共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transfer of Rhizobium meliloti pSym genes into Agrobacterium tumefaciens: host-specific nodulation by atypical infection 总被引:9,自引:18,他引:9 下载免费PDF全文
G Truchet C Rosenberg J Vasse J S Julliot S Camut J Denarie 《Journal of bacteriology》1984,157(1):134-142
The pSym megaplasmid of Rhizobium meliloti 2011 mobilized by plasmid RP4, or plasmid pGMI42, an RP4-prime derivative which carries a 290-kilobase pSym fragment including nitrogenase and nod genes, was introduced into Agrobacterium tumefaciens. The resulting transconjugants induced root deformations specifically on the homologous hosts Medicago sativa and Melilotus alba and not on the heterologous hosts Trifolium pratense and Trifolium repens. The root deformations were shown to be genuine nodules by physiological and cytological studies. Thus, host specificity nodulation genes are located on the pSym megaplasmid. Host nodulation specificity did not seem to require recognition at the root hair level since no infection threads could be detected in the root hairs. Cytological observations indicated that bacteria penetrated only the superficial layers of the host root tissue by an atypical infection process. The submeristematic zone and the central tissue of the nodules were bacteria free. Thus, nodule organogenesis was probably triggered from a distance by the bacteria. Agrobacterium transconjugants carrying pSym induced the formation of more numerous and larger nodules than those carrying the RP4-prime plasmid pGMI42, suggesting that some genes influencing nodule organogenesis are located in a pSym region(s) outside that which has been cloned into pGMI42. 相似文献
3.
Rhizobium meliloti nodulation genes: identification of nodDABC gene products, purification of nodA protein, and expression of nodA in Rhizobium meliloti. 总被引:5,自引:15,他引:5 下载免费PDF全文
A set of conserved, or common, bacterial nodulation (nod) loci is required for host plant infection by Rhizobium meliloti and other Rhizobium species. Four such genes, nodDABC, have been indicated in R. meliloti 1021 by genetic analysis and DNA sequencing. An essential step toward understanding the function of these genes is to characterize their protein products. We used in vitro and maxicell Escherichia coli expression systems, together with gel electrophoresis and autoradiography, to detect proteins encoded by nodDABC. We facilitated expression of genes on these DNA fragments by inserting them downstream of the Salmonella typhimurium trp promoter, both in colE1 and incP plasmid-based vectors. Use of the incP trp promoter plasmid allowed overexpression of a nodABC gene fragment in R. meliloti. We found that nodA encodes a protein of 21 kilodaltons (kDa), and nodB encodes one of 28 kDa; the nodC product appears as two polypeptide bands at 44 and 45 kDa. Expression of the divergently read nodD yields a single polypeptide of 33 kDa. Whether these represent true Rhizobium gene products must be demonstrated by correlating these proteins with genetically defined Rhizobium loci. We purified the 21-kDa putative nodA protein product by gel electrophoresis, selective precipitation, and ion-exchange chromatography and generated antiserum to the purified gene product. This permitted the immunological demonstration that the 21-kDa protein is present in wild-type cells and in nodB- or nodC-defective strains, but is absent from nodA::Tn5 mutants, which confirms that the product expressed in E. coli is identical to that produced by R. meliloti nodA. Using antisera detection, we found that the level of nodA protein is increased by exposure of R. meliloti cells to plant exudate, indicating regulation of the bacterial nod genes by the plant host. 相似文献
4.
To differentiate among the roles of the three nodD genes of Rhizobium meliloti 1021, we studied the activation of a nodC-lacZ fusion by each of the three nodD genes in response to root exudates from several R. meliloti host plants and in response to the flavone luteolin. We found (i) that the nodD1 and nodD2 products (NodD1 and NodD2) responded differently to root exudates from a variety of hosts, (ii) that NodD1 but not NodD2 responded to luteolin, (iii) that NodD2 functioned synergistically with NodD1 or NodD3, (iv) that NodD2 interfered with NodD1-mediated activation of nodC-lacZ in response to luteolin, and (v) that a region adjacent to and upstream of nodD2 was required for NodD2-mediated activation of nodC-lacZ. We also studied the ability of each of the three R. meliloti nodD genes to complement nodD mutations in R. trifolii and Rhizobium sp. strain NGR234. We found (i) that nodD1 complemented an R. trifolii nodD mutation but not a Rhizobium sp. strain NGR234 nodD1 mutation and (ii) that R. meliloti nodD2 or nodD3 plus R. meliloti syrM complemented the nodD mutations in both R. trifolii and Rhizobium sp. strain NGR234. Finally, we determined the nucleotide sequence of the R. meliloti nodD2 gene and found that R. meliloti NodD1 and NodD2 are highly homologous except in the C-terminal region. Our results support the hypothesis that R. meliloti utilizes the three copies of nodD to optimize the interaction with each of its legume hosts. 相似文献
5.
A Rhizobium meliloti DNA region, determining nodulation functions common in different Rhizobium species, has been delimited by directed Tn5 mutagenesis and its nucleotide sequence has been determined. The sequence data indicates three large open reading frames with the same polarity coding for three proteins of 196, 217 and 402 (or 426) amino acid residues, respectively. We suggest the existence of three nod genes on this region, which were designated as nodA, B and C, respectively. Comparison of the R. meliloti nodA, B, C nucleotide and amino acid sequences with those from R. leguminosarum, as reported in the accompanying paper, shows 69-72% homology, clearly demonstrating the high degree of conservation of common nod genes in these Rhizobium species. 相似文献
6.
The role of the hsnD (nodH) gene in the determination of the host-specific nodulation ability of Rhizobium meliloti was studied by expressing the common nodulation genes (nodABC) with or without the hsnD gene in Escherichia coli and testing for biological activity on various leguminous plants. In this way, four categories of plants were established. Upon infection with E. coli carrying the nodABC construct, root hair deformation (Had) was detected on clovers while the hsnD gene was additionally needed for the elicitation of the same response on alfalfa and sweet clover. A weak root hair deformation was seen on siratro by inoculation with E. coli harbouring the nodABC genes and was highly increased when hsnD was also introduced. Cowpea and Desmodium did not respond to any of the E. coli strains constructed. Exudates or cytosolicfractions of the respective E. coli derivatives elicited the same root hair deformation as the intact bacteria. These data indicate that not only the nodABC gene products but also the hsnD product are involved in the synthesis of Had factors. Subclones expressing only the nodA, nodB, or nodC genes or the same genes in pairs (nodAB, nodBC, nodAC) did not provide a compound with activity comparable to the NodABC factor, suggesting that all three genes are required for the production of the Had factor which is active on clover. Coinoculation of alfalfa plants with two strains of E. coli, one carrying the nodABC genes and the other expressing only hsnD, or combining exudates or cytosolic fractions from these strains did not result in root hair deformation on alfalfa. These data indicate that the HsnD protein itself or its product is not an additional alfalfa-specific extracellular signal but more likely is enzymatically involved in the modification of the basic compound determined by the nodABC genes. 相似文献
7.
Role of galactosyltransferase activity in phage sensitivity and nodulation competitiveness of Rhizobium meliloti. 总被引:2,自引:7,他引:2 下载免费PDF全文
A stock culture of Rhizobium meliloti 102F51 contains colonies of two distinct phenotypes (Handelsman et al., J. Bacteriol. 157:703-707, 1984); one colony type is agglutinated by high dilutions of the alfalfa agglutinin, is sensitive to phage F20, and is resistant to phage 16B, and the other is agglutinated only by low dilutions of the alfalfa agglutinin, is resistant to phage F20, and is sensitive to phage 16B. Cells of the latter phenotype have an inner-membrane-bound galactosyltransferase activity that transfers galactose from UDP-galactose to a water-insoluble anionic polymer. This enzymatic activity is absent in cells of the first phenotype. All of the phage 16B-resistant mutants selected from a sensitive strain were agglutinated by high dilutions of the alfalfa agglutinin, were sensitive to phage F20, and lacked galactosyltransferase activity. The galactose-containing polymer prepared in vitro was immunologically cross-reactive with the cell surface. 相似文献
8.
Interference between Rhizobium meliloti and Rhizobium trifolii nodulation genes: genetic basis of R. meliloti dominance. 总被引:1,自引:3,他引:1 下载免费PDF全文
F Debell F Maillet J Vasse C Rosenberg F de Billy G Truchet J Dnari F M Ausubel 《Journal of bacteriology》1988,170(12):5718-5727
Transfer of an IncP plasmid carrying the Rhizobium meliloti nodFE, nodG, and nodH genes to Rhizobium trifolii enabled R. trifolii to nodulate alfalfa (Medicago sativa), the normal host of R. meliloti. Using transposon Tn5-linked mutations and in vitro-constructed deletions of the R. meliloti nodFE, nodG, and nodH genes, we showed that R. meliloti nodH was required for R. trifolii to elicit both root hair curling and nodule initiation on alfalfa and that nodH, nodFE, and nodG were required for R. trifolii to elicit infection threads in alfalfa root hairs. Interestingly, the transfer of the R. meliloti nodFE, nodG, and nodH genes to R. trifolii prevented R. trifolii from infecting and nodulating its normal host, white clover (Trifolium repens). Experiments with the mutated R. meliloti nodH, nodF, nodE, and nodG genes demonstrated that nodH, nodF, nodE, and possibly nodG have an additive effect in blocking infection and nodulation of clover. 相似文献
9.
Positive and negative control of nod gene expression in Rhizobium meliloti is required for optimal nodulation 总被引:17,自引:0,他引:17 下载免费PDF全文
Kondorosi E Gyuris J Schmidt J John M Duda E Hoffmann B Schell J Kondorosi A 《The EMBO journal》1989,8(5):1331-1340
We show that expression of common nodulation genes in Rhizobium meliloti is under positive as well as negative control. A repressor protein was found to be involved in the negative control of nod gene expression. Whereas the activator NodD protein binds to the conserved cis-regulatory element (nod-box) required for coordinated regulation of nod genes, the repressor binds to the overlapping nodD1 and nodA promoters, at the RNA polymerase binding site. A model depicting the possible interaction of the plant-derived nod gene inducer (luteolin), the NodD and the repressor with the nod promoter elements is presented. Mutants lacking the repressor exhibited delayed nodulation phenotype, indicating that fine tuning of nod gene expression is required for optimal nodulation of the plant host. 相似文献
10.
11.
Two gene clusters of Rhizobium meliloti code for early essential nodulation functions and a third influences nodulation efficiency. 总被引:7,自引:8,他引:7 下载免费PDF全文
A pLAFR1 cosmid clone (pPP346) carrying the nodulation region of the symbiotic plasmid pRme41b was isolated from a gene library of Rhizobium meliloti 41 by direct complementation of a Nod- deletion mutant of R. meliloti. Agrobacterium tumefaciens and Rhizobium species containing pPP346 were able to form ineffective nodules on alfalfa. The 24-kilobase insert in pPP346 carries both the common nodulation genes and genes involved in host specificity of nodulation. It was shown that these two regions are essential and sufficient to determine the early events in nodulation. A new DNA region influencing the kinetics and efficiency of nodulation was also localized on the symbiotic megaplasmid at the right side of the nif genes. 相似文献
12.
Transmembrane orientation and receptor-like structure of the Rhizobium meliloti common nodulation protein NodC 总被引:18,自引:1,他引:18 下载免费PDF全文
The 46.8-kd NodC protein of Rhizobium meliloti is a membrane protein, essential for nodule formation. Gene fusions of nodC to a portion of the λ cI repressor gene were used to define the membrane-anchor domain which is necessary for membrane insertion of the NodC protein into the membrane. The transmembrane orientation of NodC was confirmed by surface-specific radiolabeling and proteolysis experiments. A highly hydrophobic transmembrane-anchor domain was found near the carboxyl terminus, separating a large extracellular domain which contains an unusual cysteine-rich cluster from a short putative intracellular domain. Cross-linking studies showed that the NodC protein exists in the membrane probably as a dimer. The domain structure of the NodC protein shows striking similiarities with cell surface receptors. In nodules of various legumes a truncated form of the NodC protein was detected. The processed NodC was associated with the bacteroids and the amount of this protein increased during nodule development. 相似文献
13.
A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of alfalfa. 下载免费PDF全文
A Lagares G Caetano-Anolls K Niehaus J Lorenzen H D Ljunggren A Pühler G Favelukes 《Journal of bacteriology》1992,174(18):5941-5952
A transposon Tn5-induced mutant of Rhizobium meliloti Rm2011, designated Rm6963, showed a rough colony morphology on rich and minimal media and an altered lipopolysaccharide (LPS). Major differences from the wild-type LPS were observed in (i) hexose and 2-keto-3-deoxyoctonate elution profiles of crude phenol extracts chromatographed in Sepharose CL-4B, (ii) silver-stained sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis patterns of crude and purified LPS fractions, and (iii) immunoreactivities otherwise present in purified LPS of the parental strain Rm2011. In addition, Rm6963 lost the ability to grow in Luria-Bertani medium containing the hydrophobic compounds sodium deoxycholate or SDS and showed a decrease in survival in TY medium supplemented with high calcium concentrations. The mutant also had altered symbiotic properties. Rm6963 formed nodules that fixed nitrogen but showed a delayed or even reduced ability to nodulate the primary root of alfalfa without showing changes in the position of nodule distribution profiles along the roots. Furthermore, 2 to 3 weeks after inoculation, plants nodulated by Rm6963 were smaller than control plants inoculated with wild-type bacteria in correlation with a transient decrease in nitrogen fixation. In most experiments, the plants recovered later by expressing a full nitrogen-fixing phenotype and developing an abnormally high number of small nodules in lateral roots after 1 month. Rm6963 was also deficient in the ability to compete for nodulation. In coinoculation experiments with equal bacterial numbers of both mutant and wild-type rhizobia, only the parent was recovered from the uppermost root nodules. A strain ratio of approximately 100 to 1 favoring the mutant was necessary to obtain an equal ratio (1:1) of nodule occupancy. These results show that alterations in Rm6963 which include LPS changes lead to an altered symbiotic phenotype during the association with alfalfa that affects the timing of nodule emergence, the progress of nitrogen fixation, and the strain competitiveness for nodulation. 相似文献
14.
The product of the Rhizobium meliloti ilvC gene is required for isoleucine and valine synthesis and nodulation of alfalfa. 下载免费PDF全文
Tn5-induced mutants of Rhizobium meliloti that require the amino acids isoleucine and valine for growth on minimal medium were studied. In one mutant, 1028, the defect is associated with an inability to induce nodules on alfalfa. The Tn5 mutation in 1028 is located in a chromosomal 5.5-kb EcoRI fragment. Complementation analysis with cloned DNA indicated that 2.0 kb of DNA from the 5.5-kb EcoRI fragment restored the wild-type phenotype in the Ilv- Nod- mutant. This region was further characterized by DNA sequence analysis and was shown to contain a coding sequence homologous to those for Escherichia coli IlvC and Saccharomyces cerevisiae Ilv5. Genes ilvC and ilv5 code for the enzyme acetohydroxy acid isomeroreductase (isomeroreductase), the second enzyme in the parallel pathways for the biosynthesis of isoleucine and valine. Enzymatic assays confirmed that strain 1028 was a mutant defective in isomeroreductase activity. In addition, it was shown that the ilvC genes of Rhizobium meliloti and E. coli are functionally equivalent. We demonstrated that in ilvC mutant 1028 the common nodulation genes nodABC are not activated by the inducer luteolin. E. coli ilvC complemented both defective properties (Ilv- and Nod-) found in mutant 1028. These findings demonstrate that R. meliloti requires an active isomeroreductase enzyme for successful nodulation of alfalfa. 相似文献
15.
16.
T. Ritsema A. H. M. Wijfjes B. J. J. Lugtenberg H. P. Spaink 《Molecular genetics and genomics : MGG》1996,251(1):44-51
In the biosynthesis of lipochitin oligosaccharides (LCOs) theRhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence ofnodA in thenodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which thenodA, nodB andnodC genes are separately present on different plasmids. Efficient nodulation was only obtained ifnodC was present on a low-copy-number vector. Our results confirm the notion thatnodA ofRhizobium leguminosarum biovarviciae is essential for nodulation onVicia. Surprisingly, replacement ofR. l. bv.viciae nodA by that ofBradyrhizobium sp. ANU289 results in a nodulation-minus phenotype onVicia. Further analysis revealed that theBradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of theR. l. bv.viciae nodF E-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion thatnodA is a commonnod gene should be revised. 相似文献
17.
18.
W Ma?ek 《Acta microbiologica Polonica》1983,32(1):11-18
Using N-methyl-N'-nitro-N-nitrosoguanidine mutant RM54 of Rhizobium meliloti L5-30 defective in the nodulation process (Nod-) and in the biosynthesis of adenine was obtained. Nod- phenotype of this mutant was not caused by the auxotrophic mutation. The nod gene is located on the chromosome. The wild type strain of R. meliloti and Nod- mutant RM54 harbour two indigenous plasmids having a molecular weight of 90 Mdal and about 300 Mdal. 相似文献
19.
Cryptic plasmid and rifampin resistance in Rhizobium meliloti influencing nodulation competitiveness. 总被引:5,自引:1,他引:5 下载免费PDF全文
An assessment was made of the relative contributions of a spontaneous mutation to rifampin resistance and a cryptic plasmid, pTA2, to competitive nodulation of Medicago sativa by a strain of Rhizobium meliloti. This was facilitated by use of rifampin-resistant derivatives of this strain in which pTA2 was originally present, cured, or reintroduced. Both curing of pTA2 and spontaneous mutation to rifampin resistance significantly influenced nodulating competitiveness, but the effect of rifampin resistance was greater and such that the contribution of pTA2 was evident only in cases in which paired competitors had the common rifampin resistance background. The data suggest that rifampin-resistant derivatives contain an altered RNA polymerase insensitive to the action of rifampin. All R. meliloti derivatives had symbiotic characteristics and phage susceptibility patterns similar to those of the wild type. Plasmid pTA2 transfer or other genetic interchange was not detected in nodules of M. sativa inoculated with paired competitors. 相似文献
20.
S Klein A M Hirsch C A Smith E R Signer 《Molecular plant-microbe interactions : MPMI》1988,1(2):94-100
Among the genes of Rhizobium meliloti SU47 that affect nitrogen-fixing symbiosis with alfalfa are nod genes, in which mutations block nodule induction, and exo genes, in which mutations allow nodule formation but block rhizobial exopolysaccharide production as well as nodule invasion and nitrogen fixation. To investigate whether an exo+ bacterium can "help" (that is, reverse the symbiotic defect of) an exo mutant in trans, we have coinoculated alfalfa with pairs of rhizobia of different genotypes. Coinoculant genotypes were chosen so that the exo+ helper strain was nif while the exo "indicator" strain was nif+, and thus any fixation observed was carried out by the exo coinoculant. We find that a nod exo+ coinoculant can help an exo mutant both to invade nodules and to fix nitrogen. However, a nod+ exo+ coinoculant cannot help an exo mutant: Few exo bacteria are recovered from nodules, some bacteroids differentiate into bizarre aberrant forms, and the nodules fail to fix nitrogen. In a triple coinoculation, the effect of nod+ helper supersedes that of nod helper. Implications of these results for interaction of nod and exo gene products are discussed. 相似文献