首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
2.
Spotted wing drosophila (SWD) has emerged as a major invasive insect pest of small berry fruits in the Americas and Europe since the late 2000s. Thus, phytosanitary treatment of commodities for export is imperative to prevent the movement of viable SWD to newer areas. In the present study, all developmental stages of SWD were irradiated with different doses of gamma and electron beam radiation to assess developmental inhibition to identify potential quarantine doses of the radiations. Ionizing radiation induced developmental inhibition of all stages of SWD. The effective doses for 99% inhibition (ED99) of hatching, pupariation, and adult emergence from irradiated eggs for gamma radiation were 882, 395 and 39 Gy, respectively, compared with 2849, 687, and 41 Gy, respectively, for electron beam radiation. The ED99 for inhibition of pupariation and adult emergence in irradiated larvae were 703 and 47 Gy, respectively, for gamma radiation, and 619 and 33 Gy, respectively, for electron beam radiation. Pupal irradiation did not completely inhibit adult emergence, even at 300 Gy. However, irradiation with ≥100 Gy of puparia induced adult sterility, with no egg production at all. The ED99 for inhibition of F1 egg hatchability from adults irradiated with gamma radiation and electron beam radiation was estimated to be 424 and 125 Gy, respectively. The results of the present study suggest that gamma radiation and electron beam radiation are alternatives for phytosanitary treatment. Irradiation with 100 Gy could be suggested as a potential dose for egg, larval, and pupal quarantine treatment of SWD.  相似文献   

3.
It is believed that any dose of ionizing radiation may damage cells and that the mutated cells could develop into cancer cells. Additionally, results of research performed over the past century on the effects of low doses of ionizing radiation on biological organisms show beneficial health effects, called hormesis. Much less is known about the cellular response to low doses of ionizing radiation, such as those typical for medical diagnostic procedures, normal occupational exposures or cosmic-ray exposures at flight altitudes. Extrapolating from the effects observed at higher doses to predict changes in cells after low-dose exposure is problematic. We examined the biological effects of low doses (0.01–0.3 Gy) of γ-radiation on the membrane characteristics of erythrocytes of albino rats and carried out osmotic fragility tests and Fourier transform infrared spectroscopy (FTIR). Our results indicate that the lowest three doses in the investigated radiation range, i.e., 0.01, 0.025 and 0.05 Gy, resulted in positive effects on the erythrocyte membranes, while a dose of 0.1 Gy appeared to represent the limiting threshold dose of those positive effects. Doses higher than 0.1 Gy were associated with the denaturation of erythrocyte proteins.  相似文献   

4.
Lee JH  Tak JK  Park KM  Park JW 《Biochimie》2007,89(12):1509-1516
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Therefore, compounds that scavenge reactive oxygen species may confer regulatory effects on apoptosis. Recently, it has been shown that the decomposition product of the spin-trapping agent α-phenyl-N-t-butylnitrone, N-t-butyl hydroxylamine (NtBHA), mimics α-phenyl-N-t-butylnitrone and is much more potent in delaying reactive oxygen species-associated senescence. We investigated the effects of NtBHA on ionizing radiation-induced apoptosis. Upon exposure to 2 Gy of γ-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 0.1 mM NtBHA for 2 h in regard to apoptotic parameters, cellular redox status, mitochondria function, and oxidative damage to cells. NtBHA effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The generation of intracellular reactive oxygen species was higher and the GSH level was lower in control cells compared to NtBHA-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of reactive oxygen species, and the reduction of ATP production were significantly higher in control cells compared to NtBHA-treated cells. NtBHA pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that NtBHA may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of reactive oxygen species.  相似文献   

5.
To investigate the effects of ionizing radiation on an isolated neuronal network without complicating systemic factors, slices of hippocampus from the guinea pig were isolated and studied in vitro. Slices were irradiated with a 60Co source and compared to paired, sham-irradiated controls. Electrophysiological activity in the CA 1 population of pyramidal cells was evoked by stimulation of the stratum radiatum. Analysis of the somatic and dendritic responses suggested sites of radiation damage. Orthodromically evoked activity was significantly decreased in slices receiving greater than 75 Gy gamma radiation. The effects were dose and dose-rate dependent. At 20 Gy/min, doses of 50 Gy and greater produced synaptic impairment while doses of 75 Gy and greater also produced postsynaptic damage (i.e., the ability of the synaptic response to generate an action potential). A lower dose rate, 5 Gy/min, reduced the sensitivity of synaptic damage to radiation exposure; synaptic impairment required a dose of 100 Gy or greater at the lower dose rate. In contrast, postsynaptic damage was not sensitive to dose rate. This study demonstrates that ionizing radiation can directly affect the integrated functional activity of neurons.  相似文献   

6.
V I Dreval' 《Radiobiologiia》1992,32(2):222-224
A study was made of a change in Ca2+, Mg(2+)-ATPase activity induced by the effect of ionizing radiation (5-10(4) Gy) on a thymocyte plasma membrane suspension. The Michaelis' constant and maximum rate of enzymic reactions were determined. With a dose of 10(3) Gy the structural changes in Ca2+, Mg(2+)-ATPase were shown to reduce the affinity of the substrate to an active enzyme center and to decrease the rate of the enzyme/substrate complex degradation.  相似文献   

7.
8.
The resistance of Euglena (E.) gracilis to ionizing radiation was investigated using seven kinds of ion beams each with different energy characteristics. The minimum effective dose of the most lethal ion beams was 40 Gy. Given its substantially high resistance to heavy ion beams, E. gracilis possesses great potential in acting as an effective support system to produce food and regenerate oxygen in a space station. The lethal effect of ionizing radiation was dependent on the linear energy transfer value of the heavy ion beams, and reached a maximum at 196 keV/micron. This value was different from those obtained by previous irradiation experiments using mammalian and plant cells, suggesting that the radiation response of E. gracilis is distinct from that of mammalian and plant cells.  相似文献   

9.
Total body Irradiation (TBI) is often used for conditioning, prior to bone marrow transplantation. Doses of 8–14 Gy in 1–8 fractions over 1–4 days are administered using low dose rate external beam radiotherapy (EBRT). When necessary, consolidation EBRT using conventional doses, fractionation and dose rate is given. The irradiated volume usually contains critical organs such as spinal cord. The purpose of this study was to assess the biologic effect of TBI on the spinal cord in terms of EQD2 (equivalent dose given in fractions of 2 Gy). EQD2 values were calculated using the linear-quadratic generalized incomplete repair (IR) model that incorporates IR between fractions and low dose rate irradiation corrections and accounts for mono and bi-exponential repair. Three fractionation schemes were studied as function of dose rate: 8 Gy in 1 and 2 fractions and 12 Gy in 8 fractions. For the 12 Gy in 8 fractions scheme, the influence of dose rate on EQD2 was limited because the effect of IR between fractions dominates. For the 8 Gy in 1 fraction scheme, significant sparing of the spinal cord may be achieved for low dose rate (5–20 cGy/min). The extent of effects depends on the parameters used. The IR model provides a useful mathematical framework for examination of the effects of fractionated treatments of varying dose rate. Reliable experimental data are needed for accurate assessment of radiation damage to the spinal cord following fractionated low dose rate TBI.  相似文献   

10.
Ionizing radiation is a potent inducer of DNA damage because it causes single- and double-strand breaks, alkali-labile sites, base damage, and crosslinks. The interest in ionizing radiation is due to its environmental and clinical implications. Single-strand breaks, which are the initial damage induced by a genotoxic agent, can be used as a biomarker of exposure, whereas the more biologically relevant double-strand breaks can be analyzed to quantify the extent of damage. In the present study the effects of 137Cs γ-radiation at doses of 1, 5, and 10 Gray on DNA and subsequent repair by C3H10T1/2 cells (mouse embryo fibroblasts) were investigated. Two versions of the comet assay, a sensitive method for evaluating DNA damage, were implemented: the alkaline one to detect single-strand breaks, and the neutral one to identify double-strand breaks. The results show a good linear relation between DNA damage and radiation dose, for both single-strand and double-strand breaks. A statistically significant difference with respect to controls was found at the lowest dose of 1 Gy. Heterogeneity in DNA damage within the cell population was observed as a function of radiation dose. Repair kinetics showed that most of the damage was repaired within 2 h after irradiation, and that the highest rejoining rate occurred with the highest dose (10 Gy). Single-strand breaks were completely repaired 24 h after irradiation, whereas residual double-strand breaks were still present. This finding needs further investigation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
DNA methylation can regulate gene expression and has been shown to modulate cancer cell biology and chemotherapy resistance. Therapeutic radiation results in a biological response to counter the subsequent DNA damage and genomic stress in order to avoid cell death. In this study, we analyzed DNA methylation changes at >450,000 loci to determine a potential epigenetic response to ionizing radiation in MDA-MB-231 cells. Cells were irradiated at 2 and 6 Gy and analyzed at 7 time points from 1–72 h. Significantly differentially methylated genes were enriched in gene ontology categories relating to cell cycle, DNA repair, and apoptosis pathways. The degree of differential methylation of these pathways varied with radiation dose and time post-irradiation in a manner consistent with classical biological responses to radiation. A cell cycle arrest was observed 24 h post-irradiation and DNA damage, as measured by γH2AX, resolved at 24 h. In addition, cells showed low levels of apoptosis 2–48 h post-6 Gy and cellular senescence became significant at 72 h post-irradiation. These DNA methylation changes suggest an epigenetic role in the cellular response to radiation.  相似文献   

12.
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Therefore, compounds that scavenge reactive oxygen species may confer regulatory effects on apoptosis. Superoxide dismutase (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. We investigated the effects of the manganese (III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP), a cell-permeable SOD mimetic, on ionizing radiation-induced apoptosis. Upon exposure to 2 Gy of gamma-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 5 microM MnTMPyP for 2 h with regard to apoptotic parameters, cellular redox status, mitochondria function, and oxidative damage to cells. MnTMPyP effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular reactive oxygen species were higher and the [NADPH]/[NADP(+)+NADPH] ratio was lower in control cells compared to MnTMPyP-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of reactive oxygen species, and the reduction of ATP production were significantly higher in control cells compared to MnTMPyP-treated cells. MnTMPyP pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that MnTMPyP may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of reactive oxygen species.  相似文献   

13.
BackgroundComparison of the estimated effect of atomic bomb radiation exposure on solid cancer incidence and solid cancer mortality in the RERF Life Span Study (LSS) reveals a difference in the magnitude and shape of the excess relative risk dose response. A possible contributing factor to this difference is pre-diagnosis radiation effect on post-diagnosis survival. Pre-diagnosis radiation exposure theoretically could influence post-diagnosis survival by affecting the genetic makeup and possibly aggressiveness of cancer, or by compromising tolerance for aggressive treatment for cancer.MethodsWe analyze the radiation effect on post-diagnosis survival in 20,463 LSS subjects diagnosed with first-primary solid cancer between 1958 and 2009 with particular attention to whether death was caused by the first-primary cancer, other cancer, or non-cancer diseases.ResultsFrom multivariable Cox regression analysis of cause-specific survival, the excess hazard at 1 Gy (EH1Gy) for death from the first primary cancer was not significantly different from zero – p = 0.23, EH1Gy = 0.038 (95 % CI: −0.023, 0.104). Death from other cancer and death from non-cancer diseases both were significantly associated with radiation dose: other cancer EH1Gy = 0.38 (95 % CI: 0.24, 0.53); non-cancer EH1Gy = 0.24 (95 % CI: 0.13, 0.36), both p < 0.001.ConclusionThere is no detectable large effect of pre-diagnosis radiation exposure on post-diagnosis death from the first primary cancer in A-bomb survivors.ImpactA direct effect of pre-diagnosis radiation exposure on cancer prognosis is ruled out as an explanation for the difference in incidence and mortality dose response in A-bomb survivors.  相似文献   

14.
15.
A highly sensitive chemiluminescence (CL) method for evaluation of medical radiation damage degree is presented. According to the principle of cell stress response to ionizing radiation, lymphocytes will produce reactive oxygen species (ROS) after irradiation. The ROS produced can react with 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-alpha] pyrazin-3-one (MCLA), a specific CL probe for superoxide anion (O(.-) (2)) and singlet oxygen ((1)O(2)), to emit light at 465 nm. The CL intensity is positively related to the amount of generated ROS detected 30 min after irradiation. Cell viability, which is inversely related to cell mortality, was determined by MTT assay after 3 days' culture. The results show that both CL intensity and cell mortality of lymphocytes increase with the increase of the radiation dose when the dosage is no more than 3 Gy, suggesting a positive relationship between the degree of lymphocyte cell damage and the amount of ROS generated. In addition, the effects of catalase, Cu-Zn superoxide dismutase (SOD), mannitol, sodium azide (NaN(3)), and D(2)O on MCLA-dependent CL of lymphocytes are discussed. We believe that the MCLA-dependent CL method would potentially provide an easy way for evaluating the degree of lymphocyte damage induced by radiation.  相似文献   

16.
The study of the ability of chemotherapeutic agents and/or ionizing radiation (IR) to induce cell death in tumor cells is essential for setting up new and more efficient therapies against human cancer. Since drug and ionizing radiation resistance is an impediment to successful chemotherapy against cancer, we wanted to check if etoposide/ionizing radiation combined treatment could have a synergic effect to improve cell death in K562, a well-known human erythroleukemia ionizing radiation resistant cell line. In this study, we examined the role played by JNK/SAPK, p53, and mitochondrial pathways in cell death response of K562 cells to etoposide and IR treatment. Our results let us suppose that the induction of cell death, already evident in 15 Gy exposed cells, mainly in 15 Gy plus etoposide, may be mediated by JNK/SAPK pathway. Moreover, p53 is a potential substrate for JNK and may act as a JNK target for etoposide and ionizing radiation. Thus further investigation on these and other molecular mechanisms underlying the cell death response following etoposide and ionizing radiation exposure could be useful to overcome resistance mechanisms in tumor cells.  相似文献   

17.
Microwave radiation at 3.4–4.2 GHz frequency of the cytochrome P450 CYP102 A1 (BM3) solution was registered during the lauric acid hydroxylation reaction. The microwave radiation generation was shown to occur following the addition of electron donor NADPH to a system containing an enzyme and a substrate. The radiation occurs for the enzyme solutions with enzyme concentrations of 10?8 and 10?9 М. The microwave radiation effect elicited by the aqueous enzyme solution was observed for the first time. The results obtained can be used to elaborate a new approach to enzyme systems research, including studying of the mechanism of interaction of a functioning enzyme system with microenvironment.  相似文献   

18.
Blood vessel growth is regulated by angiogenic and angiostatic CXC chemokines, and radiation is a vasculogenic stimulus. We investigated the effect of radiation on endothelial cell chemokine signaling, receptor expression, and migration and apoptosis. Human umbilical vein endothelial cells were exposed to a single fraction of 0, 5, or 20 Gy of ionizing radiation (IR). All vasculogenic chemokines (CXCL1–3/5–8) increased 3–13-fold after 5 or 20 Gy IR. 20 Gy induced a marked increase (1.6–4-fold) in angiostatic CXC chemokines. CXCR4 expression increased 3.5 and 7-fold at 48 h after 5 and 20 Gy, respectively. Bone marrow progenitor cell chemotaxis was augmented by conditioned media from cells treated with 5 Gy IR. Whereas 5 Gy markedly decreased intrinsic cell apoptosis (0 Gy = 16% ± 3.6 vs. 5 Gy = 4.5% ± 0.3), 20 Gy increased it (21.4% ± 1.2); a reflection of pro-survival angiogenic chemokine expression. Radiation induces a dose-dependent increase in pro-angiogenic CXC chemokines and CXCR4. In contrast, angiostatic chemokines and apoptosis were induced at higher (20 Gy) radiation doses. Cell migration improved significantly following 5 Gy, but not 20 Gy IR. Collectively, these data suggest that lower doses of IR induce an angiogenic cascade while higher doses produce an angiostatic profile.  相似文献   

19.
This study provides a useful biodosimetry protocol for radiation accidents that involve high doses of heavy particle radiation. Human peripheral blood lymphocytes (PBLs) were irradiated in vitro with high doses (5–50 Gy) of charged heavy-ion particles (carbon ions, at an effective linear-energy-transfer (LET) of 34.6 keV/μm), and were then stimulated to obtain dividing cells. PBLs were treated with 100 nM calyculin A to force chromosomes to condense prematurely, and chromosome spreads were obtained and stained with Giemsa. The G2 prematurely condensed chromosome (G2-PCC) index and the number of G2-PCC including fragments (G2-PCC-Fs) per cell for each radiation dose point were scored. Dose-effect relationships were obtained by plotting the G2-PCC indices or G2-PCC-Fs numbers against radiation doses. The G2-PCC index was greater than 5% up to doses of 15 Gy; even after a 30 Gy radiation dose, the index was 1 to 2%. At doses higher than 30 Gy, however, the G2-PCC indices were close to zero. The number of G2-PCC-Fs increased steeply for radiation doses up to 30 Gy at a rate of 1.07 Gy−1. At doses higher than 30 Gy, the numbers of G2-PCC-Fs could not be accurately indexed because of the limited numbers of cells for analysis. Therefore, the number of G2-PCC-Fs could be used to estimate radiation doses up to 30 Gy. In addition, a G2-PCC index close to zero could be used as an indicator for radiation doses greater than 40 Gy.  相似文献   

20.
The present study assessed the effectiveness of gamma radiation in inducing favorable genetic variability in tomato (Solanum lycopersicum L.). An experiment was conducted in a randomized complete block design to produce M1 generation. Significant differences were observed among the genotypes as well as between the treatments at individual plant level based on observed traits (seed germination percentage, seedling survival, plant height, number of flower clusters plant?1, number of flowers and fruits plant?1). All observed characters in the mutagenized population were adversely affected with increasing radiation dose. Results identified 450 Gy as the most damaging radiation dose followed by 300 Gy and 150 Gy. Moreover, 300 Gy treatment was identified as lethal dose (LD50) as it caused a 50% germination inhibition in almost all the evaluated genotypes. The 150 Gy treatment showed the least damaging impact and induced maximum genetic variability in almost all the genotypes under study. Character association studies were also conducted which could be utilized in the selection of desirable mutants. Correlation studies revealed an altered association among the observed parameters from positive to negative direction in 300 Gy and 450 Gy treatments as compared to control. These deviations in correlation coefficients proved that mutagenesis can break the linkage among specific loci. Furthermore, path coefficient analysis identified the growth attributes with an effective direct and indirect contribution in yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号