首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased fire activity within boreal forests could affect global terrestrial carbon (C) stocks by decreasing stand age or altering tree recruitment, leading to patterns of forest regrowth that differ from those of pre-fire stands. To improve our understanding of post-fire C accumulation patterns within boreal forests, we evaluated above- and belowground C pools within 17 Cajander larch (Larix cajanderi) stands of northeastern Siberia that varied in both years since fire and stand density. Early-successional stands (<20-year old) exhibited low larch recruitment, and consequently, low density, aboveground larch biomass, and aboveground net primary productivity (ANPPtree). Mid-successional stands (21- to 70-year old) were even-aged with considerable variability in stand density. High-density mid-successional stands had 21 times faster rates of ANPPtree than low-density stands (252 vs. 12?g?C?m?2?y?1) and 26 times more C in aboveground larch biomass (2,186 vs. 85?g?C?m?2). Density had little effect on total soil C pools. During late-succession (>70-year old), aboveground larch biomass, ANPPtree, and soil organic layer C pools increased with stand age. These stands were low density and multi-aged, containing both mature trees and new recruits. The rapid accumulation of aboveground larch biomass in high-density, mid-successional stands allowed them to obtain C stocks similar to those in much older low-density stands (~8,000?g?C?m?2). If fire frequency increases without altering stand density, landscape-level C storage could decline, but if larch density also increases, large aboveground C pools within high-density stands could compensate for a shorter successional cycle.  相似文献   

2.
In boreal forests of eastern Canada, wildfire has gradually been replaced by clearcut harvesting as the most extensive form of disturbance. Such a shift in disturbance may influence the chemical properties of the forest floor and its capacity to cycle and supply nutrients, with possible implications for forest productivity. We compared the effects of stem-only harvesting (SOH), whole-tree harvesting (WTH) and wildfire on the chemical composition of forest floor organic matter and nutrient availability for plants, 15–20 years after disturbance in boreal coniferous stands in Quebec (Canada). The forest floor on plots of wildfire origin was significantly enriched in aromatic forms of C with low solubility, whereas the forest floor from SOH and WTH plots was enriched with more soluble and labile C compounds. The forest floor of wildfire plots was also characterized by higher N concentration, but its high C:N and high concentration of 15N suggest that its N content could be recalcitrant and have a slow turnover rate. Total and exchangeable K were associated with easily degradable organic structures, whereas total and exchangeable Ca and Mg were positively correlated with the more recalcitrant forms of C. We suggest that the bulk of Ca and Mg cycling in the soil–plant system is inherited from the influx of exchangeable cations in the forest floor following disturbance. The buildup of Ca and Mg exchangeable reserves should be greater with wildfire than with harvesting, due to the sudden pulse of cation-rich ash and to the deposition of charred materials with high exchange capacity. This raises uncertainties about the long-term availability of Ca and Mg for plant uptake on harvested sites. In contrast, K availability should not be compromised by either harvesting or wildfire since it could be recycled rapidly through vegetation, litter and labile organic compounds.  相似文献   

3.
Questions: How do climate conditions and the site's ecohy‐ drological properties affect the age and size structure of natural Pinus sylvestris stands on pristine boreal mires? How do the long‐term stand dynamics on mires proceed as stands age? Do the mire stands reach a balanced, old‐growth stage? Location: Boreal mire forests in southern and northern Finland. Methods: Tree age and diameter distributions were analysed in 52 stands in two climate areas and in two mire site types with different ecohydrological properties. Temporal stand dynamics were examined by (1) comparing the graphs of the stands’ mean tree ages by diameter at breast height (1.3 m) classes and (2) describing the changes in stand characteristics and stand age and size structures as a function of stand dominant age in a chronosequence. Results: In the south, the DBH distributions were mostly unimodal and bell‐shaped in both site type groups. Age distributions were multimodal and flat in fully‐stocked sites but more uneven in sparsely forested composite sites. In the north, both the age and size distributions were clearly uneven in both site type groups. Tree age and size variation increased with stand age, but levelled out in the long term. Particularly in the south, the abundance of small trees decreased as stand age increased. Conclusions: The pine stands on pristine boreal mires are more dynamic than anticipated and are generally not characterised by a balanced, self‐perpetuating structure. Their dynamics reflect differences in climate and ecohydrology: on stocked sites in favourable boreal conditions, the stands showed structures typically resultant of inter‐tree competition processes that control tree growth and regeneration, whereas in harsh boreal climates, the tree regeneration process is ongoing diversifying the stand structure.  相似文献   

4.
Do Boreal Forests Need Fire Disturbance to Maintain Productivity?   总被引:1,自引:0,他引:1  
Fire is considered as a major driver of ecosystem processes of the boreal forest with important effects on soil and forest productivity. When the interval between successive forest fires is long, a thick organic layer can develop and eventually interfere with processes involved in tree nutrient uptake. We thus hypothesized that the organic layer of well-drained boreal stands increases with time since last fire and that thick organic layers are associated with low values of soil temperature, nutrient availability, and site productivity. This was tested on a chronosequence composed of 90 boreal stands ranging from 1 to more than 2000 years after fire within which we measured organic layer thickness (OLT), mineral soil and foliage nutrient concentrations, soil temperature, ground cover of Sphagnum sp. and Ericaceae sp., leaf area index, aboveground biomass production, and growth efficiency index (GEI). The OLT increased during the first 64 years after fire but stayed statistically constant thereafter. This initial increase in OLT was accompanied by an increase in the C/N ratio and decreases in soil temperature, foliar N, and GEI. The absence of a significant decrease in productivity from 80 to 2000 years post-fire suggests that these characteristics reach a steady state early in the chronosequence that persists in the absence of major disturbances or changes in site conditions. These results imply that management practices may not be necessary to maintain boreal forest productivity in the absence of fire on well-drained sites.  相似文献   

5.
Wildfire and clearcutting are two main disturbances in North American forests, but whether root systems may respond differently to such disturbances is unknown. Here, we studied how the dynamics of fine roots (<2 mm in diameter) varied with stand origins in a boreal forest in northern Ontario, Canada. Fine root biomass increased with stand age, but did not differ between stands originating from fire and clearcutting. By contrast, fine root production, mortality and turnover rates were lower in 3- and 11-year-old clearcut-origin than fire-origin stands, but did not differ in 29-year-old stands of different stand origins. The lower rates of production, mortality, and turnover rates in 3- and 11-year-old clearcut-origin than fire-origin stands are attributable to a lower density of shrubs and herbs and larger nutrient pools after clearcutting than fire. The similarities among 29-year-old stands indicate that the effects of stand origin on fine root processes tend to converge at this time scale. Our results illustrate that time scale is critical for assessing ecosystem responses to disturbances.  相似文献   

6.
An understanding of the dynamics of soil organic carbon (SOC) as affected by farming practices is imperative for maintaining soil productivity and mitigating global warming. Results of a long-term (32 years) experiment in the Indian Himalayas under rainfed soybean (Glycine max L.)- wheat (Triticum aestivum L.) rotation was analyzed to determine the effects of mineral fertilizer and farmyard manure (FYM) application at 10 Mg?ha-1 on SOC stocks and depth distribution of the labile and recalcitrant pools of SOC. Results indicate all treatments increased SOC contents over the control. The annual application of NPK significantly (P?<?0.05) enhanced total SOC, oxidizable soil organic C and its fractions over the control plots. The increase in these SOC fractions was greater with the NPK + FYM treatment. Nearly 16% (mean of all treatments) of the estimated added C was stabilized into SOC both in the labile and recalcitrant pools, preferentially in the 0?C30 cm soil layer. However, the labile:recalcitrant SOC ratios of applied C stabilized was largest in the 15?C30 cm soil layer. About 62% of total SOC was present in the labile pool. Plots under the N + FYM and NPK + FYM treatments contained a larger proportion of total SOC in the recalcitrant pool than the plots with mineral or no fertilizer, indicating that FYM application promoted SOC stabilization.  相似文献   

7.
Wood ants (Formica rufa group) are regarded as keystone species in boreal and mountain forests of Europe and Asia by their effect on ecosystem carbon (C) and nutrient pools and fluxes. To quantify the impact of their activity on boreal forest ecosystems, C, nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca) pools and fluxes in wood ant nests (WAN), and soil were assessed along a 5-, 30-, 60-, and 100-year-old Norway spruce (Picea abies L. Karsten) dominated successional gradient in eastern Finland. Amounts of C and nutrients in WAN increased with stand age, but contained less than 1% of total C and nutrient pools in these stands. The CO2-efflux from nests was also insignificant, as compared to CO2-efflux from the forest floor. Annually, the amount of C brought by wood ants into their nests as honeydew, prey and nest-building materials ranged from 2.7 to 49.3 kg ha?1 C, but this is only 0.1–0.7% of the combined net primary production of trees and understorey in boreal forests. The difference between wood ant nest C inputs and outputs was very small in the younger-aged stands, and increased in the older stands. Carbon accumulation rates in nests over a 100 year period are estimated to be less than 10 kg ha?1 a?1. In contrast to C, annual inputs of N, P, and K are larger compared to wood ant nest nutrient pool size, ranging from 3 to 6% of the annual tree stand and understorey uptake. This indicates a more rapid turnover and transport of N, P, and K out of WAN, and suggests that wood ants increase the cycling rate of these nutrients in boreal forests.  相似文献   

8.
Variation in plant N resorption may change with stand development because plants tend to adjust their ecophysiological traits with aging. In addition, changes in soil nitrogen (N) pools associated with stand development may also affect plant N resorption. Here, we examined green- and senesced-leaf N concentrations and resorption of trembling aspen ( Populus tremuloides Michx.) in boreal forest stands of different ages (7, 25, 85 and 139 years, respectively). All sampled stands originated from wildfires and established on similar parent materials (glacial tills) and had similar climates. N concentrations in both green and senesced leaves increased between 27% and 54% along the stand age chronosequence. Resorption efficiency (percentage difference of N between green and senesced leaves) and proficiency (N concentration in senesced leaves) were higher for leaves in younger stands than in older stands. An analysis of covariance indicated that the patterns of leaf N concentration and resorption were affected significantly by stand age, but not by available soil N concentration. Our results indicate that at an intra-specific level, plants could adjust their N resorption efficiency and proficiency with stand development.  相似文献   

9.
Corresponding with the increasing global resource demand, harvesting now affects millions of hectares of boreal forest each year, and yet our understanding of harvesting impacts on boreal carbon (C) dynamics relative to wildfire remains unclear. We provide a direct comparison of C stocks following clearcut harvesting and fire over a 27-year chronosequence in the boreal forest of central Canada. Whereas many past studies have lacked measurement of all major C pools, we attempt to provide complete C pool coverage, including live biomass, deadwood, forest floor, and mineral soil C pools. The relative contribution of each C pool to total ecosystem C varied considerably between disturbance types. Live biomass C was significantly higher following harvesting compared with fire because of residual live trees and advanced regeneration. Conversely, most live biomass was killed following fire, and thus post-fire stands contained higher stocks of deadwood C. Snag and stump C mass peaked immediately following fire, but dramatically decreased 8 years after fire as dead trees began to fall over, contributing to the downed woody debris C pool. Forest floor C mass was substantially lower shortly after fire than harvesting, but this pool converged 8 years after fire and harvesting. When total ecosystem C stocks were examined, we found no significant difference during early stand development between harvesting and fire. Maximum total ecosystem C occurred at age 27 years, 185.1 ± 18.2 and 163.6 ± 8.0 Mg C ha?1 for harvesting and fire, respectively. Our results indicate strong differences in individual C pools, but similar total ecosystem C after fire and clearcutting in boreal forests, and shall help improve modeling terrestrial C flux after stand-replacing disturbances.  相似文献   

10.
Although it has long been assumed that wildfire occurrence is independent of stand age in the North American boreal forest, recent studies indicate that young forests may influence burn rates by limiting the ignition and spread of fires for several years. Wildfires not only structure the stand-age mosaic of boreal landscapes, but also alter the likelihood and behavior of subsequent fires. Using a fire simulation model, we evaluated the effect of stand age on the magnitude and spatial patterns of burn probability (BP) in the boreal forest of northeastern Canada. Specifically, we assessed the stand age effect on the two processes driving fire likelihood, ignition and spread, by simulating tens of thousands of fires under three fire regime scenarios that vary in terms of mean fire size and number of burned patches. Assuming minimal resistance to fire ignition and spread, where only the youngest stands (≤ 10 years) are resistant to burning, mean BP is reduced by 10%; in contrast, assuming maximum resistance, where stands up to 90 years old impede wildfires, mean BP can be reduced up to 85%. Although the resistance to ignition on BP is almost identical in magnitude to that of spread, it yields substantially different spatial arrangements of BP. Furthermore, stand age resistance reduces subsequent fire activity not only within but also outside the perimeter of burned patches through a shadow effect. Our results help to untangle the role of factors contributing to stand age resistance on wildfires and offer new insights for improving the spatial mapping of fire likelihood.  相似文献   

11.
Climate change has increased the occurrence, severity, and impact of disturbances on forested ecosystems worldwide, resulting in a need to identify factors that contribute to an ecosystem’s resilience or capacity to recover from disturbance. Forest resilience to disturbance may decline with climate change if mature trees are able to persist under stressful environmental conditions that do not permit successful recruitment and survival after a disturbance. In this study, we used the change in proportional representation of black spruce pre- to post-fire as a surrogate for resilience. We explored links between patterns of resilience and tree ring signals of drought stress across topographic moisture gradients within the boreal forest. We sampled 72 recently (2004) burned stands of black spruce in interior Alaska (USA); the relative dominance of black spruce after fire ranged from almost no change (high resilience) to a 90% decrease (low resilience). Variance partitioning analysis indicated that resilience was related to site environmental characteristics and climate–growth responses, with no unique contribution of pre-fire stand composition. The largest shifts in post-fire species composition occurred in sites that experienced the compounding effects of pre-fire drought stress and shallow post-fire organic layer thickness. These sites were generally located at warmer and drier landscape positions, suggesting they are less resilient to disturbance than sites in cool and moist locations. Climate–growth responses can provide an estimate of stand environmental stress to climate change and as such are a valuable tool for predicting landscape variations in forest ecosystem resilience.  相似文献   

12.
Litterfall is a fundamental process in the nutrient cycle of forest ecosystems and a major component of annual net primary production (NPP). Despite its importance for understanding ecosystem energetics and carbon accounting, the dynamics of litterfall production following disturbance and throughout succession remain poorly understood in boreal forest ecosystems. Using a replicated chronosequence spanning 209 years following fire and 33 years following logging in Ontario, Canada, we examined the dynamics of litterfall production associated with stand development, overstory composition type (broadleaf, mixedwood, and conifer), and disturbance origin. We found that total annual litterfall production increased with stand age following fire and logging, plateauing in post-fire stands approximately 98 years after fire. Neither total annual litterfall production nor any of its constituents differed between young fire- or logging-originated stands. Litterfall production was generally higher in broadleaf stands compared with mixedwood and conifer stands, but varied seasonally, with foliar litterfall highest in broadleaf stands in autumn, and epiphytic lichen litterfall highest in conifer stands in spring. Contrary to previous assumptions, we found that the contribution of litterfall production to net primary production increased with stand age, highlighting the need for modeling studies of net primary productivity to account for the effects of stand age on litterfall dynamics.  相似文献   

13.
Aims Boreal larch (Larix gmelinii) forests in Northeast China have been widely disturbed since the 1987 conflagration; however, its long-term effects on the forest carbon (C) cycling have not been explored. The objective of this study thus was to quantify the effects of fire severity and post-fire reforestation on C pools and the changes of these forests.Methods Sixteen permanent plots have been set in two types of larch stands (L. gmelinii -grass, LG; and L. gmelinii-Rhododendron dahurica, LR) with three levels of fire severity (unburned, low-severity and high-severity but replanted), at 1987 burned sites in Daxing'anling, northeastern China, to repeatedly measure ecosystem C pools in 1998 and 2014. C components were partitioned into vegetation (foliage, branch, stem and roots), soil and detritus (standing and fallen woody debris and litter). The fire effects on post-fire C dynamics were examined by comparing the differences of C pools and changes between the two field investigations caused by fire severity.Important findings During the study period, unburned mature stands were C sinks (105g C m ?2 year-1 for LG, and 190g C m ?2 year-1 for LR), whereas the low-severity stands were C-neutral (?4 and 15g C m ?2 year-1 for LG and LR, respectively). The high-severity burned but reforested stands were C sinks, among which, however, magnitudes (88 and 16g C m ?2 year-1 for LG and LR, respectively) were smaller than those of the two unburned stands. Detritus C pools decreased significantly (with a loss ranging from 26 to 38g C m ?2 year-1) in the burned stands during recent restoration. Soil organic C pools increased slightly in the unmanaged stands (unburned and low-severity, with accumulation rates ranging from 4 to 35g C m ?2 year-1), but decreased for the high-severity replanted stands (loss rates of 28 and 36g C m ?2 year-1 for LG and LR, respectively). These results indicate that fire severity has a dynamic post-fire effect on both C pools and distributions of the boreal larch forests, and that effective reforestation practice accelerates forest C sequestration.  相似文献   

14.
Plantations play an important role in absorbing atmospheric CO2 and plantation soil can serve as an important carbon (C) sink. However, the stocks and dynamics of soil C in differently aged plantation forests in north China remain uncertain. In this study, we measured soil inorganic carbon (SIC), soil organic carbon (SOC) and total nitrogen content (STN), the light (LF) and heavy fractions (HF) of soil organic matter (SOM) to a depth of 1 m in 3 different ages (10-, 30-, 40-year-old) of Pinus sylvestris var. mongolica (Mongolia pine) plantations in 2011 and 2012. Soil pH, texture and moisture were also measured to explore the causes of SOC dynamics for different stand ages. Our results showed that no significant difference in SIC content was observed at different soil depths. As forest age increases, SIC content as well as the C and N content in SOM, LF and HF initially rose and then decreased, while the LF in SOC initially decreased and then increased. Although the C:N ratio of SOC and HF did not significantly change, the C:N ratio of LF increased with depth. SOC dynamics at different stand ages were significantly correlated with soil moisture and clay content. Soil pH and moisture explained 58.63% of the overall variation of SOC at different depths. Moreover, the SOC increased during the early stage of afforestation, mostly because of the increase in recalcitrant C; however, the decrease of SOC with increasing stand age was also mainly affected by C loss in the recalcitrant C pool.  相似文献   

15.
The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China.  相似文献   

16.
Post-fire nutrient flushes are an important precursor to secondary succession in fire-driven boreal forest. We studied the magnitude of changes in post-fire soil nutrient status across a chronosequence of ericaceous shrub-dominated boreal forest stands in eastern Newfoundland, Canada. The chronosequence comprised nine stands burned between 1 and 38 years prior to the study. These sites have resisted tree reestablishment following forest fire-induced mortality of black spruce and a concomitant increase in dominance of the ericaceous dwarf shrub Kalmia angustifolia L. Our objectives were: (1) to identify the factors driving soil nutrient status in these post-fire stands dominated by ericaceous plants, and (2) to test hypotheses that specific relationships exist among environmental factors, dominant vegetation and indicators of soil nutrient status. Macronutrients such as NH4+, total organic N and mineral soil P concentrations showed non-linear declines with time since fire. These parameters were also negatively associated with cover of ericaceous plants. Potential phytotoxins such as total phenolics and aluminium concentrations increased with increasing cover of K. angustifolia. Variability in net ammonification, total P and total phenolic acids in organic soils were strongly related to ericaceous dominance even when the effect of time since fire was partialled out using regression analysis. These findings suggest a strong capacity for ericaceous vegetation to have top-down effects on soil chemical property particularly in the organic horizon with the increase in its post-fire dominance.  相似文献   

17.
Wildfires are a pervasive disturbance in boreal forests, and the frequency and intensity of boreal wildfires is expected to increase with climate warming. Boreal forests store a large fraction of global soil organic carbon (C), but relatively few studies have documented how wildfires affect soil microbial communities and soil C dynamics. We used a fire chronosequence in upland boreal forests of interior Alaska with sites that were 1, 7, 12, 24, 55, ~90, and ~100 years post-fire to examine the short- and long-term responses of fungal community composition, fungal abundance, extracellular enzyme activity, and litter decomposition to wildfires. We hypothesized that post-fire changes in fungal abundance and community composition would constrain decomposition following fires. We found that wildfires altered the composition of soil fungal communities. The relative abundance of ascomycetes significantly increased following fire whereas basidiomycetes decreased. Post-fire decreases in basidiomycete fungi were likely attributable to declines in ectomycorrhizal fungi. Fungal hyphal lengths in the organic horizon significantly declined in response to wildfire, and they required at least 24 years to return to pre-fire levels. Post-fire reductions in fungal hyphal length were associated with decreased activities of hydrolytic extracellular enzymes. In support of our hypothesis, the decomposition rate of aspen and black spruce litter significantly increased as forests recovered from fire. Our results indicate that post-fire reductions in soil fungal abundance and activity likely inhibit litter decomposition following boreal wildfires. Slower rates of litter decay may lead to decreased heterotrophic respiration from soil following fires and contribute to a negative feedback to climate warming.  相似文献   

18.
Soil respiration (RS) and soil carbon stocks, as well as stand properties were investigated in a warm-temperate oak chronosequence in order to understand the age effect on soil CO2 efflux. The chronosequence consisted of three 40-year-old, 48-year-old, 80-year-old, and 143-year-old oak stands, respectively. RS measurements were conducted using a Li-8100 soil CO2 flux system from October 2008 to October 2009. Temporal variations of RS of all the four forests largely depended on soil temperature of 5 cm depth (T5) (R2?=?0.738?C0.825). The mean RS for 40-year-old, 48-year-old, 80-year-old, and 143-year-old forests were 2.37, 2.59, 2.99, and 3.32 ??mol CO2 m-2 s-1 respectively. Both top soil organic carbon (SOC) and light fraction organic carbon (LFOC) stocks were significantly correlated to RS variation, while only significant different LFOC among stands was found. This indicated that cumulated labile organic carbon was a better indicator on RS variation, which was further illustrated by a better relationship between R 10 and LFOC than that of R10 and SOC. We found that the variation of mean RS among stands was well correlated with basal area (BA). Marginal correlation between RS and fine root biomass (FR) demonstrated the relationship between RS and belowground metabolism. We also found total porosity (TP) negatively influenced the mean RS and this negative effect may mainly be attributed to the capillary porosity (CP). Forest growth and yield could be contributed to RS variation among stands. Forest succession also changed soil labile carbon stock and soil physical properties that influenced the CO2 efflux.  相似文献   

19.
Boreal forests are critical to the global carbon (C) cycle. Despite recent advances in our understanding of boreal C budgets, C dynamics during compositional transition to late-succession forests remain unclear. Using a carefully replicated 203-year chronosequence, we examined long-term patterns of forest C stocks and net ecosystem productivity (NEP) following stand-replacing fire in the boreal forest of central Canada. We measured all C pools, including understorey vegetation, belowground biomass, and soil C, which are often missing from C budgets. We found a slight decrease in total ecosystem C stocks during early stand initiation, between 1 and 8 years after fire, at ?0.90 Mg C ha?1 y?1. As stands regenerated, live vegetation biomass increased rapidly, with total ecosystem C stocks reaching a maximum of 287.72 Mg C ha?1 92 years after fire. Total ecosystem C mass then decreased in the 140- and 203-year-old stands, losing between ?0.50 and ?0.74 Mg C ha?1 y?1, contrasting with views that old-growth forests continue to maintain a positive C balance. The C decline corresponded with canopy transition from dominance of Populus tremuloides, Pinus banksiana, and Picea mariana in the 92-year-old stands to Betula papyrifera, Picea glauca, and Abies balsamea in the 203-year-old stands. Results from this study highlight the role of succession in long-term forest C dynamics and its importance when modeling terrestrial C flux.  相似文献   

20.
The colonization of leaf litter by saprobic fungi was studied in old-growth and post-harvest successional Douglas-fir forests on southeast Vancouver Island, British Columbia. This study focused on leaf litter of salal (Gaultheria shallon Pursh.), a dominant understory shrub in all stands. Salal litter is characterized by the occurrence of bleached portions attributable to fungal colonization of the litter and to the variable decomposition of recalcitrant compounds, such as lignin. Analyses of proximate chemical fractions, fungal assemblages on the bleached leaf area, and pure culture decomposition assays indicated that Marasmius sp. and Coccomyces sp. were responsible for rapid decomposition and bleaching of salal leaf litter. The bleached area accounted for 17%-22% of total area of salal leaf litter collected in immature (40-60 years old), mature (85-105 years old), and old-growth (more than 290 years old) stands, but for only 2% in regeneration (5-15 years old) stands. The reduction of bleached leaf area occupied by Marasmius sp. and Coccomyces sp. in regeneration stands could be due to the changes in microenvironmental conditions on the forest floor, in litter quality, or in food-web structure in soils. The decrease of fungi able to decay recalcitrant compounds may lead to a reduction of salal decomposition rates in clear-cut sites that would persist until canopy closure occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号