首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data from five field experiments using labelled nitrogen fertilizer were used to determine the relative effects of soil nitrogen and fertilizer nitrogen on rice yield. Yield of grain was closely correlated with total aboveground nitrogen uptake (soil+fertilizer), less closely correlated with soil nitrogen uptake and not significantly correlated with fertilizer nitrogen uptake. When yield increase rather than yield was correlated with fertilizer nitrogen uptake, the correlation coefficient was statistically significant.Contribution from the Laboratory for Flooded Soils and Sediments, Agronomy Dept., Louisiana Agri. Exper. Sta., Louisiana State Univ., Baton Rouge, LA 70803, and Univ. of Florida, Agricultural Research and Education Center, Sanford, FL 32771.  相似文献   

2.
Summary Isotopic as well as non-isotopic methods were used to assess symbiotic nitrogen fixation within eight soybean [Glycine max (L.) Merr.] cultivars grown at 20 and 100 kg N/ha levels of nitrogen fertilizer under field conditions.The15N methodology revealed large differences between soybean cultivars in their abilities to support nitrogen fixation. In almost all cases, the application of 100 kg N/ha resulted in lower N2 fixed in soybean than at 20 kg N/ha in the first year of the study. However, N2 fixed in one cultivar, Dunadja, was not significantly affected by the higher rate of N fertilizer application. These results were confirmed by measurements of acetylene reduction activity, nodule dry weight and N2 fixed as measured by the difference method. Further proof of differences in N2 fixed within soybean cultivars and the ability of Dunadja to fix similar amounts of N2 at 20 and 100 kg N/ha was obtained during a second year experiment. Dunadja yield was affected by N fertilizer and produced larger yield at 100 kg N/ha than at 20 kg N/ha. This type of cultivar could be particularly useful in situations where soil N levels are high or where there is need to apply high amounts of N fertilizer.The present study reveals the great variability between legume germplasms in the ability to fix N2 at different inorganic N levels, and also the potential that exists in breeding for nitrogen fixation associative traits. The15N methodology offers a unique tool to evaluate germplasms directly in the field for their N2 fixation abilities at different N fertilizer levels.  相似文献   

3.
Summary A greenhouse pot experiment with three N sources—15N-depleted ammonium sulfate, urea and sulfur-coated urea (SCU), three N levels—0, 50 and 200 ppm, and three irrigation treatments was conducted with rice in an Alamo clay soil. The irrigation treatments consisted of continuous flooding, alternating flooded-saturated and alternating flooded-drained conditions. The kinetics of NH 4 + and NH 4 + +NO 3 (available N) in soil was investigated under rice culture. Alternating flooded-drained conditions maintained a significantly lower level of available N in the soil than the other irrigation treatments. Among the N sources evaluated, urea and A/S had similar effects but SCU maintained significantly lower levels of available N in the soil during the growth of rice. Appreciable quantities of NO 3 accumulated during the draining periods of alternating flooded-drained treatments were apparently lost from the soil system upon reflooding.  相似文献   

4.
Li WJ  Xia YQ  Yang XY  Guo M  Yan XY 《应用生态学报》2011,22(9):2331-2336
在苏南太湖地区开展田间试验,研究了施氮和肥料添加剂对水稻产量、氮素吸收转运及利用的影响.结果表明:施氮对水稻产量、各生育时期植株累积吸氮量、阶段氮累积量和花后氮素转运量具有显著的促进作用(P<0.01),当施氮量高于200 kg·hm-2时,增施氮肥的增产效应不显著(P>0.05);花后氮素转运率和氮肥利用率均随施氮量的增加而降低.施用肥料添加剂可进一步提高水稻产量、累积吸氮量、花后氮素转运量和氮肥利用率,且该效应在高施氮量( ≥200 kg·hm-2)条件下表现更明显.本试验条件下不施用肥料添加剂时,施氮150kg·hm-2可同时获得较高的产量和氮肥利用率.  相似文献   

5.

Background and aims

This study aims to investigate the effect of nitrogen (N) on grain phosphorus (P) accumulation in japonica rice.

Methods

Six cultivars with contrasting agronomic traits were grown for 3 years (from 2008 to 2010) of field experiments under seven N treatments and 1 year (in 2010) of pot experiments with five N treatments to study the effect of N on grain phosphorus accumulation and to explore its physiological foundation.

Results

Grain total P and phytic acid concentration showed a clearly decreasing trend as N rate increased for both field and pot experiments. Pot experiment revealed that application of N increase plant biomass, but tended to lower plant P uptake, especially for the split topdressing treatments. Both harvest index (HI) and P harvest index (PHI) increased with N rate, but PHI was consistently higher than HI, indicating the larger proportion of P translocation to grain than that of dry matter by N. Further, ratio of PHI/HI differed significantly among genotypes, but was stable across contrasting N treatments.

Conclusions

The combination of decreased plant P uptake and dilution effect of increased grain yield by N is proposed as underlying mechanism of the decreased grain P concentration by high N.  相似文献   

6.
水氮处理下不同品种水稻根系生长分布特征   总被引:11,自引:0,他引:11       下载免费PDF全文
为明确不同栽培条件下水稻(Oryza sativa)根系生长分布特征, 通过不同水氮处理和不同品种的水稻桶栽试验, 采用内置根架法, 于拔节期和抽穗期取样, 获取根系总干重(TRW)、不定根数(ARN)以及各类根(不定根、细分枝根和粗分枝根)的形态指标(长度、表面积和体积), 并分析植株根系生长状况和根系分布特征。结果显示: (1)各试验条件下抽穗期各项根系指标较拔节期均呈增长趋势。同一时期, 各项根系指标在3个施氮水平间均差异显著, 且随施氮量的增加而增加。不同水分处理下, 两个时期的ARN在湿润灌溉(W2)与保持水层(W1)之间差异均不显著, 而其他指标上W2处理均显著最高; 干旱处理 (W3)下, 仅拔节期的TRW和粗分枝形态指标与W1处理接近, 而在其他指标上均显著最低。不同品种间, ‘扬稻6号’ (V3)的各项根系指标均最高, 而‘日本晴’ (V1)和‘武香粳14’ (V2)间差异不显著。(2)各试验条件下, 抽穗期较拔节期根系下扎生长比例增加, 多分布于表层(0-5 cm)土中; 减少氮素和水分供应可提高根系在5 cm以下土层中的分布比例, 且分枝根反应最为明显; 品种V1和V2的深扎根性较V3明显。结果表明, 合理施氮与控水可优化水稻不同类型根的生长与分布特征, 但需考虑不同品种之间的差异。  相似文献   

7.
稻田氮肥的氨挥发损失与稻季大气氮的湿沉降   总被引:50,自引:6,他引:50  
通过田间小区与大田试验,对稻季期间氮肥的氨挥发损失和大气氮湿沉降状况进行了收集和监测。结果表明,每次施肥后的1~3日内氨挥发损失达到最大值,氨挥发损失受当地气候条件(如光照、温度、湿度、风速、降雨量)、施肥时期以及田面水的NH4^+-N浓度等因素的影响,大气氮湿沉降与施肥量和降雨量有关,稻季内由湿沉降带入土壤或地表水中的氮为7.51kg·hm^-2。其中,NH4^+-N的比例为39.8%~73.2%,平均为55.5%;稻季中总氨挥发量与湿沉降的NH4^+-N平均浓度和总沉降量的相关系数分别达到0.988和0.996,呈显著相关性。  相似文献   

8.
Summary The behavior of soil N, fertilizer N and plant N was studied in a greenhouse experiment with 2 plant densities of rice (IR 36) under flooded conditions. Increasing plant density from 25 hills m2 to 50 hills m2 increased tiller number and panicle number but had no influence on grain yield. The yield of grain was linearly related to N content of the above ground dry matter at harvest (r2=.96) and thus the effect of manipulating the N supply on yield was directly related to N uptake.Mixing of (NH4)2SO4 with the soil volume before transplanting resulted in increases in N in the aboveground dry matter equal to 87% of the applied N. When (NH4)2SO4 was broadcast into the flood water at 4 stages of growth beginning 25 DAT, the corresponding increase was 77% of the applied N. When (NH4)2SO4 was split between shallow mixing before transplanting and a broadcast application of 32 DAT, the corresponding increase was 42%. Thus several applications of fertilizer N increased grain production per unit of applied N.Inorganic N extractable by KCl was a useful but not an infailible guide to the behavior of the soil and fertilizer inorganic N.  相似文献   

9.
In order to predict the potential impacts of global change, it is important to understand the impact of increasing global atmospheric [CO2] on the growth and yield of crop plants. The objectives of this study were to determine the interaction of N fertilization rates and atmospheric [CO2] on radiation interception and radiation-use efficiency of rice (Oryza sativa L. cv. IR72) grown under tropical field conditions. Rice plants were grown inside open top chambers in a lowland rice field at the International Rice Research Institute in the Philippines at ambient (about 350 μmol mol-1) or elevated (about 600 μmol mol-1 during the 1993 wet season and 700 μmol mol-1 during the 1994 dry season) in combination with three levels of applied N (0, 50 or 100 kg N ha-1 in the wet season; 0, 90 or 200 kg N ha-1 in the dry season). Light interception was not directly affected by [CO2], but elevated [CO2] indirectly increased light interception through increasing total absorbed N. Plant N requirement for radiation interception was similar for rice grown under ambient [CO2] or elevated [CO2] treatments. The conversion efficiency of intercepted radiation to dry matter, radiation-use efficiency (RUE), was about 35% greater at elevated [CO2] than at ambient [CO2]. The relationship between leaf N and RUE was curvilinear. At ambient [CO2], RUE was fairly stable across levels of leaf N, but leaf N less than about 2.5% resulted in lower RUE for plants grown with elevated [CO2] than for plant grown at ambient [CO2]. Decreased leaf N with increased [CO2], therefore decreased RUE of rice plants grown at elevated [CO2]. When predicting responses of rice to elevated [CO2], RUE should be adjusted with a decrease in leaf N. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Summary Agrochemical resistant mutants of nitrogen fixing cyanobacteriumTolypothrix tenuis were isolated after MNNG mutagenesis. The mutants exhibited higher nitrogenase activity and released more quantities of extracellular nitrogenous, substances such as ammonia, indole acetic acid like substances and amino acids when compared to the parent. They also increased the available nitrogen status of the soil in rice culture. Significant increase in the growth and yield upon inoculation of these mutants into rice culture was observed in comparison with chemical nitrogen fertilizer urea, as well as the parent strain treament.  相似文献   

11.
12.
This study aims to quantify nitrogen (N) effect on occurrence of perfect rice kernel (PRK) and imperfect grains which includes white-belly rice kernel (WBRK), white-core rice kernel (WCRK), green rice kernel (GRK), opaque rice kernel (ORK), and other imperfect grains (OTHERS). Two-year field experiments involving six japonica rice cultivars and seven N treatments were performed. The structural differences between white-belly and white-core tissues were compared using scanning electron microscope. Averaged over cultivars, grain yield increased progressively with N rate. PRK increased with N rate in 2008, but decreased with increased N rate in 2009. WBRK and WCRK decreased as N rate increased for both years. High N input resulted in higher occurrence of GRK and OTHERS for both years. Most starch granules in white-belly tissues are intact and surrounded by globular protein bodies, with many air spaces between them; while in white-core tissues, starch granules are easily broken into many single granules and no protein bodies are visible. Our results suggest that N has suppressing influence on chalky grains but favorable effect on other imperfect grains, and indicate different mechanism between WBRK and WCRK.  相似文献   

13.
Nitrogen is quantitatively the most essential nutrient for plants and a major factor limiting crop productivity. One of the critical steps limiting the efficient use of nitrogen is the ability of plants to acquire it from applied fertilizer. Therefore, the development of crop plants that absorb and use nitrogen more efficiently has been a long-term goal of agricultural research. In an attempt to develop nitrogen-efficient plants, rice ( Oryza sativa L.) was genetically engineered by introducing a barley AlaAT ( alanine aminotransferase ) cDNA driven by a rice tissue-specific promoter ( OsAnt1 ). This modification increased the biomass and grain yield significantly in comparison with control plants when plants were well supplied with nitrogen. Compared with controls, transgenic rice plants also demonstrated significant changes in key metabolites and total nitrogen content, indicating increased nitrogen uptake efficiency. The development of crop plants that take up and assimilate nitrogen more efficiently would not only improve the use of nitrogen fertilizers, resulting in lower production costs, but would also have significant environmental benefits. These results are discussed in terms of their relevance to the development of strategies to engineer enhanced nitrogen use efficiency in crop plants.  相似文献   

14.
通过2018年早稻和晚稻田间试验,研究化学氮肥减量及配施稻秆生物炭对稻田土壤养分特性及植株氮素吸收的影响。试验包括6个处理:不施氮(CK)、常规施氮(N100)、减氮20%(N80)、减氮20%配施生物炭(N80+BC)、减氮40%(N60)、减氮40%配施生物炭(N60+BC)。结果表明: 与常规施氮相比,单纯减氮20%和40%或配施生物炭对早晚稻不同生育期土壤pH、有机质、全氮、铵态氮、全磷、有效磷、全钾、速效钾无显著影响;减氮20%配施生物炭显著增加晚稻分蘖期的土壤阳离子交换量(CEC),而减氮40%配施生物炭则显著增加晚稻抽穗期的电导率(EC)值。与单纯减氮相比,N80+BC的土壤速效钾含量在早晚稻抽穗期均显著升高,土壤pH值、全氮在晚稻成熟期显著增加;N60+BC的土壤全钾含量在早稻成熟期显著升高。不同处理早稻土壤硝态氮含量随生育进程逐渐降低,与分蘖期相比,抽穗期和成熟期的常规施氮土壤硝态氮含量分别降低50.0%和71.6%,而配施生物炭处理则降低6.3%~45.5%,减氮配施生物炭显著降低了硝态氮的流失。在晚稻抽穗期,减氮配施生物炭植株吸氮量显著高于常规施氮和单纯减氮,增加幅度为34.8%~52.4%。综上,适度的减氮或配施稻秆生物炭能有效保持土壤养分,促进水稻对氮素的吸收,提高氮素利用率。  相似文献   

15.
Corn steep liquor, peptone or NH inf4 sup+ salts increased the yield of glucoamylase from Aspergillus niger growing in a solid-state fermentation on rice bran up to 360 IU/g dry substrate over 96 h at 30°C.The authors are with the Biotechnology Unit, Regional Research Laboratory, CSIR, Trivandrum-695 019, India;  相似文献   

16.
Summary A pot experiment in the field showed that addition of ammonium sulfate increased the uptake of soil nitrogen. A-value was found to be independent of the rate of nitrogen application. The rice plant took up about 13 percent of the nitrogen in rice straw which was incorporated into the soil when nitrogen fertilizer was not added, and about 15 percent when 50 ppm N was added. Addition of different levels of fertilizer did not affect the release of immobilized fertilizer nitrogen. Recovery of fertilizer by the rice plant was low when nitrogen was added as basal (broadcast). Recovery was improved by incorporating fertilizer nitrogen before transplanting. Recovery of fertilizer nitrogen when topdressed at reproductive stages was much higher than when applied as basal. A fairly large portion of fertilizer nitrogen was immobilized into the soil. Availability of immobilized nitrogen in the soil appeared low. re]19751117  相似文献   

17.

Background and Aims

Although ammonium (NH4+) is the preferred form of nitrogen over nitrate (NO3) for rice (Oryza sativa), lateral root (LR) growth in roots is enhanced by partial NO3 nutrition (PNN). The roles of auxin distribution and polar transport in LR formation in response to localized NO3 availability are not known.

Methods

Time-course studies in a split-root experimental system were used to investigate LR development patterns, auxin distribution, polar auxin transport and expression of auxin transporter genes in LR zones in response to localized PNN in ‘Nanguang’ and ‘Elio’ rice cultivars, which show high and low responsiveness to NO3, respectively. Patterns of auxin distribution and the effects of polar auxin transport inhibitors were also examined in DR5::GUS transgenic plants.

Key Results

Initiation of LRs was enhanced by PNN after 7 d cultivation in ‘Nanguang’ but not in ‘Elio’. Auxin concentration in the roots of ‘Nanguang’ increased by approx. 24 % after 5 d cultivation with PNN compared with NH4+ as the sole nitrogen source, but no difference was observed in ‘Elio’. More auxin flux into the LR zone in ‘Nanguang’ roots was observed in response to NO3 compared with NH4+ treatment. A greater number of auxin influx and efflux transporter genes showed increased expression in the LR zone in response to PNN in ‘Nanguang’ than in ‘Elio’.

Conclusions

The results indicate that higher NO3 responsiveness is associated with greater auxin accumulation in the LR zone and is strongly related to a higher rate of LR initiation in the cultivar ‘Nanguang’.  相似文献   

18.
秸秆还田与氮肥施用是农田生态系统中碳氮元素的两大主要补给途径,其在调控稻田甲烷(CH4)和氧化亚氮(N2O)排放以及水稻产量方面具有重要作用。以往的研究主要关注秸秆还田或氮肥施用单因素对稻田温室气体排放的影响,而双因素互作对甲烷和氧化亚氮排放的影响尚未明确。同时,在秸秆还田条件下如何进行合理的氮肥施用鲜有深入研究。本研究基于3个氮肥处理(0、180、360 kg N/hm2)和3个秸秆还田处理(0、2.25、3.75 t/hm2)进行多年水稻田间定位试验,研究结果表明:CH4季节累积排放随秸秆还田量增加而增加,与施氮量无显著正相关关系;N2O季节累积排放随施氮量增加而增加,与秸秆还田量无显著正相关关系;秸秆还田对于产量的影响具有不确定性,两年均在秸秆不还田+不施氮处理(S0N0)出现最低产量,2021与2022年最低产量分别为5740.64和4903.75 kg/hm2。2021与2022年最高产量分别在秸秆不还田+高氮(S0N2)和高量秸秆还田+高氮(S2N2)出现,分别为10938.48和10384.83 kg/hm2。同时,本研究发现在低量秸秆还田条件下,在碳足迹(CF, Carbon Footprint)方面,施氮量为251 kg N/hm2时碳足迹达到最低点,为1.01 kg C/kg;而在生态经济净收益(NEEB, Net Ecosystem Economic Benefits)方面,施氮量为294 kg N/hm2时生态经济净收益达到最高点,为11778.15 元/hm2。为协同生态经济净收益与碳排放,在低量秸秆还田(S1)下,配合251-294 kg N/hm2的施氮量为最优施肥方案。研究结果为指导稻田温室气体减排、实现稻田碳中和以及农田管理提供了理论支撑,为实现水稻的高产稳产与低碳生产科学依据。  相似文献   

19.
以不同基因型的水稻品种日本晴、N70、N178和OM052为供试品种,氮肥采用尿素,按基肥(70%)和蘖肥(30%)两次施用,设置3个施氮水平(N用量设0、120、270 kg·hm-2)的田间小区试验,研究氮素水平对水稻产量、氮素利用效率和稻米品质的影响,以期为氮肥合理施用和氮高效水稻品种创制提供科学依据.结果表明:施氮能增加水稻品种产量的原因是提高了有效穗数和每穗实粒数;与对照(0 kg·hm-2)相比,当施氮量为120和270 kg·hm-2时,OM052籽粒产量在4个品种中增幅最大,分别为41.1%和76.8%;品种产量增幅不同是由于氮素利用效率的差异,在120、270 kg·hm-2氮处理下,4个供试品种中,日本晴籽粒产量和氮素农学利用率(40.90 g·g-1、18.56 g·g-1)都最低,为氮低效品种,OM052籽粒产量和氮素农学利用率(145.9 g·g-1、81.24 g·g-1)都最高,为氮高效品种.施N能够增加各品种的直链淀粉和蛋白质含量,使胶稠度变长,降低垩白率、垩白度和碱消值;随施氮量增加,热浆黏度、峰值黏度、回复值和崩解值递减,而消碱值递增.相关性分析表明,低N水平下,供试品种产量及产量构成因子与外观品质、蒸煮食味的相关性更显著.综上,OM052是一个籽粒产量和氮素利用效率“双高”基因型品种,合理施用氮肥可以显著增加水稻的有效穗数和每穗粒数,改善稻米籽粒品质,实现高产和优质的协同.  相似文献   

20.
Summary The effect of different methods of nitrogen fertilizer application on the algal flora and biological nitrogen fixation (Acetylene-reducing activity) in a wetland rice soil was studied in pot and field experiments. Broadcast application of urea inhibited nitrogen fixation and favored the growth of green algae. In contrast, deep placement of urea supergranules (1–2 g urea granules) did not suppress the growth of N2-fixing blue-green algae and permitted acetylene-reducing activity on the soil surface to continue virtually uninhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号