首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.

Background and Aims

Cereals have two root systems. The primary system originates from the embryo when the seed germinates and can support the plant until it produces grain. The nodal system can emerge from stem nodes throughout the plant''s life; its value for yield is unclear and depends on the environment. The aim of this study was to test the role of nodal roots of sorghum and millet in plant growth in response to variation in soil moisture. Sorghum and millet were chosen as both are adapted to dry conditions.

Methods

Sorghum and millet were grown in a split-pot system that allowed the primary and nodal roots to be watered separately.

Key Results

When primary and nodal roots were watered (12 % soil water content; SWC), millet nodal roots were seven times longer than those of sorghum and six times longer than millet plants in dry treatments, mainly from an 8-fold increase in branch root length. When soil was allowed to dry in both compartments, millet nodal roots responded and grew 20 % longer branch roots than in the well-watered control. Sorghum nodal roots were unchanged. When only primary roots received water, nodal roots of both species emerged and elongated into extremely dry soil (0·6–1·5 % SWC), possibly with phloem-delivered water from the primary roots in the moist inner pot. Nodal roots were thick, short, branchless and vertical, indicating a tropism that was more pronounced in millet. Total nodal root length increased in both species when the dry soil was covered with plastic, suggesting that stubble retention or leaf mulching could facilitate nodal roots reaching deeper moist layers in dry climates. Greater nodal root length in millet than in sorghum was associated with increased shoot biomass, water uptake and water use efficiency (shoot mass per water). Millet had a more plastic response than sorghum to moisture around the nodal roots due to (1) faster growth and progression through ontogeny for earlier nodal root branch length and (2) partitioning to nodal root length from primary roots, independent of shoot size.

Conclusions

Nodal and primary roots have distinct responses to soil moisture that depend on species. They can be selected independently in a breeding programme to shape root architecture. A rapid rate of plant development and enhanced responsiveness to local moisture may be traits that favour nodal roots and water use efficiency at no cost to shoot growth.  相似文献   

2.
The effect of mutual shading on the root/shoot ratio and on the number of nodal roots of maize was studied. Plants of two varieties (Dea and LG2281) were grown in individual pots of 9 L, at three plant densities: 7.5, 11 and 15 plants m–2. A control experiment was carried out in order to study if root growth was affected by the small size of the pots. Maize plants (cv Dea) were grown at a low plant density (7.5 plants m–2) in pots of two different volumes (9 and 25 L respectively). In both experiments plants were watered every two hours with a nutrient solution. Some plants were sampled at five dates in the main experiment and the following data were recorded: foliar stage; root, stem and leaf dry weight; number of root primordia and number of emerged roots per phytomer. The final sampling date occurred at silking.Results of the control experiment showed that the root biomass was lower in small pots but the number of nodal roots per phytomer was not affected.Results of the main experiment showed that the total plant biomass and the root/shoot ratio were lower at high plant density. The number of emerged roots was strongly reduced on the upper phytomer (P8). This reduction was mainly due to a lower percentage of root primordia which elongated. A proposed interpretation is that the number of roots which emerge on upper phytomers is controlled by carbohydrate availability.  相似文献   

3.
When hypoxia is not too severe, root aerobic metabolism can be partly supported by oxygen delivery via aerenchymateous tissues. In terms of supplying energy, this adaptation is of special importance in plants with a high metabolic demand, such as maize (Zea mays L.). The ability of maize to respond to hypoxia by morphological changes is well documented; however, little is known on the potential for oxidative metabolism in different types of maize roots. In our study, we assessed the root respiratory potential in seminal and adventious nodal roots of maize exposed to mild short-term hypoxia. Plants responded to the treatment with an increased portion of nodal roots per total root length, while there were no changes in the biomass of shoots and roots. Thick nodal roots had much higher respiratory potential (Electron Transport System Activity – ETS) than nodal roots of smaller diameter or seminal roots, irrespective of the aeration rate. The only change in ETS under oxygen deficiency was found for seminal roots where oxygen consumption increased by 25%. Increased root porosity was observed in all roots, the increase was higher in nodal roots. On the basis of ETS data and taking into account changes of root morphology, it can be concluded that large changes of root respiratory potential are not involved in the response of maize to hypoxia. Obviously, maize can cover the respiratory needs with shifts in the growth of different root types which inherently differ in their potential aerobic respiration.  相似文献   

4.
The direction of root growth can be studied by analyzing the trajectories of roots growing in soil. Both the primary seminal root and nodal roots of maize attain a preferred, or liminal, angle of growth that deviates from the vertical. These roots are said to be plagiogravitropic. Experiments using plants grown in soil-filled boxes revealed that the primary seminal root is truly plagiogravitropic. It shows both positive and negative gravitropism in response to gravity stimuli and tends to maintain its direction even after growing around obstacles. These are experimental results suggesting that plagiogravitropic growth is controlled by internal factors. The orientation of the grain affects the establishment of the liminal angle of the primary seminal root, and both the position of their node of origin and the root diameter are closely related to the plagiogravitropic behaviour of nodal roots. Several external factors are also known to influence plagiogravitropism. Low soil water content causes a decrease in the angle of growth and soil mechanical resistance suppresses the gravitropic curvature. Plagiogravitropic behaviour of both seminal and nodal roots plays a significant role in shaping the root system.  相似文献   

5.
The effect of Heterodera avenae infestation on early seminal and lateral root growth was examined in four oat genotypes differing in tolerance to H. avenae. Recently emerged seminal roots were inoculated with a range of H. avenae larval densities, then transferred a hydroponic system to remove the effect of later nematode penetration on root development. Intolerance to H. avenae was assessed in terms of impairment of seminal root extension resulting in fewer primary lateral roots emerging from the seminal root below the zone of juvenile penetration. Tolerant plants infested with H. avenae had longer lateral root systems than infested intolerant plants. The decline in lateral root growth below the penetration zone was partly offset by increased growth above. This did not contribute to tolerance, however, as there were no differences between cultivars for this feature. Nematodes induced earlier nodal root emergence in all cultivars. Nodal root development was most advanced on the most tolerant cultivar.  相似文献   

6.
7.
Two 2 m3 plots of soil were prepared to different water contents and each isolated from surrounding soil by impermeable plastic material. Nine sorghum varieties were germinated in the plots and allowed to grow without further watering. Time-to-wilt after emergence was measured, and several parameters relating to water flow of the seedling and nodal roots were determined. There was a good positive correlation between both seminal root and nodal root relative conductvity and time-to-wilt. In a second experiment, plants were germinated and grown in pots, and after two weeks of growth without further watering were inspected for survival in the unwilted state. The per cent survival was calculated. There was a negative correlation of seminal root relative conductivity with per cent survival, and a high negative correlation of the number of seminal roots with per cent survival. It is concluded that high relative conductivity indicates drought resistance if the plants are growing with less restricted roots as in open soil, while if the plants are grown in pots the reverse is the case. Experiments linking root conductivity with survival conducted in pots are poor predictors of performance in less restricted rooting conditions.  相似文献   

8.
Effect of Ophiobolus graminis infection on the growth of wheat and barley   总被引:1,自引:0,他引:1  
Glasshouse experiments are reported, in which the development of young wheat and barley plants was examined following inoculation with Ophiobolus graminis (Sacc.) Sacc. The dry weight, leaf area, tiller number and water content of the shoot were reduced by infection. Reductions were equally severe in wheat and barley. The seminal root system of both was severely attacked and its growth retarded. Inoculated plants, however, translocated a greater proportion of their total assimilates to the root system and produced more adventitious roots than healthy plants. As a result there was an increase in both the number and proportion of healthy roots on these plants following the initial infection of their root systems. This effect was more pronounced in barley than in wheat. It is suggested that this may in part account for the reported relative tolerance of barley to take-all attack under field conditions.  相似文献   

9.
The isolation and detailed characterisation of the maize mutant lrt1 , which is completely deficient in the initiation of lateral roots at the primary and seminal lateral roots and of the crown roots at the coleoptilar node is described. The monogenic and recessive mutant was isolated from a segregating EMS mutagenised population, maps to the short arm of chromosome 2, and acts independently of the nodal root deficient rtcs locus. Histological analysis revealed that the mutation acts at a very early stage of root initiation, as indicated by the absence of primordia formation in the affected roots. At later stages of plant development lateral and crown root initiations recover leading to fertile plants. If grown in the dark, the mutant does not form an elongated mesocotyl, although the photomorphogenic response appears to be normal in the mutant. Furthermore, the wild-type cannot be rescued from mutants by the application of auxin to germinating kernels. The gene impaired in lrt1 seems to be of great importance for the general mechanism of early post-embryonic root initiation, both from root and nodal tissues, since lateral and crown root initiation are both affected to the same extent and in the same transient time pattern.  相似文献   

10.
Nodal root angle in sorghum influences vertical and horizontal root distribution in the soil profile and is thus relevant to drought adaptation. In this study, we report for the first time on the mapping of four QTL for nodal root angle (qRA) in sorghum, in addition to three QTL for root dry weight, two for shoot dry weight, and three for plant leaf area. Phenotyping was done at the six leaf stage for a mapping population (n = 141) developed by crossing two inbred sorghum lines with contrasting root angle. Nodal root angle QTL explained 58.2% of the phenotypic variance and were validated across a range of diverse inbred lines. Three of the four nodal root angle QTL showed homology to previously identified root angle QTL in rice and maize, whereas all four QTL co-located with previously identified QTL for stay-green in sorghum. A putative association between nodal root angle QTL and grain yield was identified through single marker analysis on field testing data from a subset of the mapping population grown in hybrid combination with three different tester lines. Furthermore, a putative association between nodal root angle QTL and stay-green was identified using data sets from selected sorghum nested association mapping populations segregating for root angle. The identification of nodal root angle QTL presents new opportunities for improving drought adaptation mechanisms via molecular breeding to manipulate a trait for which selection has previously been very difficult.  相似文献   

11.

Key message

QTL were identified for root architectural traits in maize.

Abstract

Root architectural traits, including the number, length, orientation, and branching of the principal root classes, influence plant function by determining the spatial and temporal domains of soil exploration. To characterize phenotypic patterns and their genetic control, three recombinant inbred populations of maize were grown for 28 days in solid media in a greenhouse and evaluated for 21 root architectural traits, including length, number, diameter, and branching of seminal, primary and nodal roots, dry weight of embryonic and nodal systems, and diameter of the nodal root system. Significant phenotypic variation was observed for all traits. Strong correlations were observed among traits in the same root class, particularly for the length of the main root axis and the length of lateral roots. In a principal component analysis, relationships among traits differed slightly for the three families, though vectors grouped together for traits within a given root class, indicating opportunities for more efficient phenotyping. Allometric analysis showed that trajectories of growth for specific traits differ in the three populations. In total, 15 quantitative trait loci (QTL) were identified. QTL are reported for length in multiple root classes, diameter and number of seminal roots, and dry weight of the embryonic and nodal root systems. Phenotypic variation explained by individual QTL ranged from 0.44 % (number of seminal roots, NyH population) to 13.5 % (shoot dry weight, OhW population). Identification of QTL for root architectural traits may be useful for developing genotypes that are better suited to specific soil environments.  相似文献   

12.
Lateral roots play an important role in water and nutrient uptake largely by increasing the root surface area. In an effort to characterize lateral root development in maize (Zea mays), we have isolated from Mutator (Mu) transposon stocks and characterized two nonallelic monogenic recessive mutants: slr1 and slr2 (short lateral roots1 and 2), which display short lateral roots as a result of impaired root cell elongation. The defects in both mutants act specifically during early postembryonic root development, affecting only the lateral roots emerging from the embryonic primary and seminal roots but not from the postembryonic nodal roots. These mutations have no major influence on the aboveground performance of the affected plants. The double mutant slr1; slr2 displays a strikingly different phenotype than the single mutants. The defect in slr1; slr2 does not only influence lateral root specific cell elongation, but also leads to disarranged cellular patterns in the primary and seminal roots. However, the phase-specific nature of the single mutants is retained in the double mutant, indicating that the two loci cooperate in the wild type to maintain the lateral root specificity during a short time of early root development.  相似文献   

13.
The nitrate uptake capacity of surface roots of spring wheat(Triticum aestivum L. cv. Kulin) was investigated followingwetting of dry surface soil. Plants were grown to stem elongationstage with adequate watering at depth while the surface soilwas allowed to dry. Eight weeks after sowing, water or a 15N-nitratesolution was added to the surface soil to simulate rainfall.Root growth and nitrate uptake were measured up to 4 d afterwetting on plants with unconfined nodal root growth and on plantswith the majority of nodal roots confined within small vials.Prior to wetting, plants from both nodal treatments had seminalroots with collapsed cortices along the upper 10 cm and manyshort, viable lateral roots. Nodal roots, where present, wereonly a few cm long and unbranched. Only plants with unconfinednodal roots were able to take up nitrate within the 24 h beforeany new root growth. By 2 d after wetting there was significantgrowth of the seminal lateral roots, and rapid growth and branchingof nodal roots. From 2 d after wetting, plants with confinednodal roots also took up nitrate, presumably due to the growthof the seminal lateral roots. Hence it appears as though thenodal roots in the unconfined treatment could immediately takeup nitrate, but the seminal roots required new lateral rootgrowth to become active in nitrate uptake. The plants with confinednodal roots had a lower nitrate uptake than those with unconfinednodal roots 4 d after wetting, indicating that the seminal rootsystem was not able to compensate for lack of nodal roots. Insufficientnitrate was taken up after 4 d, by plants from either nodalroot treatment, to increase the shoot N concentration significantly. Key words: Triticum aestivum, nitrate uptake, drought, seminal roots, nodal roots  相似文献   

14.
The effects of diclofop-methyl on root growth of wild oat   总被引:1,自引:0,他引:1  
Diclofop-methyl severely reduced the growth of seminal roots of wild oat ( Avena fatua L.) when applied in hydroponics at 0.01 and 0.05 μ M . Lateral roots emerged closer to the seminal root apex than in the controls, but coronal root number and length were unaffected at 0.01 μ M . However, doses of 0.05 to 0.1 μ M induced more but shorter coronal roots to emerge than for controls. At 1 μ M the number and length of coronal roots were less than for controls. Root-applied diclofop-methyl at 1 μ M inhibited emerging second leaf growth to the same extent as a foliar dip in 1 μ M diclofop-methyl without causing chlorosis as foliar treatment does. Because of limited basipetal transport of foliarly-applied diclofop-methyl, shoot treatment was ineffective in inducing abnormal root morphogenesis of the seminal and lateral root systems, although it caused abnormalities of the coronal root system. Time course studies were initiated to examine the effect of root-applied diclofop-methyl at 0.05 μ M . Seminal root growth was inhibited (by diclofop-methyl) soon after treatment, while controls continued elongating. The distance between the seminal root apex and the first lateral primordia increased in the controls within one day after treatment, but decreased in the herbicide-treated roots. The distance between the seminal root apex and the first emerged lateral root was reduced by three days after treatment. The number of lateral primordia and emerged roots was unaffected three days after treatment. These dose-response and kinetic results suggested that diclofop-methyl caused a loss of apical dominance in the seminal root.  相似文献   

15.
Environmental stresses (soil compaction, drought, waterlogging) cause changes in plants’ root system structure, also affecting the growth of above-ground parts. The aim of this study was to estimate phenotypic variation among maize and triticale genotypes in root penetration ability through petrolatum-wax-layer (RPA). Also, the effect of shortage or excess of soil water on dry matter of shoots and roots and morphological changes in root system structure in sensitive and resistant maize and triticale genotypes grown in low or high soil compaction level was evaluated. To estimate RPA index, the petrolatum-wax-layer method (PWL) was used. The strength of three petrolatum-wax concentrations 60, 50 and 40 % was 0.52, 1.07 and 1.58 MPa, respectively. High coefficients of variation (CV) were observed in 0.52 and 1.07 MPa and for maize were 19.2 and 21.7 %, and for triticale, 12.5 and 18.3 %, respectively. The data indicate that the use of PWL technique is an effective screening method, and makes it possible to divide the genotypes into resistant and sensitive groups. The second part of this study investigated a multistress effect of soil compaction combined with drought or waterlogging on root and shoot growth and morphological changes in root system structure of maize and triticale genotypes differing in susceptibility to environmental stresses. Seedlings were grown for 4 weeks in root-boxes under conditions of low (LSC 1.1 g cm?3) or severe (SSC 1.6 g cm?3) soil compaction. Drought or waterlogging stresses were applied for 2 weeks from 14th to 28th day. In comparison to LSC treatment, in SSC treatment the decrease in dry matter of shoots and roots was greater for sensitive genotypes of maize and triticale (Ancora, CHD-147). Soil drought or waterlogging caused greater decrease of dry matter of shoots and roots in seedlings grown in SSC in comparison to LSC. The root penetration index (RPI) was estimated as a ratio of root dry matter in 15–40 cm root-box layer to total root dry matter. On the basis of RPI it was possible to group the genotypes according to their ability to distribute roots in soil profile. In comparison to LSC, SSC exerted a strong influence on the length of seminal and seminal adventitious roots, as well as the number and length of L- and S-type lateral roots developed on seminal and nodal roots. In both species the restriction effect of soil compaction on number and length of roots was more severe in sensitive (Ankora, CHD-147) than in resistant (Tina, CHD-247) genotypes. The restriction in roots propagation was greater in triticale than in maize. Exposure to drought or waterlogging in the case of genotypes grown in LSC and SSC treatments caused a decrease in number and length of particular components of root system structure. In both species the decrease of root number and length in plants grown under waterlogging was greater than under drought. The observed changes in root system were greater in sensitive (Ankora, CHD147) than in resistant (Tina, CHD-247) genotypes. Statistically significant correlations were found between RPA and RPI and also between these indexes and soil compaction, drought and waterlogging susceptibility indexes. This indicates that genotypes resistant to soil compaction were resistant to drought or waterlogging and also that genotypes resistant to drought were resistant to waterlogging.  相似文献   

16.
The genetic architecture of nodal root number in maize   总被引:2,自引:0,他引:2  
The maize nodal root system plays a crucial role in the development of the aboveground plant and determines the yield via the uptake of water and nutrients in the field. However, the genetic architecture of the maize nodal root system is not well understood, and it has become the ‘dark matter’ of maize genetics. Here, a large teosinte‐maize population was analyzed, and high‐resolution mapping revealed that 62 out of 133 quantitative trait loci (QTLs), accounting for approximately half of the total genetic variation in nodal root number, were derived from QTLs for flowering time, which was further validated through a transgenic analysis and a genome‐wide association study. However, only 16% of the total genetic variation in nodal root number was derived from QTLs for plant height. These results gave a hint that flowering time played a key role in shaping nodal root number via indirect selection during maize domestication. Our results also supported that more aerial nodal roots and fewer crown roots might be favored in temperate maize, and this root architecture might efficiently improve root‐lodging resistance and the ability to take up deep water and nitrogen under dense planting.  相似文献   

17.
Summary Microbial colonization of seminal roots of seedlings and of nodal roots of tillering plants was studied on spring wheat ‘Kaspar’ cultivated in growth, chambers. Methods were developed to microbially condition the soil before seeding and to regulate soil humidity. Addition of inorganic nutrients (NPK) to the soil increased the number of rhizoplane bacteria and actinomycetes, but did not effect the number of fungi on seminal and nodal roots. Urea leaf treatments stimulated bacteria and actinomycetes 7 and 9 days after treatment. Fourteen days after urea leaf treatment, however, bacterial numbers were mostly reduced, especially on seminal roots, while numbers of actinomycetes generally equalled the control. Root types and soil fertility did not obviously interact with the effect of urea leaf treatment on rhizoplane bacteria and actinomycetes. The only effect of urea on total numbers of fungi, was a reduction of their numbers on seminal roots 9 days after treatment at both NPK-levels.  相似文献   

18.
Wahbi  A.; Gregory  P. J. 《Annals of botany》1995,75(5):533-539
Barley (Hordeum vulgare L.) genotypes from countries with aMediterranean climate grown in temperature-controlled glasshousein nutrient solution to determine whether the co-ordinationof root branching and growth found by other workers appliedto a wider of up to 14 genotypes. There was substantial variationin the number of seminal axes produced by the genotypes, rangingfrom about seven for Hoshimasari and Swanneck to about fourfor Gerbel 'B'. The number of nodal axes was linearly relatedto the number of leaves and typically between one and two mainstemleaves were required before nodal axes appeared. There weresmall genotypic differences in the number of axes produced perleaf with values ranging from 1·5 to 2·3. Theproduction and growth of lateral roots were coordinated so thatthe mean length of laterals generally increased with time. Landraces(Arabic abiad and Arabic aswad) produced more lateral rootswith a faster rate extension compared with other genotypes.The length and number of primary and secondary lateral rootswere related linearly, but no genotypic differences in thisrelation were evident. Length of primary lateral roots increasedmore rapidly than that of secondary lateral roots throughoutthe three to five leaf stage. The ratio of root weight to totalplant weight decreased with time but there were only small differenceswithin this range of genotypes.Copyright 1995, 1999 AcademicPress Barley, seminal axes, nodal axes, primary lateral roots, relative extension rates, relative multiplication rates  相似文献   

19.
J. B. Reid 《Plant and Soil》1981,62(2):319-322
Summary Root hair production by young plants of lucerne, maize and perennial ryegrass grown in a sandy loam was assessed by examining roots growing at a soil-glass interface. Results are given for the percentage frequency distribution of root hair lengths and the numbers of root hairs produced per mm root. The mean lengths of root hairs observed on lucerne, maize and perennial ryegrass roots were 0.35, 0.90 and 1.12 mm respectively. Lucerne produced an average of 105 root hairs per mm of root, whereas maize produced 161 and perennial ryegrass produced 88. The total length of root hairs per mm length of root was estimated to be 37, 146 and 99 mm for lucerne, maize and perennial ryegrass resp. Letcombe Laboratory  相似文献   

20.
The root system of maize consists of the primary root and a variable number of lateral seminal-, crown- and brace roots. Except for the primary root and some minor roots forming at the mesocotyl, all other roots grow out of nodal regions, namely, the embryogenic scutellar node and the underground—as well as the lower above-ground stem nodes. Besides their role in water and nutrient uptake, some of these roots (crown- and brace roots) are essential for the lodging resistance of the plants. This property of the crown roots has now been successfully used for screening a segregating F2 population of a cross between a flint inbred line and an En transposon line. Two allelic root-deficient mutants have been isolated and have been designated rtcs-1 and rtcs-2 for their complete lack of formation of c rown- and lateral s eminal roots. They survive by the ability of the primary root to support the growth of the developing plant. The monogenic and recessive mutants appear to be affected in an early root-forming function since no primordia are formed either in the case of embryo-borne lateral seminal or stem-derived crown roots. The Rtcs locus could be mapped to the short arm of chromosome 1 with the help of a co-segregating RAPD marker. The effect of the mutation seems to be highly specific since no pleiotropic effects on other parts of the plants have been observed. The formation of adventitious roots can, however, still be induced in the mesocotyl region of the mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号