VmPE-1A mRNA continued increasing as germination proceeded. In roots, stems and leaves of fully grown plants, and in hypocotyls, VmPE-1 and VmPE-1A were little expressed. We discuss possible functions of VmPE-1 and VmPE-1A in the cotyledons of germinated seeds.  相似文献   

7.
alpha-Amylase is expressed in cotyledons of germinated Vigna mungo seeds and is responsible for the degradation of starch that is stored in the starch granule (SG). Immunocytochemical analysis of the cotyledon cells with anti-alpha-amylase antibody showed that alpha-amylase is transported to protein storage vacuole (PSV) and lytic vacuole (LV), which is converted from PSV by hydrolysis of storage proteins. To observe the insertion/degradation processes of SG into/in the inside of vacuoles, ultrastructural analyses of the cotyledon cells were conducted. The results revealed that SG is inserted into LV through autophagic function of LV and subsequently degraded by vacuolar alpha-amylase. The autophagy for SG was structurally similar to micropexophagy detected in yeast cells. In addition to the autophagic process for SG, autophagosome-mediated autophagy for cytoplasm and mitochondria was detected in the cotyledon cells. When the embryo axes were removed from seeds and the detached cotyledons were incubated, the autophagosome-mediated autophagy was observed, but the autophagic process for the degradation of SG was not detected, suggesting that these two autophagic processes were mediated by different cellular mechanisms. The two distinct autophagic processes were thought to be involved in the breakdown of SG and cell components in the cells of germinated cotyledon.  相似文献   

8.
A number of recent reports suggest that the functional specialization of plant cells in storage organs can influence subcellular protein sorting, so that the fate of a recombinant protein tends to differ between seeds and leaves. In order to test the general applicability of this hypothesis, we investigated the fate of a model recombinant glycoprotein in the leaves and seeds of a leguminous plant, Medicago truncatula. Detailed analysis of immature seeds by immunofluorescence and electron microscopy showed that recombinant phytase carrying a signal peptide for entry into the endoplasmic reticulum was efficiently secreted from storage cotyledon cells. A second version of the protein carrying a C-terminal KDEL tag for retention in the endoplasmic reticulum was predominantly retained in the ER of seed cotyledon cells, but some of the protein was secreted to the apoplast and some was deposited in storage vacuoles. Importantly, the fate of the recombinant protein in the leaves was nearly identical to that in the seeds from the same plant. This shows that in M. truncatula, the unanticipated partial vacuolar delivery and secretion is not a special feature of seed cotyledon tissue, but are conserved in different specialized tissues. Further investigation revealed that the unexpected fate of the tagged variant of phytase likely resulted from partial loss of the KDEL tag in both leaves and seeds. Our results indicate that the previously observed aberrant deposition of recombinant proteins into storage organelles of seed tissue is not a general reflection of functional specialization, but also depends on the species of plant under investigation. This discovery will have an impact on the production of recombinant pharmaceutical proteins in plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Families of papain- and legumain-like cysteine proteinases (CPR) were found in Vicia seeds. cDNAs and antibodies were used to follow organ specificity and the developmental course of CPR-specific mRNAs and polypeptides. Four papain-like cysteine proteinases (CPR1, CPR2, proteinase A and CPR4) from vetch seeds (Vicia sativa L.) were analysed. CPR2 and its mRNA were already found in dry embryonic axes. CPR1 was only detected there during early germination. Both CPR1 and CPR2 strongly increased later during germination. In cotyledons, both CPR1 and CPR2 were only observed one to two days later than in the axis. Proteinase A was not found in axes. In cotyledons it could only be detected several days after seeds had germinated. CPR4 mRNA and polypeptide were already present in embryonic axes and cotyledons during seed maturation and decreased in both organs during germination. Purified CPR1, CPR2 and proteinase A exhibited partially different patterns of globulin degradation products in vitro. Although the cDNA-deduced amino acid sequence of the precursor of proteinase A has an N-terminal signal peptide, the enzyme was not found in vacuoles whereas the other papain-like CPRs showed vacuolar localization. Four different legumain-like cysteine proteinases (VsPB2, proteinase B, VnPB1 and VnPB2) of Vicia species were analysed. Proteinase B and VnPB1 mRNAs were detected in cotyledons and seedling organs after seeds had germinated. Proteinase B degraded globulins isolated from mature vetch seeds in vitro. VsPB2 and proteinase B are localized to protein bodies of maturing seeds and seedlings, respectively, of V. sativa. Like VsPB2 from V. sativa, also VnPB2 of V. narbonensis corresponds to vacuolar processing enzymes (VPE). Based on these results different functions in molecular maturation and mobilization of storage proteins could be attributed to the various members of the CPR families.  相似文献   

10.
Protein storage vacuoles (PSVs) are the primarily storage organelles in cotyledon cells for protein preservation in seeds. Storage proteins are transported from the endoplasmic reticulum (ER) to the Golgi apparatus for subsequent delivery to PSVs via presumably Golgi-derived dense vesicles (DVs). However, recent studies demonstrated that storage proteins in early stage of developing cotyledon of mung beans reached the multivesicular bodies (MVBs) prior to the detection of DVs, indicating the possible involvement of MVBs in mediating transport of storage proteins during the early stage of seed development. Here, we further show that the MVBs in developing tobacco seeds are functionally and biochemically equivalent to those in developing mung beans. Thus, MVBs in developing tobacco seeds are structurally distinct from DVs, contain both vacuolar sorting receptors (VSRs) and storage proteins, and they are insensitive to treatments of wortmannin and brefeldin A (BFA).  相似文献   

11.
Transgenic plants are attractive biological systems for the large-scale production of pharmaceutical proteins. In particular, seeds offer special advantages, such as ease of handling and long-term stable storage. Nevertheless, most of the studies of the expression of antibodies in plants have been performed in leaves. We report the expression of a secreted (sec-Ab) or KDEL-tagged (Ab-KDEL) mutant of the 14D9 monoclonal antibody in transgenic tobacco leaves and seeds. Although the KDEL sequence has little effect on the accumulation of the antibody in leaves, it leads to a higher antibody yield in seeds. sec-Ab(Leaf) purified from leaf contains complex N-glycans, including Lewis(a) epitopes, as typically found in extracellular glycoproteins. In contrast, Ab-KDEL(Leaf) bears only high-mannose-type oligosaccharides (mostly Man 7 and 8) consistent with an efficient endoplasmic reticulum (ER) retention/cis-Golgi retrieval of the antibody. sec-Ab and Ab-KDEL gamma chains purified from seeds are cleaved by proteases and contain complex N-glycans indicating maturation in the late Golgi compartments. Consistent with glycosylation of the protein, Ab-KDEL(Seed) was partially secreted and sorted to protein storage vacuoles (PSVs) in seeds and not found in the ER. This dual targeting may be due to KDEL-mediated targeting to the PSV and to a partial saturation of the vacuolar sorting machinery. Taken together, our results reveal important differences in the ER retention and vacuolar sorting machinery between leaves and seeds. In addition, we demonstrate that a plant-made antibody with triantennary high-mannose-type N-glycans has similar Fab functionality to its counterpart with biantennary complex N-glycans, but the former antibody interacts with protein A in a stronger manner and is more immunogenic than the latter. Such differences could be related to a variable immunoglobulin G (IgG)-Fc folding that would depend on the size of the N-glycan.  相似文献   

12.
The expression of a papain-type proteinase, designated SH-EP, in cotyledons of Vigna mungo seedlings has been shown to require some factors in the embryonic axes. Gibberellin A1 (GA(1)) and GA(20) were identified by GC-MS in embryonic axes of V. mungo seedlings. The level of accumulation of SH-EP in cotyledons of V. mungo seedlings was greatly reduced by treatment of the seeds with uniconazole-P, an inhibitor for GA biosynthesis. The reduced level of accumulation of SH-EP in cotyledons by uniconazole-P was recovered by exogenous application of GA(1) and GA(20) to the seedlings.  相似文献   

13.
Putative vacuolar sorting receptors that bind to the vacuolar targeting signals have been found in various plants; pumpkin PV72, pea BP-80 and Arabidopsis AtELP. PV72 is a seed-specific receptor that is predicted to sort seed storage proteins to protein storage vacuoles. Analysis by surface plasmon resonance showed that the lumenal domain of PV72 bound to an NPIR (a typical vacuolar targeting signal)-containing peptide of the precursor of a cysteine proteinase, AtALEU, in the presence of Ca(2+) (K(D) = 0.1 micro M). To elucidate the receptor-dependent transport of vacuolar proteins in plant cells, we produced transgenic Arabidopsis plants that expressed a fusion protein (PV72-HDEL) composed of the lumenal domain of PV72 and an endoplasmic reticulum (ER)-retention signal, HDEL. The expression of PV72-HDEL induced the accumulation of the AtALEU precursor. The accumulation level of the AtALEU precursor was dependent on that of PV72-HDEL. In contrast, it did not induce the accumulation of a precursor of another cysteine proteinase, RD21, which contains no NPIR. Detailed subcellular localization revealed that both the AtALEU precursor and PV72-HDEL accumulated in the ER fraction. We found that most of the AtALEU precursor molecules formed a complex with PV72-HDEL. The AtALEU precursor might be trapped by PV72-HDEL in the ER and not transported to the vacuoles. This in-planta analysis supports the hypothesis that an Arabidopsis homolog of PV72 functions as a sorting receptor for the NPIR-containing proteinase. The overall results suggest that vacuolar sorting receptors for the protein storage vacuoles and the lytic vacuoles share the similar recognition mechanism for a vacuolar targeting signal.  相似文献   

14.
不同含水量的豌豆种子萌发时物质动员及代谢研究   总被引:5,自引:1,他引:4  
不同含水量的豌豆种子在饱和水蒸气中保持7d过程中,含水量低于萌动临界含水量时,子叶中贮藏蛋白质和淀粉的动员不能启动;含水量达到或超过萌动临界含水量,贮藏物质的动员被启动,豌启种子萌动后,子叶中蛋白质和淀动员程度与种子含水量呈正相关,前3d物质动员的程度比后4d强烈得多,因此,含水量是豌豆种子萌发时物质动员的启动因子和调节因子,同时,豌豆种子的含水量直接影响胚轴的生长状况。  相似文献   

15.
Though endopeptidases and carboxypeptidases are present in protein bodies of dry quiescent seeds the function of these proteases during germination is still a matter of debate. In some plants it was demonstrated that endopeptidases of dry protein bodies degrade storage proteins of these organelles. Other studies describe cases where this did not happen. The role that stored proteinases play in the initiation of storage protein breakdown in germinating seeds thus remains unclear. Numerous reviews state that the initiation of reserve protein mobilization is attributed to de novo formed endopeptidases which together with stored carboxypeptidases degrade the bulk of proteins in storage organs and tissues after seeds have germinated. The evidence that the small amounts of endopeptidases in protein bodies of embryonic axes and cotyledons of dry seeds from dicotyledonous plants play an important role in the initiation of storage protein mobilization during early germination is summarized here.  相似文献   

16.
Plant seeds store nitrogen by accumulating storage proteins in protein bodies within various compartments of the endomembrane system. The prolamin storage proteins of some cereal species are normally retained and assembled into protein bodies within the ER. Yet, these proteins lack a C-terminal KDEL/HDEL signal, suggesting that their retention is regulated by novel mechanisms. Furthermore, in other cereal species, such protein bodies formed within the ER may be subsequently internalized into vacuoles by a special route that does not utilize the Golgi complex. Thus, studies of the routing of seed storage proteins are revealing novel mechanisms of protein assembly and transport in the endomembrane system.  相似文献   

17.
The expression of proteins in transgenic plants offers an elegant means to examine targeting signals used for transport to intracellular sites of accumulation. We have used electron microscopic immunogold procedures to localize several different storage proteins and lectins expressed in transgenic tobacco seeds. The objective of these studies is to characterize targeting signals which permit translocation and accumulation in protein storage vacuoles (protein bodies). Vacuolar proteins such as phaseolin and phytohemagglutinin (PHA) are correctly transported to the protein storage vacuoles of transgenic tobacco seeds. Site-directed mutagenesis was used to change Asn-linked glycosylation sites of PHA. Minus glycan PHA was accumulated in the protein storage vacuoles indicating that glycans do not confer targeting information. Zein the non-vacuolar storage protein of maize accumulates in the protein storage vacuoles indicating that deposition occurs in some proteins which may lack vacuolar targeting signals.  相似文献   

18.
To understand how plant cells exert quality control over the proteins that pass through the secretory system we examined the transport and accumulation of the bean (Phaseolus vulgaris L.) vacuolar storage protein phaseolin, structurally modified to contain a helix-breaking epitope and carboxyterminal HDEL, an endoplasmic reticulum (ER)-retention signal. The constructs were expressed in tobacco (Nicotiana tabacum L.) with a seedspecific promoter. The results show that phaseolin-HDEL accumulates in the protein-storage vacuoles, indicating that HEDL does not contain sufficient information for retention in the ER. However, the ER of seeds expressing the phaseolin-HDEL construct contain relatively more phaseolin-HDEL compared to phaseolin in the ER of seeds expressing the phaseolin construct. This result indicates that the flow out of the ER is retarded but not arrested by the presence of HDEL. Introduction into phaseolin of the epitope himet (Hoffman et al., 1988, Plant Mol. Biol. 11, 717–729) greatly reduces the accumulation of HiMet phaseolin compared to normal phaseolin. However, the increased abundance within the ER is similar for both phaseolin-HDEL and HiMet phaseolin-HDEL. Using immunocytochemistry with specific antibodies, HiMet phaseolin was found in the ER, the Golgi stack, and in transport vesicles indicating that it was transport competent. It was also present at an early stage of seed development in the protein-storage vacuoles, but was not found there at later stages of seed development. Together these results support the conclusion that the HiMet epitope did not alter the structure of the protein sufficiently to make it transport incompetent. However, the protein was sufficiently destabilized to be degraded by vacuolar proteases.Abbreviations ER endoplasmic reticulum - BiP binding protein - IgG immunoglobulin G - Mr relative molecular mass The mention of vendor or product does not imply that they are endorsed or recommended by the US Department of Agriculture over vendors of similar products not mentionedThis work was supported by a grant from the National Science Foundation (Cell Biology) to M.J. Chrispeels and a fellowship from the Ministry of Education and Science, Spain-Fullbright Program to J.J. Pueyo. We thank H. Pelham for a gift of the constructs containing c-myc-SEKDEL and cmyc-FEHDEL and for a gift of anti-HDEL monoclonal antibodies. The original HiMet phaseolin construct was made by L. Hoffman and the phaseolin-HDEL or KDEL and HiMet-HDEL or KDEL constructs were made by D. Hunt as part of his doctoral research.  相似文献   

19.
Soluble endoplasmic reticulum (ER)-resident proteins have very long lives because of their ER residency. This residency depends largely on ER-retrieval signals at their C-terminus. We examined the long-term destiny of endogenous ER-resident proteins, a lumenal binding protein (BiP) and a protein disulfide isomerase (PDI), with cultured cells of Arabidopsis. ER residents, in contrast to vacuolar proteinases, were considerably degraded in cells at the stationary phase. A subcellular fractionation analysis suggested that ER residents were transported into the vacuoles, which accumulated the residents lacking the ER-retrieval signals. We showed that the PDI located in the vacuoles had high mannose glycans, but not complex glycans, which suggested that the ER resident was transported to the vacuoles independent of the medial/trans-Golgi complex. To visualize the pathway of transport of ER-resident proteins, tobacco BY-2 cells were transformed with a chimeric gene encoding an ER-targeted green fluorescent protein (30 kDa GFP-HDEL). In the transformed cells at the stationary phase, GFP fluorescence was observed in the vacuoles. A subcellular fractionation revealed that a trimmed form of 27 kDa GFP was localized in the vacuoles. Treatment with E-64d, an inhibitor of papain-type cysteine proteinases that inhibits the degradation of GFP in the vacuoles, resulted in a stable accumulation of 27 kDa GFP in the vacuoles, even in the logarithmic phase. Our results suggest that endogenous ER residents are transported constitutively to the vacuoles by bypassing the Golgi complex and are then degraded.  相似文献   

20.
Soluble proteins that reside in the lumen of the endoplasmic reticulum are known to have at their carboxyterminus the tetrapeptides KDEL or HDEL. In yeast and mammalian cells, these tetrapeptides function as endoplasmic reticulum (ER)-retention signals. To determine the effect of an artificially-introduced KDEL sequence at the exact carboxyterminus of a plant secretory protein, we modified the gene of the vacuolar protein phytohemagglutinin-L (PHA) so that the amino-acid sequence would end in LNKDEL rather than LNKIL, and expressed the modified gene in transgenic tobacco with a seed-specific promoter. Analysis of the glycans of PHA showed that most of the control PHA had one endoglycosidase H-sensitive and one endoglycosidase H-resistant glycan, indicating that it had been processed in the Golgi complex. On the other hand, a substantial portion of the PHA-KDEL (about 75% at mid-maturation and 50% in mature seeds) had two endoglycosidase H-sensitive glycans. Phytohemagglutinin with two endoglycosidase H-sensitive glycans is normally found in the ER. Using immunocytochemistry we found that a substantial portion of the PHA-KDEL was present in the ER or accumulated in the nuclear envelope while the remainder was found in the protein storage vacuoles (protein bodies). We interpret these data to indicate that carboxyterminal KDEL functions as an ER retention-retardation signal and causes protein to accumulate in the nuclear envelope as well as in the ER. The incomplete ER retention of this protein which is modified at the exact carboxyterminus may indicate that structural features other than carboxyterminal KDEL are important if complete ER retention is to be achieved.Mention of trademark, proprietary product, or vendor, does not constitute a guarantee or warrenty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable.Abbreviations endoH endoglycosidase H - ER endoplasmic reticulum - Mr relative molecular mass - PHA phytohemagglutinin - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - TBST Tris-buffered saline containing Tween 20 We thank Debra Donaldson for her contribution to the PHA gene constructions. This work has been supported by grants from the National Science Foundation (Cell Biology) and the Department of Energy (DE-FG03-86ER13497) to Maarten J. Chrispeels. The assistance of the staff of the Electron Microscope Laboratory, USDA, Beltsville is gratefully acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号