共查询到20条相似文献,搜索用时 15 毫秒
1.
《The International journal of biochemistry》1993,25(6):865-868
- 1.1. Putrescine and spermidine content increased in hepatocytes during culture. In the presence of 10 μM Berenil, putrescine content was further increased, while the increase of spermidine was prevented.
- 2.2. Ornithine decarboxylase activity was markedly reduced, and to a lesser extent also S-adenosyl-methionine decarboxylase activity.
- 3.3. Berenil appears to promote an increase in the transformation of spermidine into putrescine, and to inhibit the polyamine efflux.
2.
Choline metabolism and phosphatidylcholine biosynthesis in cultured rat hepatocytes. 总被引:2,自引:3,他引:2 下载免费PDF全文
1. Adult rat hepatocytes were isolated by collagenase perfusion and were maintained in monolayer culture for 24h. 2. Choline metabolism and phosphatidylcholine biosynthesis were studied in these cells by performing pulse-chase studies at physiological concentrations (1-40 microM) of (Me-3H)-labelled or unlabelled choline in the culture medium. 3. During the 15 min pulse incubation, choline entering the cells was rapidly phosphorylated to phosphocholine or oxidized to betaine. Low concentrations of choline in the medium decreased the relative amount of choline oxidized. 4. During the 3 h chase period, the radioactivity in the phosphocholine pool was transferred to phosphatidylcholine. Very little radioactivity was associated with CDP-choline. These results provide good evidence that the rate-limiting step for phosphatidylcholine biosynthesis in these cultured hepatocytes is the conversion of phosphocholine into CDP-choline. Similar results were obtained for all concentrations of choline in the culture medium. 5. Cellular concentrations of phosphocholine were unaffected by the concentration of choline (1-40 microM) in the medium. 6. The majority of the label associated with betaine was secreted into the culture medium during the chase incubation. 7. From the pulse-chase studies, and the cellular phosphocholine concentrations, it was possible to estimate the rate of phosphatidylcholine biosynthesis (2.2, 2.8, 3.1 and 3.7 nmol/min per g wet weight of cells cultured in 1, 5, 10 and 40 microM-choline respectively for up to 4.25 h). 相似文献
3.
C Denis D Mayer V Trocheris V Viallard H Paris J C Murat 《The International journal of biochemistry》1985,17(2):247-251
Some aspects of carbohydrate metabolism were investigated in three non-malignant, glycogen storing, cell lines derived from a primary culture of rat hepatocytes, and in the Morris hepatoma 3924 cells. The three cell lines show biochemical alterations which are, to a large extent, similar to those found in the hepatoma cells: increased activity of glycolytic enzymes and decreased activity of gluconeogenetic enzymes. An increase of glucose-6-phosphate dehydrogenase activity is also found. The three cell lines, as the Morris hepatoma cells, actively convert glucose into lactate under the in vitro conditions of culture. Fructose is not taken up as quickly as glucose and galactose is not metabolized. As compared with normal hepatocytes, the three cell lines have altered metabolism and growth behaviour. They largely resemble the preneoplastic cells appearing in rat liver at the early stages of experimental carcinogenesis. 相似文献
4.
Summary Microcalorimetric experiments on growth and maintenance metabolism ofSaccharomyces strains ranging from haploid to hexaploid are described. During growth, the mean dry weight, the mean volume and the maximum heat flux of the cells are nearly linear functions of ploidy. These parameters are correlated with the cell concentration in such a manner that the weight-specific heat production and the grown biomass are independent of ploidy. For the metabolism of maintenance, two levels of the specific heat flux are found, the lower of which is occupied by the haploids, diploids and triploids. The higher polyploids exhibit the higher level. 相似文献
5.
Effect of cell density on metabolism in isolated rat hepatocytes 总被引:2,自引:0,他引:2
Freshly isolated rat hepatocytes show many changes in metabolic activities as a function of cell density in the incubation flask. Fatty acid synthesis, cholesterol synthesis, general protein synthesis, and rates of accumulation of pyruvate, lactate, citrate, acetyl-CoA, acetoacetate and beta-hydroxybutyrate decrease as the cell density increases between 1 mg/ml and 60 mg/ml. Glucose release only decreases between 1-5 mg/ml and the concentration of ATP does not vary at any density. There is a small increase in the lactate/pyruvate ratio and a dramatic decrease in the beta-hydroxybutyrate/acetoacetate ratio with increasing cell concentration. When cells at 8 or 28 mg/ml were incubated with added lactate and pyruvate, or alanine, a two fold increase in fatty acid synthesis and 50% decrease in cholesterol synthesis were observed as compared to rates with endogenous substrate. With added glucose the synthetic rates were similar to those obtained with endogenous substrate. However, regardless of the type of substrate used, the less dense cells gave rates up to three times greater than that of the more dense cells. When conditioned medium isolated after incubation of cells at high density was added to the less dense cells, a decrease in the rates of fatty acid synthesis and cholesterol synthesis was observed in the less dense cells; however, when medium from the less dense cells after incubation for the same period was added to the more dense cells, there was no significant change in fatty acid or cholesterol synthesis. These results suggest that a factor may be released into the medium of incubating hepatocytes that progressively inhibits certain metabolic processes as the cell density increases. 相似文献
6.
Lysophosphatidylcholine metabolism and lipoprotein secretion by cultured rat hepatocytes deficient in choline. 总被引:1,自引:1,他引:0
A protein kinase activity was identified in pig brain that co-purified with microtubules through repeated cycles of temperature-dependent assembly and disassembly. The microtubule-associated protein kinase (MTAK) phosphorylated histone H1; this activity was not stimulated by cyclic nucleotides. Ca2+ plus calmodulin, phospholipids or polyamines. MTAK did not phosphorylate synthetic peptides which are substrates for cyclic AMP-dependent protein kinase, cyclic GMP-dependent protein kinase. Ca2+/calmodulin-dependent protein kinase II, protein kinase C or casein kinase II. MTAK activity was inhibited by trifluoperazine [IC50 (median inhibitory concn.) = 600 microM] in a Ca2+-independent fashion. Ca2+ alone was inhibitory [IC50 = 4 mM). MTAK was not inhibited by heparin, a potent inhibitor of casein kinase II, nor a synthetic peptide inhibitor of cyclic AMP-dependent protein kinase. MTAK demonstrated a broad pH maximum (7.5-8.5) and an apparent Km for ATP of 45 microM. Mg2+ was required for enzyme activity and could not be replaced by Mn2+. MTAK phosphorylated serine and threonine residues on histone H1. MTAK is a unique cofactor-independent protein kinase that binds to microtubule structures. 相似文献
7.
The cellular location of cellCAM 105 was studied by indirect immunofluorescence microscopy of primary rat hepatocytes grown in monolayer culture. Staining corresponding to cellCAM 105 was seen both in cell-cell contact areas and on the upper surfaces of the cells. In the cell-cell contact areas the antigen was not accessible to the antibodies unless the cells were either permeabilized with detergent or incubated in a calcium-free medium. Removal of calcium from the medium caused the cells to separate from each other. Within a few minutes wide intercellular clefts were formed, and upon further incubation the cells became stellate-shaped and finally remained in contact with each other only via thin cellular processes. These processes were cellCAM 105-positive and at sites where they attached to the bodies of the contracted cells a granular fluorescence pattern appeared. After 24-48 h of culture, intercellular channels resembling bile canaliculi were sometimes formed in the hepatocyte monolayers. The membranes of these intercellular channels were stained for cellCAM 105. After culture for several days the hepatocytes lost their polygonal shape and gradually acquired a more fibroblast-like morphology. This morphological change was accompanied by a decrease in cellCAM 105-specific fluorescence, both in the cell-cell contact areas and on the free cell surfaces. 相似文献
8.
The short-term controls of glycogen synthase [EC 2.4.1.11] and glycogen phosphorylase [EC 2.4.1.1] by major regulators, such as insulin, glucose, catecholamine, and glucagon, were compared in a simple, yet organized experimental system, i.e., adult rat hepatocytes in primary culture. Glycogen synthase was activated by glucose markedly and dose-dependently (5-40 mM), but insulin alone (1 X 10(-8) M) activated this enzyme only two-fold. Therefore, activation of the enzyme by the two regulators together was mostly due to activation by glucose. Glucagon at a concentration of 5 X 10(-10) M suppressed this activation almost completely. Glucagon at this concentration activated phosphorylase considerably and this activation was slightly inhibited by insulin. Phenylephrine also activated phosphorylase, and this activation was inhibited by phenoxybenzamine or prazosin, suggesting that activation by catecholamine is through the alpha 1-adrenergic receptor. Similarly a high concentration of glucose diminished the effects of glucagon and phenylephrine. These results suggest that in rat liver, glycogen metabolism is controlled mainly by glucagon, catecholamine, and glucose; the former two activate phosphorylase and inactivate synthase, while glucose activates synthase strongly and inactivates phosphorylase partially. Insulin plays a minor role in both reactions. Thus, the liver is primarily an organ for glucose production, which is regulated by hormones, not for glycogen storage, which is increased only by a high glucose concentration in the portal blood. 相似文献
9.
Monolayers of rat hepatocytes metabolize 0.25 m M 2-acetylaminofluorene (AAF) to various ether-extractable, water-soluble as well as covalently bound products. The major ether-extractable metabolite formed is 2-aminofuorene (AF), followed by 7-OH-AAF and 9-OH-AAF. Pretreatment of rats with the inducer Aroclor 1254 (PCB) increased the metabolism of AAF and caused an increased DNA repair synthesis in hepatocytes exposed to AAF or AF. With N-OH-AAF, a decreased genotoxic response in PCB-treated cells compared to control cells was seen. The addition of harman and norharman decreased the metabolism of AAF to ether-extractable metabolites, water-soluble metabolites and metabolites covalently bound to macromolecules. In contrast, the DNA-repair synthesis caused by the same concentrations of AAF was increased by harman. One explanation for this apparent discrepancy could be that the aromatic amines changed the metabolism of harman and norharman in such a way that these compounds were converted into genotoxic metabolites.Abbreviations AAF
2-acetylaminofluorene
- AF
2-aminofluorene
- DMSO
dimethylsulfoxide
- HPLC
high performance liquid chromatography
- N-OH-AAF
N-ydroxy-2-acetylaminofluorene
- PCB
polychlorinated biphenyls, Aroclor 1254
- TCDD
2,3,7,8-tetrachlorodibenzo-p-dioxin
- TdR
thymidine
- Trp-P-1
3-amino-1,4dimethyl-5H-pyrido(4,3b)indole
- Trp-P-2
3-amino-l-methyl-5H-pyrido(4,3b)indole
- UDS
unscheduled DNA synthesis 相似文献
10.
Sialyltransferase activities in cultured rat hepatocytes 总被引:1,自引:0,他引:1
Previous studies on the age and sex dependency of the ganglioside patterns in rat liver in vivo and the concomitant determination of the activities of some enzymes involved in these pathways revealed the prominent role of the sialylation of GM3 to GD3 in determining the flow to the mono (a)- and polysialo (b)-series, respectively. Here, the influence of hormones on the activities of GM3 and GD3 synthases in isolated hepatocytes was studied. The combination of several factors (insulin, glucagon, epidermal growth factor, glucocorticoids) was found to be necessary for maintaining in vivo activity levels of GD3- but not of GM3-synthase. 相似文献
11.
Isolated rat hepatocytes were cultured in a modified HI-WO/BA medium for 16 h. In the following 24 h oleate or oleate plus ethanol was added to the medium. After this period the medium was changed again and the cultures were further incubated with [1-14C]oleate alone or with [1-14C]oleate plus ethanol for 6 h. This allowed a comparison of effects of short-term (6 h) and long-term (24 + 6 h) exposure to ethanol on fatty acid metabolism. The increased intracellular accumulation of triacylglycerol in the presence of ethanol was quantitatively accounted for by increased fatty acid uptake, by decreased fatty acid oxidation in the tricarboxylic acid cycle and by decreased VLDL (very-low-density lipoprotein)-triacylglycerol secretion. Ketone-body production was not affected. After short-term exposure the rate of accumulation of triacylglycerol was increased by 50%. This increase was accounted for by increased fatty acid uptake (44%), decreased tricarboxylic acid-cycle activity (49%) and decreased VLDL-triacylglycerol secretion (7%). After long-term exposure, the rate of accumulation of triacylglycerol was increased by 74%. This increase was accounted for by increased fatty acid uptake (34%), decreased tricarboxylic acid-cycle activity (34%) and decreased VLDL-triacylglycerol secretion (32%). The larger increase in accumulation of triacylglycerol after long-term exposure to ethanol was entirely accounted for by increased inhibition of secretion of VLDL-triacylglycerol. The biochemical mechanisms underlying the observations are discussed. 相似文献
12.
We examined the cytotoxicity of troglitazone toward cultured rat hepatocytes. The drug concentration- and time-dependently decreased cell viability and increased lactate dehydrogenase leakage from the cells. Troglitazone-induced cell death was characterized by "DNA ladders", condensation of nuclei, and a positive reaction to in situ nick-end labeling. The results indicate that troglitazone can cause apoptotic cell death in cultured rat hepatocytes. 相似文献
13.
14.
Ma J Qi WT Yang LN Yu WT Xie YB Wang W Ma XJ Xu F Sun LX 《Journal of microbiological methods》2007,68(1):172-177
The rate of heat output is one of the suitable measurements of metabolic activity of the organism or its parts, down to the cellular or even the sub-cellular levels. In this paper, microcalorimetry was first applied to study the metabolic activity of microbial in both alginate-polylysine-alginate and alginate-chitosan-alginate microencapsulated cultures as well as in free non-encapsulated culture. The organisms used for the measurements were Escherichia coli and Saccharomyces cerevisiae. As a result of this work, it was found that, despite E. coli cell in free non-encapsulated culture has the highest metabolic rate due to the highest value of heat output, the proliferation of the cells terminates quickly with a lowest biomass formed. And we found also an obviously longer stationary phase in microencapsulated culture. As far as S. cerevisiae was concerned, it was found that there was also the highest value of heat output in free non-encapsulated culture, but the cell density was lower than that in microencapsulated culture. On account of the microcalorimetric and metabolic measurements, it can be concluded that more substrate can be used to convert to biomass in microencapsulated culture which means a higher biomass yield existed. 相似文献
15.
Lipid synthesis in permeabilized cultured rat hepatocytes 总被引:1,自引:0,他引:1
Hepatic lipid synthesis was verified and studied in lysolecithin-permeabilized cultured rat hepatocytes and compared to that of intact liver cells. Triacylglycerol synthesis in permeabilized cells incubated in the presence of glycerol 3-phosphate and long chain fatty acids approached that of intact hepatocytes. Similarly, phosphatidylcholine synthesis in permeable cells incubated in the presence of exogenous CDP-choline was similar to that of intact hepatocytes and at the expense of microsomal neutral lipid synthesis. Phosphatidic acid accumulation in lysolecithin-permeabilized liver cells was remarkably increased as compared to that of intact cells, and its synthesis was mostly accounted for by the activity of mitochondrial glycerol-3-phosphate acyltransferase. Mitochondrial-generated phosphatidate was found to migrate to the endoplasmic reticulum, thus establishing a novel lipid esterification pathway which begins in mitochondrial glycerol 3-phosphate acylation and results in microsomal triacylglycerol and phospholipid synthesis. The free access of permeabilized liver cells to substrates and modulators of lipid synthesis, while maintaining an overall synthetic pattern similar to that of intact hepatocytes, makes them a system of choice for studying hepatic lipid synthesis in general and the microsomal/mitochondrial distribution of fluxes in particular. 相似文献
16.
Oxygen uptake rates in cultured rat hepatocytes 总被引:5,自引:0,他引:5
One potential treatment of acute liver failure involves the use of an extracorporeal device composed of functional hepatocytes. A major issue in the design of such a large-scale device is providing the hepatocytes with a sufficient supply of oxygen and other nutrients. In this study, we have designed and characterized a simple perfusion system hepatocytes using this system. The OUR of hepatocytes was determined during the first day after seeding on a single collagen gel and during the long-term stable culture after the addition of a top layer of collagen. The OUR increased to 20.7 +/- 0.57 pmol/sec/mug DNA during the first 13 hours of culture on a single collagen gel, while during the next 11 hours, the OUR declined to 10.6 +/- 1.5 pmol/sec/mug DNA. In parallel with the increase in OUR during the first 10 hours, we observed significant cell spreading, suggesting that the oxygen supply to the cells may be critical for the spreading and adaptation of the anchorage-dependent hepatocytes following isolation. Addition of a top layer of collagen to hepatocyte cultures for 24 hours of culture on a single collagen layer resulted in a stable OUR for 15 days. These results indicate that OUR of hepatocytes in culture may vary depending on the phase of culture (i.e., early vs. late) and on the extracellular environment. (c) 1992 John Wiley & Sons, Inc. 相似文献
17.
1. The total calcium concentration in rat hepatocytes was 7.9 microgram-atoms/g dry wt.; 77% of this was mitochondrial. Approx. 20% of cell calcium exchanged with 45Ca within 2 min. Thereafter incorporation proceeded at a low rate to reach 28% of total calcium after 60 min. Incorporation into mitochondria showed a similar time course and accounted for 20% of mitochondrial total calcium after 60 min. 2. The alpha-adrenergic agonists phenylephrine and adrenaline + propranolol stimulated incorporation of 45Ca into hepatocytes. Phenylephrine was shown to increase total calcium in hepatocytes. Phenylephrine inhibited efflux fo 45Ca from hepatocytes perifused with calcium-free medium. 3. Glucagon, dibutryl cyclic AMP and beta-adrenergic agonists adrenaline and 3-isobutyl-1-methyl-xanthine stimulated calcium efflux from hepatocytes perifused with calcium-free medium. The effect of glucagon was blocked by insulin. Insulin itself had no effect on calcium efflux and it did not affect the response to dibutyryl cyclic AMP. 4. Incorporation of 45Ca into mitochondria in hepatocytes was stimulated by phenylephrine and inhibited by glucagon and by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The effect of glucagon was blocked by insulin. 5. Ionophore A23187 stimulated hepatocyte uptake of 45Ca, uptake of 45Ca into mitochondria in hepatocytes and efflux of 45Ca into a calcium-free medium. 相似文献
18.
Phase I and II metabolism and carbohydrate metabolism in cultured cryopreserved porcine hepatocytes 总被引:1,自引:0,他引:1
Primary porcine hepatocytes were cryopreserved using freezing boxes or a programmable freezer (PF). Upon thawing and culturing in 12-well plates cryopreserved hepatocytes were compared with their fresh controls on days 1 and 2 after plating. Cryopreserved hepatocytes attached approximately as well as fresh hepatocytes and useful cultures were obtained. In cryopreserved hepatocytes, coumarin 7-hydroxylation, 6beta-testosterone hydroxylation and p-nitrophenol glucuronidation were reduced to about 10-40, 35 and 40%, respectively, compared to their fresh counterparts. Glycogen synthesis in cryopreserved hepatocytes was reduced to about 30% on day 1 of culture and about 47% on day 2 of culture compared to the synthesis in fresh hepatocytes. Both fresh and cryopreserved hepatocytes increased the synthesis by twofold in response to stimulation with insulin. Reduced basal levels of glycogen and of glycogen synthesis could be explained by an increased energy demand in cryopreserved hepatocytes needing to repair damages caused by cryopreservation. Glycogenolysis was reduced to about 50% in cryopreserved hepatocytes and gluconeogenesis to about 40% of the glucose production in fresh hepatocytes. In both fresh and cryopreserved hepatocytes the glucose production from glycogenolysis and gluconeogenesis, respectively, was increased fourfold in response to stimulation with glucagon. Overall, the hepatocytes cryopreserved in boxes had a tendency to perform better than hepatocytes cryopreserved in a programmable freezer. In conclusion, the cryopreserved hepatocytes were metabolic active; however, to a lower extent than the fresh hepatocytes, although, the cryopreserved hepatocytes responded as well as the fresh hepatocytes to insulin and glucagon. 相似文献
19.
Platelet-activating factor stimulates metabolism of phosphoinositides via phospholipase A2 in primary cultured rat hepatocytes 总被引:1,自引:0,他引:1
Addition of platelet-activating factor (PAF) to cells doubly labeled with [14C]glycerol plus [3H]arachidonic acid resulted in a transient decrease of [14C]glycerol-labeled phosphatidylinositol (PI) and a transient increase of [14C]glycerol-labeled lysophosphatidylinositol (LPI). [3H]Arachidonate-labeled PI, on the other hand, decreased in a time-dependent manner. The radioactivity in phosphatidylethanolamine, phosphatidylcholine, sphingomyelin, and phosphatidylserine did not change significantly. The 3H/14C ratio decreased in PI in a time-dependent manner, suggesting the involvement of a phospholipase A2 activity. Although PAF also induced a gradual increase of diacylglycerol (DG), the increase of [14C]glycerol-labeled DG paralleled the loss of triacyl [14C]glycerol and the 3H/14C ratio of DG was 16 times smaller than that of PI. Thus, DG seemed not to be derived from PI. In myo- [3H]inositol-prelabeled cells, PAF induced a transient decrease of [3H]phosphatidylinositol-4,5-bis-phosphate (TPI) and [3H]phosphatidylinositol-4-phosphate (DPI) at 1 min. PAF stimulation of cultured hepatocytes prelabeled with 32Pi induced a transient decrease of [32P]polyphosphoinositides at 20 sec to 1 min. [32P]LPI appeared within 10 sec after stimulation and paralleled the loss of [32P]PI. [3H]Inositol triphosphate, [3H]inositol diphosphate, and [3H]inositol phosphate, which increased in a time-dependent manner upon stimulation with adrenaline, did not accumulate with the stimulation due to PAF. These observations indicate that PAF causes degradation of inositol phospholipids via phospholipase A2 and induces a subsequent resynthesis of these phospholipids. 相似文献
20.
N Loch R Tauber A Becker S Hartel-Schenk W Reutter 《European journal of biochemistry》1992,210(1):161-168
N-Glycosylation, biosynthesis and degradation of dipeptidylpeptidase IV (EC 3.4.14.5) (DPP IV) were comparatively studied in primary cultured rat hepatocytes and Morris hepatoma 7777 cells (MH 7777 cells). DPP IV had a molecular mass of 105 kDa in rat hepatocytes and of 103 kDa in MH 7777 cells as assessed by SDS/PAGE under reducing conditions. This difference in molecular mass was caused by differences in covalently attached N-glycans. DPP IV from hepatoma cells contained a higher proportion of N-glycans of the oligomannosidic or hybrid type and therefore migrated at a slightly lower molecular mass. In both cell types DPP IV was initially synthesized as a 97-kDa precursor which was completely susceptible to digestion with endo-beta-N-acetylglucosaminidase H converting the molecular mass to 84 kDa. The precursor was processed to the mature forms of DPP IV, glycosylated with N-glycans mainly of the complex type with a half-life of 20-25 min. The transit of newly synthesized DPP IV to the cell surface displayed identical or very similar kinetics in both cell types with the major portion of DPP IV appearing at the cell surface after 60 min. DPP IV molecules were very slowly degraded in hepatocytes as well as in hepatoma cells with half-lives of approximately 45 h. Inhibition of oligosaccharide processing with 1-deoxymannojirimycin led to the formation of DPP IV molecules containing N-glycans of the oligomannosidic type. This glycosylation variant was degraded with the same half-life as complex-type glycosylated DPP IV. By contrast, inhibition of N-glycosylation with tunicamycin resulted into rapid degradation of non-N-glycosylated DPP IV molecules in both cell types. Non-N-glycosylated DPP IV could not be detected at the cell surface indicating an intracellular proteolytic process soon after biosynthesis. 相似文献