首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
S Sangiah  D F Caldwell 《Life sciences》1988,42(15):1425-1429
Administration of a high dose of glucose (2.5 g/kg, i.p.) that is known to produce severe hyperglycemia in euglycemic rats suppressed rapid eye movement (REM) sleep time significantly during the first three hours of 8 hr total electroencephalogram (EEG) recording period. Co-administration of glucose (2.5 g/kg, i.p.) and a non-convulsive dose of insulin (1.0 I.U./kg, i.p.) produced a significant reduction in REM sleep time during 1st through 5th hour and an increase in slow-wave sleep (NREM) time in the 3rd and 4th hour of 8 hr total EEG recording period. However, awake, NREM and REM sleep time in the 8 hr total EEG recording period were unaffected by either glucose alone or glucose plus insulin treatments. These results strongly suggest that the insulin's effects on the sleep-awake cycle i.e. reduction in REM and a slight increase in NREM sleep times of rats is not due to indirect effects of insulin on the central nervous system via hypoglycemia as reported by us previously, but could possibly be due to its direct effects on brain chemistry of neurotransmitters such as serotonin, catecholamines and acetylcholine which are believed to modulate the sleep-awake cycle pattern in rats.  相似文献   

2.
Rats with implanted electrodes for recording of EEG and EMG underwent 12-h recordings during the light period starting after i.p. injections of clonidine (0.1 mg/kg) alone or in combination with different alpha-adrenoceptor antagonists. Clonidine increased the proportion of time the rats spent in the drowsy stage of wakefulness which corresponds to behavioural sedation and inhibited both deep slow wave sleep and REM sleep for 6-9 hours. The amount of active wakefulness or light slow wave sleep were unaffected by clonidine. Yohimbine (1 mg/kg) reversed the increase in drowsy wakefulness by clonidine and increased active wakefulness without affecting sleep. Phentolamine (10 mg/kg) was ineffective against clonidine. Phenoxybenzamine (20 mg/kg) accentuated the sedative effect and prolonged the REM sleep inhibiting effect of clonidine. Prazosin (3 mg/kg) prolonged both the drowsy stage inducing and deep slow wave plus REM sleep inhibiting effects of clonidine. These electrophysiological results support the view that the sedative effect of clonidine in the rat is mediated by alpha-2 adrenoceptors, whereas in this species other mechanisms, possibly another population of alpha-2 receptors, may be involved in the clonidine-induced suppression of deep slow wave sleep and REM sleep.  相似文献   

3.
Young adult Louis rats were implanted for chronic sleep recording to test the effect of diethyldithiocarbamate (DDC) on sleep. Recordings of EEG and EMG were done continuously for 12 h during the 12 consecutive days. There were 2 days of baseline recording, 3 days of recording with a single daily injection of placebo, 3 days of recording with a single daily injection of DDC (500 mg/kg i.p.), and 3 days of DDC withdrawal recording with placebo injection. Placebo injections did not change the proportion of time spent in different behavioural states. With daily injection of DDC there was an increase in wakefulness, no change in slow-wave sleep and elimination or drastic reduction in paradoxical sleep (PS). There was no PS rebound during the DDC withdrawal days. These results suggest that the reduction of PS produced by DDC and the absence of PS rebound may be due to a lowering in norepinephrine in the brain. In other experiments rats were injected with DDC (500 mg/kg i.p.) daily for 3 days and whole brains were analysed chemically. Norepinephrine was significantly decreased, while 5-hydroxytryptamine, 5-hydroxyindolacetic acid, dopamine and homovanilic acid were unchanged. Seizure activity appeared during relaxed wakefulness in all rats treated with DDC. Taken together it seems that lowering of brain NE is responsible for the appearance of seizure activity and also, for PS reduction. PS reduction might, per se, produce seizure activity.  相似文献   

4.
Cutaneous vasoconstriction in the rabbit's ear during REM sleep in a warm environment is not abolished by alpha-receptor blockade (phenoxybenzamine 6 mg/kg i.v.), thus confirming that the vasomotor response during REM sleep is independent of the activity of circulating catecholamines. The decrease in cardiac output during REM sleep may be responsible for the slight fall in transmural pressure which underlies cutaneous ear vasoconstriction during REM sleep.  相似文献   

5.
Rats were deprived of sleep by placing them for 36 hours in a slowly moving drum. After this procedure, during recovery sleep, the latency of onset of the first rhombencephalic - paradoxical sleep period decreased and the proportion of telencephalic/rhombencephalic - slow wave sleep reversed (during the first hour of recovery sleep). Repeated administration during the deprivation period of physostigmine (0,5 mg/kg i. p. in 30 min intervals 20-30 times) inducing in waking animals in EEG pattern close to that of rhombencephalic sleep, or atropine (1 mg/kg i. p. in 60 min intervals 10-15 times) evoking an activity resembling telencephalic sleep, did not change the above measures of recovery sleep. Pharmacologically induced sleep-like patterns did not substitute for the sleep the rats were deprived off.  相似文献   

6.
In rats with the persistent alcohol motivation the electrophysiological sleep pattern was studied during ethanol intake, after 24 and 48 hours of alcohol withdrawal. It was established that during the voluntary ethanol intake rats may be divided into two groups: with comparative deficit (1st group) and comparative abundance (2nd group) of REM sleep. Alcohol withdrawal caused differential alterations of sleep-wakefulness cycle: in the 1st group of rats REM sleep was more suppressed while in the 2nd group--more increased in comparison to those during ethanol intake. In all animals the SWS depression, increase of awakenings, the aggravation of falling asleep and decrease of sleep depth were observed. DSIP (0.1 mg/kg, i.p. 1 hour before sleep recording) was found to regulate sleep disorders caused by ethanol withdrawal. It makes the neuropeptide possible to be recommended for ethanol withdrawal syndrome treatment in clinical practice.  相似文献   

7.
In humans, depression is associated with altered rapid eye movement (REM) sleep. However, the exact nature of the relationship between depressive behaviors and sleep abnormalities is debated. In this study, bilateral olfactory bulbectomy (OBX) was carried out to create a model of depression in rats. The sleep-wake profiles were assayed using a cutting-edge sleep bioassay system, and depressive behaviors were evaluated by open field and forced swimming tests. The monoamine content and monoamine metabolite levels in the brain were determined by a HPLC-electrochemical detection system. OBX rats exhibited a significant increase in REM sleep, especially between 15:00 and 18:00 hours during the light period. Acute treatment with fluoxetine (10 mg/kg, i.p.) immediately abolished the OBX-induced increase in REM sleep, but hyperactivity in the open field test and the time spent immobile in the forced swimming test remained unchanged. Neurochemistry studies revealed that acute administration of fluoxetine increased serotonin (5-HT) levels in the hippocampus, thalamus, and midbrain and decreased levels of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA). The ratio of 5-HIAA to 5-HT decreased in almost all regions of the brain. These results indicate that acute administration of fluoxetine can reduce the increase in REM sleep but does not change the depressive behaviors in OBX rats, suggesting that there was no causality between REM sleep abnormalities and depressive behaviors in OBX rats.  相似文献   

8.
17beta-estradiol has been reported to possess antidepressant-like activity in animal models of depression, although the mechanism for its effect is not well understood. The present study is an effort in this direction to explore the mechanism of the antidepressant-like effect of 17beta-estradiol in a mouse model(s) of behavioral depression (despair behavior). Despair behavior, expressed as helplessness to escape from a situation (immobility period), as in a forced swim test in which the animals are forced to swim for a total of 6 min, was recorded. The antiimmobility effects (antidepressant-like) of 17beta-estradiol were compared with those of standard drugs like venlafaxine (16 mg/kg, i.p.). 17beta-estradiol produced a U-shaped effect in decreasing the immobility period. It had no effect on locomotor activity of the animal. The antidepressant-like effect was comparable to that of venlafaxine (16 mg/kg, i.p.). 17beta-estradiol also exhibited a similar profile of antidepressant action in the tail suspension test. When coadministered with other antidepressant drugs, 17beta-estradiol (5 microg/kg, i.p.) potentiated the antiimmobility effect of subeffective doses of fluoxetine (5 mg/kg, i.p.), venlafaxine (2 mg/kg, i.p.), or bupropion (10 mg/kg, i.p.), but not of desipramine (5 mg/kg, i.p.) or tranylcypromine (2 mg/kg, i.p.), in the forced swim test. The reduction in the immobility period elicited by 17beta-estradiol (20 microg/kg, i.p.) was reversed by haloperidol (0.5 mg/kg, i.p.; a D(2) dopamine receptor antagonist), SCH 23390 (0.5 mg/kg, i.p.; a D(1) dopamine receptor antagonist), and sulpiride (5 mg/kg, i.p.; a specific dopamine D(2) receptor antagonist). In mice pretreated with (+)-pentazocine (2.5 mg/kg, i.p.; a high-affinity sigma-1 receptor agonist), 17beta-estradiol (5 microg/kg, i.p.) produced a synergistic effect. In contrast, pretreatment with progesterone (10 mg/kg, s.c.; a sigma-1 receptor antagonist neurosteroid), rimcazole (5 mg/kg, i.p.; another sigma-1 receptor antagonist), or BD 1047 (1 mg/kg, i.p.; a novel sigma-1 receptor antagonist) reversed the antiimmobility effects of 17beta-estradiol (20 microg/kg, i.p.). Similarly, in mice pretreated with a subthreshold dose of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, a 5-HT1A serotonin receptor agonist), 17beta-estradiol (5 microg/kg, i.p.) produced an antidepressant-like effect. These findings demonstrate that 17beta-estradiol exerted an antidepressant-like effect preferentially through the modulation of dopaminergic and serotonergic receptors. This action may also involve the participation of sigma-1 receptors.  相似文献   

9.
We investigated the interaction between norepinephrine (NE) and orexin/hypocretin (Hcrt) in the control of sleep behavior and narcoleptic symptoms by creating mice that were deficient in both neurotransmitters. Mice with a targeted disruption of the dopamine beta-hydroxylase (Dbh) gene (deficient in NE and epinephrine) or the Hcrt gene were bred to generate double knockouts (DKOs), each single KO (Dbh-KO and Hcrt-KO), and control mice. The duration of wake, non-rapid eye movement (NREM) and REM sleep were monitored by electroencephalogram (EEG)/electromyogram (EMG) recording over a 24-h period, and the occurrence of behavioral arrests was monitored by video/EEG recording for 4 h. Overall, there was very little interaction between the two genes; for most parameters that were measured, the DKO mice resembled either Dbh-KO or Hcrt-KO mice. REM sleep was increased in both DKO and Hcrt-KO mice at night relative to the other groups, but DKO mice had significantly more REM sleep during the day than the other three groups. Sleep latency in response to saline or amphetamine injections was reduced in Dbh-KO and DKO mice relative to other groups. Behavioral arrests, that are frequent in Hcrt-KO mice, were not exacerbated in DKO mice.  相似文献   

10.
Effects of D2 dopamine receptor selective agonists: quinpirole (0.1, 0.3 and 1 mg/kg, i. p.), pergolide (0.3 mg/kg, i. p.), lisuride (0.1 mg/kg, i. p.) and antagonist raclopride (1.2 mg/kg, i. p.) on the metabolism and synthesis of DA and serotonin in the rat brain striatum and nucleus accumbens after GBL treatment were studied. GBL as well as dopamine D2 receptor selective drugs were shown not only to change neurochemical parameters of dopaminergic brain systems, but also to modulate serotonin metabolism without affecting its biosynthesis.  相似文献   

11.
Abstract— Four days after a single dose of teflutixol (5 mg/kg i.p.), at which time mice are superresponsive to dopamine agonists, e.g. apomorphine, the specific binding of [3H]haloperidol, [3H]cis (Z)-flupenthixol, [3H]apomorphine, [3H]dopamine, [3H]propylbenzilylcholine mustard and [3H]GABA to striatal membranes in vitro is equal to that of saline-treated mice. Specific binding of [3H]haloperidol is also unchanged 3 days following a single dose of fluphenazine (5mg/kg i.p.) and 2 days following haloperidol (5 mg/kg i.p.), but slightly decreased 3 days following cis(Z)-flupenthixol (5 mg/kg i.p.).
The possibility that remaining neuroleptic or active metabolites could obscure a slight increase in dopamine receptor binding was rejected, since remaining amounts of [3H]teflutixol in the final binding assay 4 days after intraperitoneal injection of [3H]teflutixol (5 mg/kg) were too small to influence the binding of [3H]haloperidol in vitro .
It is concluded that the pharmacological superresponsiveness and the decrease in dopamine synthesis and release seen after the initial receptor blockade following a single dose of neuroleptic drugs in mice are nor accompanied by changes in dopamine, muscarine or GABAergic receptor characteristics in corpus striatum. The possibility that changes occur in a small number of functional operative dopamine receptors cannot be excluded, however.  相似文献   

12.
Hirata H  Sonoda S  Agui S  Yoshida M  Ohinata K  Yoshikawa M 《Peptides》2007,28(10):1998-2003
Rubiscolin-6 (Tyr-Pro-Leu-Asp-Leu-Phe) is a delta opioid peptide derived from the large subunit of spinach d-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). We previously reported that rubiscolin-6 had an analgesic effect and stimulated memory consolidation. Here we show that intraperitoneally (i.p.) or orally administered rubiscolin-6 has an anxiolytic effect at a dose of 10 mg/kg or 100 mg/kg, respectively, in the elevated plus-maze test in mice. The anxiolytic effects of rubscolin-6 after i.p. (10 mg/kg) and oral (100 mg/kg) administration were blocked by a delta opioid receptor antagonist, naltrindole (1 mg/kg, s.c.), suggesting that the anxiolytic activity of rubiscolin-6 is mediated by delta opioid receptor. The anxiolytic effect of rubiscolin-6 (10 mg/kg, i.p.) was also blocked by a dopamine D(1) antagonist, SCH23390 (30 microg/kg, i.p.), but not by a dopamine D(2) antagonist, raclopride (15 microg/kg, i.p.). The anxiolytic effect of rubiscolin-6 (10 mg/kg, i.p.) was blocked by sigma(1) receptor antagonist, BMY14802 (0.5 mg/kg, i.p.) or BD1047 (10 mg/kg, i.p.). Taken together, the anxiolytic effect of rubiscolin-6 is mediated by sigma(1) and dopamine D(1) receptors downstream of delta opioid receptor.  相似文献   

13.
This study examined the effects of clozapine on sleep-wakefulness profile in cats prepared for chronic recording of sleep. Clozapine in single dose (i.p.) of 5 mg/kg drastically reduced slow-wave sleep (SWS) and paradoxical sleep (PS), while wakefulness and drowsy pattern were increased. These changes lasted approximately 24 h and were followed by sleep recovery. PS had a priority of recovery. Some similarities between clozapine effects on sleep in cat and human were mentioned.  相似文献   

14.
《Life sciences》1998,62(23):2073-2082
We previously showed that the extract of Japanese angelica root (JAR-E) reversed the decrease in pentobarbital (PB) sleep induced by isolation stress and yohimbine and methoxamine, stimulants of central noradrenergic systems, in mice. Here, we tested the effects of several fractions from JAR-E and ligustilide and butylidenephthalide, phthalide components of JAR-E, on PB sleep in isolated mice to elucidate the mechanism of the action of JAR-E. Methanol-soluble (Met-S) and -insoluble (Met-IS) fractions were obtained from JAR-E. Methylenechloride-soluble (MC-S) and -insoluble fractions (MC-IS) were prepared from Met-S. MCS (11.4–76 mg/kg, p.o.) reversed the isolation stress-induced decrease in PB sleep, but neither Met-IS (0.8–2.4 g/kg, p.o.) nor MC-IS (0.7–2 g/kg, p.o.) had the same effect. The i.p. administration of MC-S exhibited a similar activity to that observed after the p.o. administration of the same fraction. Ligustilide (5–20 mg/kg, i.p.) and butylidenephthalide (10–30 mg/kg, i.p.) reversed PB sleep decrease in isolated mice. Both components (20 mg/kg, i.p.) attenuated the suppressive effects of yohimbine (30 nmol, i.c.v.), methoxamine (200 nmol, i.c.v.) and a benzodiazepine inverse agonist FG7142 (10 mg/kg, i.p.) on PB sleep in group-housed mice. These results suggest the contribution of ligustilide and butylidenephthalide to the effect of JAR-E on PB sleep in isolated mice, and implicate central noradrenergic and/or GABAa systems in the effects of these components.  相似文献   

15.
This study was aimed to explore the sleep/wake states related cortico-pontine theta carrier frequency phase shift following a systemically induced chemical axotomy of the monoaminergic afferents within a brain of the freely moving rats. Our experiments were performed in 14 adult, male Sprague Dawley rats, chronically implanted for sleep recording. We recorded sleep during baseline condition, following sham injection (saline i.p. 1 ml/kg), and every week for 5 weeks following injection of the systemic neurotoxins (DSP-4 or PCA; 1 ml/kg, i.p.) for chemical axotomy of the locus coeruleus (LC) and dorsal raphe (DR) axon terminals. After sleep/wake states identification, FFT analysis was performed on 5 s epochs. Theta carrier frequency phase shift (?Φ) was calculated for each epoch by averaging theta Fourier component phase shifts, and the ?Φ values were plotted for each rat in control condition and 28 days following the monoaminergic lesions, as a time for permanently established DR or LC chemical axotomy. Calculated group averages have shown that ?Φ increased between pons and cortex significantly in all sleep/wake states (Wake, NREM and REM) following the monoaminergic lesions, with respect to controls. Monoaminergic lesions established the pontine leading role in the brain theta oscillations during all sleep/wake states.  相似文献   

16.
Cocaine administration can be disruptive to sleep. In compulsive cocaine users, sleep disruption may be a factor contributing to relapse. The effects of cocaine on sleep, particularly those produced by low doses, have not been extensively studied. Low dose cocaine may stimulate brain reward systems that are linked to the liability of abusing of this drug. This study was designed to assess the effects of the acute administration of low to moderate cocaine doses on sleep in the rat. Polygraphic recordings were obtained from freely moving, chronically instrumented rats over a 6-h period after the administration of either cocaine (as a 2.5-10 mg/kg intraperitoneal dose) or saline. Following cocaine administration, time spent by the rats in wakefulness increased and slow wave sleep decreased in a dose-dependent manner, compared to controls. These changes lasted between 1 to 3 h following the cocaine administration. Rapid eye movement (REM) sleep was decreased during a 2- to 3-h period following the injection of 5 and 10 mg/kg doses of cocaine. In contrast, REM sleep increased during the periods 2-4 h after the administration of 2.5 and 5 mg/kg doses of cocaine. These results indicate that sleep can be significantly altered by low doses of cocaine when administered subacutely.  相似文献   

17.
Yamazaki H  Haji A  Ohi Y  Takeda R 《Life sciences》2005,78(4):383-388
Drug therapy with progesterone has been applied to the patients with sleep apnea syndrome, but its clinical efficacy is equivocal. In the present study, we examined the effects of progesterone (1 and 30 mg/kg, i.p.) on the apneic events during behaviorally defined sleep in male rats at 4, 14 and 26 weeks of age by using a whole body plethysmographic measurement. The number of events of spontaneous apnea (SA) and post-sigh apnea (PSA) increased with aging. The duration of SA or PSA was also prolonged in old rats. A low dose (1 mg/kg) of progesterone significantly decreased the number of both SA and PSA, and this effect increased in an age-dependent manner. However, progesterone had no effect on the duration of SA and PSA. Neither the basal respiratory rate nor the total sleep time was changed. On the other hand, a higher dose (30 mg/kg) of progesterone had no effect on the number of SA and PSA, while it prolonged the duration of PSA. It also prolonged the total sleep time without affecting the basal respiratory rate. Pretreatment with mifepristone (5 mg /kg, i.p.), an antagonist of progesterone receptors, inhibited the effects of the low dose of progesterone, but did not show any antagonistic effect on the high dose-induced changes. These results suggest that the progesterone-mediated mechanisms are involved, at least partly, in respiratory function during sleep and the progesterone therapy is possibly effective within an appropriate dose range for the sleep apnea syndrome.  相似文献   

18.
K. Davison  J. P. Duffy  J. W. Osselton 《CMAJ》1970,102(5):506-508
A within-subject comparison of the effects on the overnight sleep EEG of 1 tablet of Mandrax (containing methaqualone base 250 mg. and diphenhydramine hydrochloride 25 mg.) and 200 mg. Tuinal (equal parts of quinalbarbitone sodium and amylobarbitone sodium) in 14 normal subjects is reported.Mandrax-induced sleep was not significantly different from natural sleep in the duration of light, moderate, deep and REM phases. Tuinal produced a significant reduction in REM sleep (P < 0.01) compared with natural sleep and with Mandrax-induced sleep.  相似文献   

19.
The hypothesis of a predominance of the right hemisphere in stage REM as compared to NREM has been tested through a spectral analysis of the EEG recorded from left (T3) and right (T4) temporal sites in 5 young healthy right-handed male subjects. Variations in the asymmetry coefficient R - L/R + L in different sleep stages have been analyzed by one way ANOVAs and Sheffé's tests. The hypothesis of a progressive increase in left hemisphere activity throughout different REM cycles as one approaches final awakenings have been investigated by comparing variations in the asymmetry coefficient for epochs of REM and stage 2 NREM sampled in different phases of the REM cycle. EEG results do not support either the hypothesized stage dependent or cycle dependent variation in EEG activity during sleep. We question whether variations in EEG amplitude and synchronization can be used as indices of hemispheric asymmetries during sleep.  相似文献   

20.
The present study was performed to investigate the effects of Valeriana wallichi (VW) aqueous root extract on sleep-wake profile and level of brain monoamines on Sprague-Dawley rats. Electrodes and transmitters were implanted to record EEG and EMG in freely moving condition and the changes were recorded telemetrically after oral administration of VW in the doses of 100, 200 and 300 mg/kg body weight. Sleep latency was decreased and duration of non-rapid eye movement (NREM) sleep was increased in a dose dependent manner. A significant decrease of sleep latency and duration of wakefulness were observed with VW at doses of 200 and 300 mg/kg. Duration of NREM sleep as well as duration of total sleep was increased significantly after treatment with VW at the doses of 200 and 300 mg/kg. VW also increased EEG slow wave activity during NREM sleep at the doses of 200 and 300 mg/kg. Level of norepinephrine (NE), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT) and hydroxy indole acetic acid (HIAA) were measured in frontal cortex and brain stem after VW treatment at the dose of 200mg/kg. NE and 5HT level were decreased significantly in both frontal cortex and brain stem. DA and HIAA level significantly decreased only in cortex. DOPAC level was not changed in any brain region studied. In conclusion it can be said that VW water extract has a sleep quality improving effect which may be dependent upon levels of monoamines in cortex and brainstem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号